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Osteoarthritis (OA) is a disabling degenerative disease that affects synovial joints
and leads to cartilage degeneration, which can cause progressive joint damage,
chronic pain and functional loss. Because its specific pathogenesis is still unclear,
conventional treatment methods are still difficult to achieve satisfactory
therapeutic effects. Therefore, finding alternative new methods for treating
OA remains a formidable challenge. Hydrogel is a kind of polymer material
with good biocompatibility and biodegradability, and it is a new method for
the treatment of osteoarthritis. Injectable hydrogel drug delivery platforms have
shown many advantages in the treatment of OA, including improved
biocompatibility, biodegradability, and low immunogenicity. Injectable
hydrogels, as delivery systems, can deliver drugs to the joint cavity in a
controlled manner and continuously release them, enhancing drug loading
capacity and increasing sensitivity to improve therapeutic effects. This article
summarizes the types of injectable hydrogels, analyzes their application as
delivery systems in OA, and discusses the mechanisms of injectable hydrogels
in the treatment of OA, such as anti-inflammation, anti-oxidative stress, and
promotion of articular cartilage regeneration. Meanwhile, the deficiencies of
injectable hydrogel drug delivery platforms in the OA field were summarized, and
the future research directions in this field were discussed. Overall, injectable
hydrogel drug delivery platforms show great potential in the treatment of OA.
These innovativemethods have brought new hope for the future treatment of OA
and pointed out the direction for clinical application.
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1 Introduction

Osteoarthritis (OA) is one of the most common chronic degenerative and disabling
diseases, characterized by complex disorders of the entire synovial joint, involving local
cartilage loss, bone hyperplasia, synovial sac thickening, and structural changes of the
periarticular ligaments and surrounding muscles (Hunter and Bierma-Zeinstra, 2019;
Hunter et al., 2014) (Figure 1). It is estimated that about 500 million people worldwide
suffer from OA, accounting for approximately 7% of the global population (Steinmetz et al.,
2023). The pathogenesis of OA involves a variety of factors, including mechanical effects,
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effects of aging on the composition and structure of cartilage matrix,
and genetic factors (Diamond et al., 2024; Dieppe and Lohmander,
2005). Its main clinical symptoms include chronic pain, joint
instability, stiffness, and narrowing of joint space as shown by
radiation (Chen D. et al., 2017). Without timely intervention and
treatment, related symptoms and complications can lead to joint
deformities and loss of function (Abramoff and Caldera, 2020). At
present, the treatment of OA is mainly based on physical therapy
and drug therapy based on rehabilitation exercise to reduce pain,
reduce disease activity and prevent inflammation and destructive
processes (Mattes and on, 2000; Arden et al., 2021). However, these
methods can only relieve symptoms, but cannot reverse the course of
the disease (Bowman et al., 2018).

Traditional drug therapies (nonsteroidal anti-inflammatory
drugs (NSAIDs), opioids, and cyclooxygenase-2 (COX) specific
drugs) only relieve symptoms without taking into account the
underlying problem of cartilage disease. In addition, traditional
therapies may cause side effects (especially with long-term use),
which can reduce compliance and trigger multiple adverse reactions
(Sengupta et al., 2008). To avoid these complications, intra-articular
injection therapy became popular in the second half of the 20th
century (Raynauld et al., 2003). For example, platelet-rich plasma
(PRP) and mesenchymal stem cells (MSCs) are injected into the
joint cavity to treat OA (Lana et al., 2023; An et al., 2024). Compared
with traditional methods, intraarticular injection of synovial fluid
has the advantages of high drug concentration and few side effects,
but the effectiveness of intraarticular administration is limited due to
poor drug permeability in cartilage, rapid clearance of components
through synovial capillaries and lymphatics, and weakened synergies
of active components in pathological microenvironments (Evans
et al., 2014). For end-stage patients, joint replacement surgery is
currently the only effective treatment method, but it also has some
drawbacks, including high cost, risk of perioperative complications
and postoperative periprosthetic infections, and the possibility of
requiring revision of joint replacement surgery (Gunaratne et al.,
2017). Due to the complex pathophysiological changes of OA and
the harsh local microenvironment, a single treatment cannot repair
the structure and function of the damaged joints. Therefore, there is
an urgent need to explore innovative drug delivery systems to

