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Background: Electrocardiogram (ECG) signals contain cardiopulmonary
information that can facilitate sleep apnea detection. Traditional methods rely
on extracting numerous ECG features, which is labor-intensive and
computationally cumbersome.

Methods: To reduce feature complexity and enhance detection accuracy, we
propose a spectral feature-based approach using single-lead ECG signals. First,
the ECG signal is preprocessed via ensemble empirical mode decomposition
combined with independent component analysis (EEMD-ICA) to identify the
most representative intrinsic mode function (IMF) based on the maximum
instantaneous frequency in the frequency domain. Next, Hilbert transform-
based time-frequency analysis is applied to derive the component’s 2D time-
frequency spectrum. Finally, three spectral features—maximum instantaneous
frequency (femax), instantaneous frequency amplitude (V), and marginal spectrum
energy (S)—are quantitatively compared between normal and sleep apnea
populations using an independent-sample t-test. These features are classified
via a random forest machine learning model.

Results: The femax and IMF7 components of the reconstructed signal exhibited
statistically significant differences (p < 0.001) between normal and sleep apnea
subjects. The random forest classifier achieved optimal performance, with 92.9%
accuracy, 86.6% specificity, and 100% sensitivity.

Conclusion: This study demonstrates that spectral features derived from single-
lead ECG signals, combinedwith EEMD-ICA and time-frequency analysis, offer an
efficient and accurate method for sleep apnea detection.
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1 Introduction

Sleep is a vital physiological process, and its disruption has been linked to various
disorders, including respiratory diseases and diabetes (Gross et al., 2006). Clinically,
polysomnography (PSG) and electroencephalography (EEG) are standard tools for
diagnosing sleep apnea. However, PSG is costly, and multi-channel EEG measurements
may disrupt natural sleep patterns (Sun et al., 2021), creating a need for a low-cost, non-
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invasive alternative. ECG signals present a viable alternative, as they
capture respiratory and cardiac patterns associated with sleep-
related disorders (Faust et al., 2016). Methods for ECG-based
sleep apnea detection can be divided into two main categories:
deep learning-based approaches and feature-based machine
learning techniques.

Deep learning methods use raw ECG waveforms, relying on
neural networks to automatically extract discriminative features. For
instance, Li et al. (2018) introduced an unsupervised deep neural
network combined with support vector machine (SVM) and
artificial neural network (ANN) classifiers to detect apnea events.
Similarly, Chang et al. (2020) developed a 1D convolutional neural
network (CNN) for single-lead ECG analysis, while Zarei et al.
(2022) integrated CNN and long short-term memory (LSTM)
networks to classify apnea episodes using the apnea-hypopnea
index (AHI). Other studies, such as those by Wang et al. (2019)
and Ye et al. (2021), extracted features from RR intervals or
frequency bands to improve detection accuracy. Wang et al.
(2022) improved feature learning by adding a residual attention
mechanism. Although effective, these deep learning models require
large datasets, are highly sensitive to noise, and lack interpretability
in terms of the physiological basis of apnea.

Feature-based machine learning approaches use manually
extracted time-domain, frequency-domain, or statistical features.
Song et al. (2015) combined EDR and RR-interval features with a
hidden Markov model (HMM), achieving 86.2% accuracy. Bozkurt
et al. (2020) used PCA-based feature selection to reduce 225 ECG-
derived features, attaining 85.12% classification accuracy with
decision trees and SVM. Razi et al. (2021) employed PCA and
linear discriminant analysis (LDA) to refine feature selection, with
random forest (RF) and SVM yielding optimal results. Indrawati
et al. (2022) extracted RR-interval spectral features, finding ANN
classifiers achieved 84.64% accuracy. Tripathy et al. (2020)
introduced bivariate cardiopulmonary (CP) signal analysis using
FAEMD-derived features, reporting 73.19% sensitivity and 73.13%
specificity with SVM and RF. Afrakhteh et al. (2021) proposed
methods based on RR intervals, heart rate variability (HRV), and
cardiopulmonary (CP) bivariate features, which extract
discriminative information with enhanced noise robustness.
However, these approaches mainly rely on high-dimensional
statistical features, which require dimensionality reduction and
lead to computationally intensive processes.