improve the therapeutic efficacy of OA. In recent years, injectable
hydrogel systems have made remarkable progress in the field of
biomedical applications (Oliveira et al., 2021). These biomaterials
are injectable, biocompatible, biodegradable, and capable of
matching irregular damage (Ding et al., 2023). Injectable
hydrogels can be used as drug carriers directly or encapsulate
smaller drug carriers to deliver drugs or biotherapeutic molecules
accurately and in a controlled manner to the lesion site to provide
safe and effective treatment and are widely used in the treatment of
refractory diseases (Oliveira et al., 2021; Wang and Wang, 2021).
Their potential has been demonstrated in various therapeutic areas,
such as the treatment of joint diseases (Bruno et al., 2022), spinal
cord injuries (Ji et al., 2023), degenerative diseases (Li P. et al., 2023),
and tumors (Kim et al., 2022). In this article, we summarize the types
and classifications of injectable hydrogels, as well as the potential
applications of hydrogels as delivery systems in the treatment of OA,
and emphasize the molecular mechanisms of hydrogel treatment for
OA.Meanwhile, we also delved deeply into the limitations of current
injectable hydrogels in the treatment of OA and proposed relevant
solutions. The aim is to deeply explore the role and intrinsic
mechanism of injectable hydrogels in the treatment of OA,
providing new strategies and a theoretical basis for the clinical
treatment of osteoarthritis.

2 Properties of injectable hydrogels for
the treatment of OA

In recent years, injectable hydrogel scaffolds have attracted wide
attention in cartilage tissue engineering (Balakrishnan et al., 2011;
Elisseeff, 2004). Hydrogels are three-dimensional polymer networks
with significant expansibility and porosity, in which various solutes
and nutrients can be located and able to diffuse (Chen et al., 2018;
Peppas and Van Blarcom, 2016; Slaughter et al., 2009). Injectable
hydrogels have unique biocompatibility and hydrophilicity, as well
as the ability of phase transition-from sol to gel, forming a solid-like
gel state (Jia et al., 2020; Chatterjee et al., 2018). It can be delivered
non-invasively or minimally via direct injection or arthroscopy,
helping to encapsulate and release drugs, genes, DNA, proteins, and
cells in a continuously controlled manner (Nguyen et al., 2015). In
addition, injectable hydrogels not only provide a biocompatible,
biodegradable, and highly hydrated three-dimensional structure
similar to the extracellular matrix of chondrocytes (ECM), but
also improve the supply of nutrients and cellular metabolites
through elastic properties (Frith et al., 2013; Jin et al., 2010). It
can also encapsulate cells and effectively deliver bioactive molecules
to target sites through a stimulus-response release mechanism (Li
et al., 2012; Chen et al., 2016) (Figure 2). The ideal injectable
hydrogel for OA treatment to promote cartilage regeneration and
joint repair should generally meet the following criteria: (a) Easy to
administer under physiological conditions, (b) guaranteed injectable
(by chemical or physical cross-linking gelation during injection), (c)
excellent biocompatibility and potential biodegradability, (d) able to
mimic cartilage ECM characteristics and promote the chondrogenic
potential of cells, (e) can easily fill the defect site of the joint and
integrate with the surrounding natural cartilage tissue without
displacement, and (f) has sustained release properties if related to
local drug delivery (Yu and Ding, 2008; Rice et al., 2013; Mujeeb

FIGURE 1
Pathological manifestations of normal joints and osteoarthritis.
The left half shows the structure of the normal synovial joint, and the
right half shows the structure and symptoms of synovial joint in
osteoarthritis. The image is drawn using the BioRender software.
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et al., 2013). Based on these characteristics, injectable hydrogels are
promising candidates for the treatment of various diseases,
including osteoarthritis.

3 Types of injectable hydrogels

Injectable hydrogels are usually formed by rapid sol-gel phase
transition or in situ chemical polymerization and can be delivered
directly to the target site by injection (Li et al., 2012). According to
different standards, hydrogels can be classified considering the
following parameters: According to the different sources of raw
materials, hydrogels can be divided into natural polymer hydrogels
and synthetic polymer hydrogels (Chao et al., 2020). Natural
injectable hydrogels are usually composed of natural polymers
such as polysaccharides, proteins, and DNA, and have excellent
biocompatibility, biodegradability, and environmental sensitivity,
but they are unstable and prone to degradation (Ishihara et al.,
2019). Natural hydrogels typically outperform synthetic hydrogels
in terms of long-term safety and immunogenicity, as their
degradation products are easier to metabolize and have good
biocompatibility, which can reduce the risk of immune
responses (Pham et al., 2025; Pushpamalar et al., 2021). In
addition, natural hydrogels exhibit lower immunogenicity in
applications such as cartilage repair, allowing for better
compatibility with human tissues (Wan et al., 2025; Mei et al.,
2023). However, natural hydrogels have weaker mechanical
elasticity and usually require compounding or cross-linking to
enhance their mechanical properties (Shukla et al., 2025). In

contrast, synthetic polymer hydrogels are composed of
polymers with good biocompatibility and biodegradability, such
as peptides and polyesters, synthesized through ring-opening
polymerization reactions (Chao et al., 2020). Synthetic
hydrogels have advantages in mechanical strength and elasticity,
maintaining stability under high intensity and long-term load
environments (Ji D. et al., 2024; Li D. et al., 2020). However,
compared to natural hydrogels, synthetic hydrogels have poorer
biocompatibility, biological activity, and biodegradability, and
their degradation products may cause adverse reactions in body
tissues, activating the immune system (Stevens and George, 2005).
Therefore, natural hydrogels are more suitable for applications
requiring biocompatibility and low immunogenicity, while
synthetic hydrogels are more suitable for situations requiring
higher mechanical strength and customized properties.

Additionally, according to the response of injectable hydrogels
to external stimuli, injectable hydrogels can be divided into common
hydrogels and smart hydrogels. Common injectable hydrogels are
insensitive to environmental changes, while smart injectable
hydrogels are affected by temperature, pH, enzymes, and
photonics (Fan et al., 2019). Furthermore, based on the
mechanism of forming three-dimensional network structures,
injectable hydrogels can be classified into chemically cross-linked
hydrogels and physically cross-linked hydrogels (Overstreet et al.,
2012; Yang et al., 2014) (Figure 3). Chemically crosslinked hydrogels
achieve in situ covalent cross-linking by chemical cross-linking
reactions, most often through the chemical bond cross-linking
between polymer chains exchanged by Michael addition reaction,
photopolymerization, enzymatic reaction or mercaptan disulphide

FIGURE 2
Feasibility diagram of injectable hydrogel in OA treatment. The image is drawn using the BioRender software.
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bond, thus forming matrix macromolecular structures (Zarembinski
et al., 2014; Muzzarelli, 2009). Chemically cross-linked hydrogels
have stable covalent cross-linked networks, so they have high
mechanical strength and physical stability, long degradation time,
and adjustable structure (Nada et al., 2019). While physical
crosslinked hydrogels usually use non-covalent interactions (such
as hydrophobic interactions, hydrogen bonding and ionic
crosslinking) to cause polymer conformation changes and phase
separation, resulting in polymer chain aggregation to form physical
crosslinked networks (Wang et al., 2015; Ulijn et al., 2007; Yu et al.,
2018). Since non-covalent bonds between molecules are easily
broken, physically crosslinked hydrogels usually exhibit reversible
sol-gel transition behavior (Moon et al., 2012). In addition,
physically cross-linked hydrogels usually provide a friendly
environment for cells and bioactive molecules, and they also
exhibit relatively low mechanical strength, dynamic reversibility,
no need for crosslinking agents, and repeatability, compared with
physically cross-linked hydrogels (Liu Y. et al., 2018; Norouzi
et al., 2016).