To address these limitations, we propose a novel approach
leveraging spectral features derived from the maximal
instantaneous phase and frequency of ECG signals. First,
ensemble empirical mode decomposition with independent
component analysis (EEMD-ICA) is applied to enhance signal
denoising while preserving intrinsic features. Next, the most
representative intrinsic mode function (IMF7) is identified based
on its instantaneous phase-frequency characteristics, and its
marginal spectrum is quantitatively analyzed to extract three key
apnea-related features: (1) maximal instantaneous phase and
frequency, (2) corresponding amplitude, and (3) characteristic
energy. Finally, random forest (RF) classification validates the
discriminative power of these features. This method eliminates
redundant feature extraction, reduces computational complexity,
and improves detection accuracy by focusing on physiologically
relevant spectral properties.

2 Materials and methods

Figure 1 presents a block diagram of the proposed method for
classifying sleep apnea based on the spectral characteristics of ECG
signals. The workflow consists of four key stages: (1) ECG signal
preprocessing, (2) feature extraction, (3) quantitative feature
analysis, and (4) sleep apnea detection.

In the first stage, the raw ECG signal is preprocessed using a
combined approach with ensemble empirical mode
decomposition (EEMD) and fast independent component
analysis (FastICA). This step removes low- and high-
frequency noise along with baseline drift, producing a clean
ECG signal for further analysis.

Next, the preprocessed ECG signal is decomposed via EEMD to
extract intrinsic mode functions (IMFs). Selected IMFs then
undergo Hilbert-Huang transform (HHT) to generate the time-
frequency spectrum. We then measure instantaneous time-
frequency features—including maximum instantaneous frequency
and maximum frequency amplitude—along with IMF energy
characteristics to create distinguishing spectral parameters.
Finally, we test these quantitative features’ effectiveness in
separating healthy subjects from sleep apnea patients using three
machine learning classifiers.

2.1 Data acquisition

This study employed ECG data from the PhysioNet Apnea-ECG
Database (Penzel et al., 2000), which contains 70 single-lead
recordings classified into three groups based on apnea duration:
Group A (≥100 min of apnea events, n = 20), Group B (5–99 min,
n = 10), and Group C (<5 min, n = 40). All recordings were
approximately 8 h in duration with a 100 Hz sampling
frequency. Expert annotators labeled each 1-min segment of the
ECG signals, with segments containing ≥1 apnea event marked as
“A” and normal breathing segments as “N”.

To minimize borderline cases’ influence, we excluded Group B
and focused on 120 recordings (60 from Group A and 60 from
Group C), comprising approximately 57,600 1-min segments. The
segment distribution showed distinct patterns: Group A contained
an A:N ratio of ≈1.8:1 (apnea-dominant), while Group C showed ≈1:
19.3 (normal-dominant). The dataset was randomly partitioned at
the recording level into training (84 recordings, 40,320 segments)
and testing sets (36 recordings, 17,280 segments) in a 7:3 ratio,
strictly preserving the original apnea-normal proportion
characteristics in both subsets.

2.2 Data preprocessing

The acquisition of ECG signals is frequently contaminated by
multiple noise sources, which can be categorized as: Low-frequency
baseline wander (0–0.5 Hz), Broadband electromyographic
interference (5–2000 Hz), Narrowband power line interference
(>50 Hz) (Satija et al., 2018).Conventional denoising approaches
based on EEMD typically concentrate significant noise energy in the
initial IMF components (Dan et al., 2022). While standard practice
involves discarding these noisy IMFs, this procedure inevitably
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eliminates some diagnostically relevant signal components, thereby
compromising subsequent feature extraction and analysis.