However, different types of hydrogels have their own advantages
and challenges in clinical applications. Natural polymer hydrogels
have good biocompatibility and excellent degradability, but their
mechanical strength is relatively low and they are prone to
degradation; synthetic polymer hydrogels possess higher
mechanical strength and stability, but have poorer
biocompatibility and degradability. Chemically cross-linked
hydrogels provide strong stability and high mechanical strength,
making them suitable for long-term use, but their degradation rate is
slow, which may affect drug release; on the other hand, physically
cross-linked hydrogels have better reversibility and
biocompatibility, but their stability is poor and mechanical
strength is low (Zhao et al., 2022; Khan et al., 2022; Segneanu
et al., 2025). Smart hydrogels can respond to environmental changes
and have flexible control capabilities, making them suitable for
personalized treatment, but they are difficult to produce and have
higher costs; ordinary hydrogels offer better stability but lack
dynamic response, resulting in a more limited range of
applications (Liu et al., 2019). These factors may lead to potential

FIGURE 3
Diagram depicts the crosslinking of injectable hydrogels with therapeutic agents, such as small molecules, proteins and cells. Injectable hydrogels
can be crosslinked using two common methods: physical crosslinking and chemical crosslinking. Physical crosslinking involves the formation of non-
covalent bonds, such as electrostatic interactions, hydrogen bonds, and host-guest interactions. Chemical crosslinking, on the other hand, utilizes
covalent bonds through a variety of strategies, including click chemistry, Schiff base reactions, enzyme-mediated reactions, and
photopolymerization. The image is drawn using the BioRender software.
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reasons for the failure of hydrogels in clinical use. Overall, the
selection of hydrogels should be based on specific clinical needs,
balancing biocompatibility, stability, mechanical strength, and
responsiveness, to ensure therapeutic effectiveness (Li et al., 2025;
Giuri et al., 2019).

4 Composition of injectable hydrogels
for OA treatment

Hydrogels can be described as cross-linked polymer networks
that restrict the flow of water inside. Therefore, the physical and
chemical properties of polymers directly affect the properties of
hydrogels. Both natural polymers (such as proteins and
polysaccharides) and synthetic polymers (including polyvinyl
alcohol (PVA), polyethylene glycol (PEG), and poly-
isopropylacrylamide) have been used to construct injectable
hydrogels for the treatment of joint diseases.

4.1 Natural polymer hydrogels

Natural polymers have been shown to be beneficial for tissue
engineering applications, as they retain their biochemical properties
and improve their biocompatibility with host tissues (Jawad et al.,
2008). Common natural polymers used in joint therapy include
hyaluronic acid, alginate, and chitosan (Li et al., 2013; Yoon et al.,
2009; Rocca et al., 2016). These materials are composed of proteins
and/or polysaccharides that can absorb water and expand, allowing
nutrients and waste to easily diffuse through the natural polymer
hydrogel scaffold, thereby enhancing cell survival rate and cell
migration to surrounding tissues (Ahmed, 2015; Ahearne, 2014).