To address this limitation, we employ Independent Component
Analysis (ICA), which exploits the statistical independence and non-
Gaussian characteristics of source signals to achieve superior noise
separation (Ramkumar et al., 2021). Our hybrid EEMD-ICA
approach demonstrates three key advantages, as illustrated in
Figure 2: Effective suppression of multiple noise sources while
preserving signal morphology; Significant reduction of baseline
wander artifacts; Enhanced signal quality for subsequent HHT
processing.

2.3 Hilbert-Huang transform (HHT)

HHT transform is a Time–frequency analysis method with
strong adaptability (Zheng et al., 2021). It can obtain the local
and global frequency components of the signal based on the non-

stationary and nonlinear characteristics of the signal itself, and
determine the relationship between the time-frequency energy of
the signal. The HHT transform consists of two parts: Empirical
Mode Decomposition (EMD) decomposition and Hilbert
transform. To solve the problem of modal aliasing during the
EMD decomposition process, the Set EEMD is chosen instead of
EMD (Dai et al., 2021). Firstly, the EEMD decomposition algorithm
is performed as follows:

(1) Add i-fold Gaussian white noise vi(n) to the original noisy
signal x(n) to form a new signal xi(n) to be processed
(Equation 1):

xi � x n( ) + vi n( ) (1)

(2) Using EMD to decompose the new signal xi(n) into K pieces
IMF, denoted as IMFk

i (n), representing the Kth component
and a residual term R obtained by adding the ith white noise;

FIGURE 1
Block diagram of ECG signal spectrum feature classification method.

FIGURE 2
Comparison before and after denoising.
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(3) The influence of white noise can be eliminated by averaging
the IMFk

i (n) components in step (2). When the margin res is
a Monotonic function or conforms to the rules, stop and
express the original signal as a series of IMF components and
the sum of residuals (Equation 2):

x � ∑
n

i�1
IMFi + res (2)

Then, select the component IMF with the intrinsic
characteristics of ECG signal to conduct Hilbert transform (HT)
to obtain the corresponding Spectrogram diagram, also known as
Hilbert spectrum (Zhang et al., 2016). The specific Hilbert transform
process is as follows:

(4) The definition expression of HHT is given by Equation 3:

H Pi t( )[ ] � 1
π
∫

+∞

−∞
Pi t( )
t − τ

dτ (3)

In the formula: H[Pi(t)] is the IMF component after Hilbert
transform, Pi(t) represents the intrinsic mode component of the
electrocardiogram signal.

(5) Construct the analytic signal (Equation 4) from Pi(t):

Zi t( ) � Pi t( ) + jH Pi t( )[ ] � a t( )ej∅ t( ) (4)

(6) Differential the phase of the complex function to obtain the
Instantaneous phase and frequencyfi(t) ofPi(t) (Equation 5):

f i t( ) � 1
2π

d∅ t( )
dt

(5)

(7) Display the Instantaneous phase and frequency on the time-
frequency plane to obtain the formula spectrum H[ω, t]
(Equation 6):

H ω, t( ) � Re∑
n

i�1
ai t( )ej∫ωidt (6)

(8) Spectrum H[ω, t] By integrating the time axis, the marginal
spectrum can be obtained (Equation 7) (Arrufat-Pié et al., 2021):

h ω( ) � ∫T

0
H ω, t( )dt (7)

The marginal spectrum can reflect the energy distribution of
each frequency.

The two-dimensional Spectrogram transformation process of
ECG signals in this study is shown in Figure 3.

First, the denoised signal is decomposed to extract the intrinsic
mode functions (IMFs) of the original signal. Highly correlated IMFs
are selected through Pearson correlation analysis and subsequently
reconstructed to obtain the refined signal. Next, the maximum
instantaneous phase and frequency range (femax) of the original
signal is determined by reconstructing its marginal spectrum.

During sleep apnea episodes, significant pathological alterations
occur in the frequency and amplitude of cardiac and respiratory
activities. By analyzing femax local variations associated with ECG
signals can be characterized. As illustrated in Figure 4, a comparative
analysis of femax between the two groups reveals a distinct divergence
in the marginal spectrum’s maximum instantaneous phase and
frequency. Specifically, healthy individuals exhibit a concentration
near 2 Hz, whereas obstructive sleep apnea (OSA) patients display a
predominant frequency around 4 Hz.

FIGURE 3
Time frequency conversion diagram of electrocardiogram signal.
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Through comparative analysis of the femax ranges across all
intrinsic mode functions and the reconstructed signal, as presented
in Table 1, we observed that themost prominent alterations associated
with sleep apnea pathophysiology were concentrated in IMF5 through
IMF7. We then generated Hilbert-Huang transform time-frequency
representations for each component by applying the Hilbert
transform to individual intrinsic mode functions.

All signal processing and machine learning implementations
were performed in MATLAB R2024a (MathWorks, Inc).
Specifically, we utilized the Signal Processing Toolbox for EEMD
and Hilbert transform computations, and the Machine Learning
Toolbox for classification tasks.

3 Result analysis and discussion

3.1 HHT spectrogram analysis

Figure 5 presents a representative 30-s electrocardiogram signal
comparison between normal sleep and sleep apnea conditions. The
Hilbert-Huang transform time-frequency distributions of
IMF5 through IMF7 components are displayed, with the upper
panel showing results from healthy subjects and the lower panel
depicting OSA patients. Color intensity corresponds to signal energy
concentration at specific time points.

Analysis of energy distribution across frequency bands reveals
that while IMF5 and IMF6 components fall within the reconstructed
signal’s maximum instantaneous phase and frequency range, their
energy distributions exhibit considerable similarity. These
components retain some high-frequency noise, making
quantitative feature extraction challenging.

In contrast, IMF7 demonstrates the most pronounced
intergroup differences. OSA patients show significantly stronger
frequency energy concentrations compared to healthy subjects at
corresponding time points. This observation suggests that
IMF7 captures sleep apnea-related frequency variations,
consistent with known physiological effects of hypoxia and sleep

disruption on cardiac activity and ECG signal characteristics
(Arnaud et al., 2020).

3.2 Quantitative analysis of HHT spectrum

To further quantify the differences in two-dimensional time-
frequency maps between healthy individuals and obstructive sleep
apnea (OSA) patients, we selected 45 signal sets from healthy
subjects in Dataset C and 40 signal sets from apnea patients in
Dataset A. The marginal spectra of the intrinsic mode function
(IMF) components IMF5 to IMF7 were computed using the Hilbert
transform (HT), as illustrated in Figure 6.

Panels (a), (b), and (c) in the figure display the marginal
spectra of IMF5, IMF6, and IMF7 for healthy individuals and
OSA patients, respectively. Distinct differences in both the shape
and amplitude of the marginal spectra were observed between the
two groups. To further investigate these spectral differences, we
analyzed the following parameters derived from the marginal
spectrum in the frequency domain: Maximum instantaneous
frequency, Maximum instantaneous amplitude (V), and
Characteristic energy (S) (Wei et al., 2018). The characteristic
energy S is defined as (Equation 8):

S � ∫ω2

ω1

h2 ω( )dω (8)

where w1 to w2 represent the natural frequency range of the
marginal spectrum, and h(ω) denotes the Hilbert
marginal spectrum.

The differences in three groups of indicators between healthy
individuals and OSA patients were analyzed using independent
sample t-test (SPSS, Windows version 14.0), and the analysis
results are shown in Table 2.

The analysis presented in the table reveals that the quantitative
parameters of IMF5 and IMF6 show no statistically significant
differences between the two study populations. This observation
aligns with the patterns observed in the time-frequency maps. In

TABLE 1 Femax of each IMF component in healthy individuals and OSA
patients.

Health-IMF Femax OSA-IMF Femax

IMF1 19.80 ± 4.64 IMF1 19.94 ± 4.77

IMF2 12.31 ± 1.05 IMF2 12.99 ± 1.97

IMF3 10.11 ± 0.82 IMF3 10.44 ± 1.54

IMF4 6.69 ± 0.68 IMF4 7.13 ± 0.65

IMF5 3.98 ± 1.12 IMF5 4.11 ± 1.14

IMF6 2.65 ± 0.62 IMF6 2.96 ± 0.81

IMF7 1.39 ± 0.69 IMF7 1.44 ± 0.47

IMF8 0.88 ± 0.41 IMF8 0.94 ± 0.19

IMF9 0.39 ± 0.21 IMF9 0.40 ± 0.07

IMF10 0.22 ± 0.08 IMF10 0.26 ± 0.04

Values are expressed as mean ± SD.

FIGURE 4
Maximum Instantaneous phase and frequency range of
reconstructed signal.
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contrast, the IMF7 component exhibits marked differences in
maximum instantaneous phase, frequency amplitude, and
characteristic energy between groups. Furthermore, the femax of

the reconstructed signal demonstrates significant variation, with
healthy individuals consistently displaying lower femax values
compared to patients with obstructive sleep apnea. Patients with

FIGURE 5
IMF5~IMF7 Component of Hilbert Spectra.

FIGURE 6
Comparison of marginal spectra between healthy individuals and OSA.
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OSA conversely show greater amplitude and characteristic energy S
values than healthy controls.

This physiological distinction may be explained by the effects of
sleep apnea on oxygenation. During apneic episodes, inadequate
oxygen supply to the brain and peripheral tissues results in systemic
hypoxia, including diminished cardiac oxygenation. In response, the
brain initiates compensatory mechanisms such as transient
respiratory pulses to elevate breathing frequency, as documented
in reference (Hossen and Qasim, 2020). This physiological
adaptation consequently increases heart rate, with these
pathophysiological changes manifesting clearly in
electrocardiogram signals. Through careful examination of the
modal and frequency distribution characteristics across ECG
signal components, we can effectively differentiate between
healthy sleep patterns and those affected by OSA. Of particular
note, the IMF7 component combined with the reconstructed signal

femax emerges as a robust discriminative feature for distinguishing
normal sleep from sleep apnea.

To assess the diagnostic potential of these features, we
implemented a random forest algorithm with stratified 10-fold
cross-validation to evaluate classification performance using three
distinct feature combinations: IMF5 quantized features with
reconstructed signal femax, IMF6 quantized features with
reconstructed signal femax, and IMF7 quantized features with
reconstructed signal femax.

As demonstrated in Table 3, this study achieved 92.9%
classification accuracy with 86.6% specificity and 100% sensitivity
using Random Forest, significantly outperforming conventional
methods based on heart rate variability or ECG-derived
respiration. The developed spectral features demonstrated
consistent performance across multiple machine learning
architectures, achieving 87.5% accuracy with SVM and 88.24%
accuracy with CNN, while preserving physiological interpretability.

To determine the most discriminating component for OSA
detection, we performed a systematic feature ablation study using
the IMF7 feature set, the results of which are shown in Table 4. The
results reveal IMF7-Characteristic energyS as the most critical
feature, with its exclusion causing a substantial 28.19% decrease
in classification accuracy. The reconstructed signal’s maximum
instantaneous frequency also proved highly influential, showing a
22.31% performance reduction when removed. In comparison,
amplitude features demonstrated more moderate importance,
with a 16.43% accuracy decline upon exclusion. These findings
collectively validate our feature selection methodology, as the
complete feature ensemble achieved peak performance at 92.90%
accuracy by effectively combining these complementary
discriminative characteristics.

The spectral features extracted from ECG signals in this study
offer two significant advantages for OSA detection. First, the time-
frequency analysis provides clear physiological interpretation of how
OSA affects ECG signals while eliminating irrelevant features.
Second, the focused approach on key discriminative components
such as IMF7 and femax effectively reduces feature dimensionality.
This optimization minimizes the negative impact of excessive

TABLE 2 Healthy population and characteristic parameters of OSA patients.

Characteristic variable Health OSA

femax-Reconstructed signal 2.19 ± 0.99 3.66 ± 1.80**

IMF5- amplitude/V 5.15 ± 2.73 4.56 ± 3.61

IMF5-Characteristic energyS 6.85 ± 3.22 6.21 ± 3.98

IMF5-femax 4.31 ± 1.12 4.11 ± 1.14

IMF6- amplitude/V 5.58 ± 5.96 5.03 ± 5.18

IMF6-Characteristic energyS 6.01 ± 5.83 6.08 ± 5.75

IMF6-femax 2.80 ± 0.62 2.39 ± 0.81

IMF7- amplitude/V 3.17 ± 4.77 2.61 ± 4.41**

IMF7-Characteristic energyS 2.10 ± 3.10 4.89 ± 2.38**

IMF7- femax 1.43 ± 0.69 1.38 ± 0.87

Value expressed as mean ± standard deviation; *p < 0.05:OSA, differs from healthy individuals; **p < 0.001:OSA, has significant differences compared to healthy individuals; Exact p-values for

all comparisons are provided in Supplementary Table S1.

TABLE 3 Comparison of classification results performance and related
work.

Feature Sen Spe Acc

IMF7-femax-RF 100% 86.60% 92.90%

IMF5-femax-RF 85.00% 86.70% 85.90%

IMF6-femax-RF 87.50% 88.90% 88.20%

IMF7-femax-SVM 90.00% 90.00% 87.50%

IMF5-femax-SVM 87.50% 87.50% 87.50%

IMF6-femax-SVM 83.33% 83.33% 86.50%

IMF7-femax-CNN 90.00% 90.00% 88.24%

IMF5-femax-CNN 82.86% 82.86% 82.35%

IMF6-femax-CNN 81.67% 81.67% 82.35%

HRV + EDR (Tripathy and Acharya, 2018) - - 78.02%

ECG + EDR (Pinho et al., 2019) - - 82.12%

Acc, accuracy; Sen, Sensitivity; Spe, specificit. Bold indicates the column with the best

overall results.
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features on machine learning performance while maintaining
excellent adaptability across different classification algorithms.

4 Conclusion

This study identifies four IMF components as characteristic
elements of the signal through frequency-domain analysis,
specifically using the femax feature of the original signal. To
address the limitations of traditional methods—such as high-
dimensional feature spaces and interference from irrelevant
features—we analyzed the signal’s frequency energy in the time-
frequency domain. As a result, two key features were selected for
further analysis: (1) the femax parameter and (2) the local modal
characteristics of the IMF7 component, both of which effectively
capture frequency-domain variations associated with sleep apnea.

Building on this, we applied the HHT to derive a two-
dimensional time-frequency spectrum of the IMF7 component.
This approach provides a more precise representation of the
distinctions between normal individuals and sleep apnea patients
in the time-frequency domain, clearly showing the impact of sleep
apnea on cardiopulmonary activity. However, since visual
differences in spectral images are not quantifiable, we further
extracted three feature indicators from this component for
statistical analysis.

Our findings reveal that the marginal spectral amplitude and the
feature energy parameter S of the reconstructed signal (derived from
femax and IMF7) exhibit statistically significant differences between
the two groups. To validate the discriminative power of these
features, we compared classification performance across multiple
algorithms and ultimately selected the random forest model due to
its superior accuracy. The results demonstrate that the three
proposed features effectively distinguish between sleep apnea
patients and healthy individuals, achieving a classification
accuracy of 92.9%. Notably, this high detection accuracy was
achieved using only three features, outperforming
conventional methods.
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