4.1.1 Collagen
Collagen is the main component of cartilage tissue and the core

structural protein of cartilage ECM. Its triple helical structure (the
Gly-X-Y repeat sequence) forms a fibrous network hydrogel through
hydrogen bonds and hydrophobic interactions (Wang et al., 2023).
This hydrogel self-assembles into a three-dimensional network
structure. The injection of this hydrogel into the joint space can
maintain joint lubrication and reduce friction in the knee joint to the
greatest extent (Qiao et al., 2021). In addition, this hydrogel is
biocompatible and biodegradable, promoting the adhesion, growth,
and differentiation of chondrocytes, thereby contributing to
articular cartilage repair (Zhang et al., 2022). With recent
technological advancements, improvement strategies for collagen
hydrogels are continuously emerging. For instance, genetic
engineering techniques that insert cartilage-inducing peptides
such as KELPASVSS have provided new ideas for the
functionalization of collagen hydrogels. This technology can
enhance the cellular adhesion and differentiation-inducing
abilities of hydrogels, thereby improving repair efficacy
(Majumder et al., 2024). Besides genetic engineering approaches,
the combined application of collagen hydrogels and other
biomaterials also shows broad prospects, such as combining with
hyaluronic acid to enhance biocompatibility and lubricating
performance. These technological improvement strategies offer

new possibilities and directions for the application of collagen
hydrogels in cartilage repair (Tang et al., 2025; An et al., 2025).

4.1.2 Hyaluronic acid
Hyaluronic acid (HA) is a linear glycosaminoglycan composed

of β-1, 3-n-acetylglucosamine and β-1, 4-glucuronic acid
disaccharide units in the extracellular matrix (Xu et al., 2012).
The negative charge and hydroxyl group give hyaluronic acid
molecules hydrophilic properties. When the temperature rises,
the hydrophilic and hydrophobic components on the chain of
the grafts of highly hydrophobic polymers interact, and the
viscosity increases to form hydrogels (Tan et al., 2009). This
hydrogel can absorb and retain a lot of water, forming a viscous
environment similar to joint synovial fluid, providing good
lubrication and cushioning for joint cartilage, and effectively
reducing friction damage during joint movement. In addition,
hyaluronic acid has the ability to reduce cellular inflammatory
response and heal diseased tissues, as well as good
biocompatibility, biodegradability, and excellent gel formation
properties, and can affect cell behavior during tissue
regeneration, making it promising in biomedical-related hydrogel
systems (Sepulveda et al., 2023). However, HA hydrogels still have
deficiencies in degradation rate and mechanical properties, which
limits their effectiveness in long-term use. Therefore, researchers are
exploring optimization strategies for drug sustained-release systems
to enhance the clinical application effects of HA hydrogels. For
instance, combining bioactive molecules (such as growth factors)
with HA hydrogels can achieve more lasting therapeutic effects
(Mao et al., 2025; Zhu et al., 2023).

4.1.3 Chitosan
Chitosan is a naturally occurring polysaccharide composed of

glucosamine and N-acetylglucosamine and is an excellent gelling
agent. Chitosan has excellent biocompatibility, biodegradability, and
antibacterial activity and can effectively resist bacterial infections in
the synovial cavity, thereby reducing the risk of inflammation
(Sugiyan et al., 2018; El-Saadony et al., 2025). The amino groups
in its molecular structure confer a positive charge in an acidic
environment and enable interaction with negatively charged
biomolecules, such as nucleic acids and proteins, providing a
potential platform for the combined application of gene therapy
and cell therapy. Chitosan degradation products, including Low-
molecular-weight oligosaccharides and amino sugars, etc, can be
metabolized; moreover, these products are readily formed into
hydrogels (Martins et al., 2014; Delmar and Bianco-Peled, 2016).
The preparation methods of chitosan hydrogels are diverse,
including chemical cross-linking, physical cross-linking, and
enzymatic cross-linking, among others (Cheng et al., 2023).
Furthermore, the properties of pH-responsive gels are crucial.
The pH-responsiveness of chitosan hydrogels makes them
particularly advantageous for cartilage repair. These gels can
exhibit different physical properties in various physiological
environments, such as rapidly dissolving under acidic conditions
or forming stable network structures under neutral or alkaline
conditions (Zahedi Tehrani et al., 2024). This environmental
responsiveness allows the hydrogels to better adapt to changes
within the organism and enhance cartilage repair efficacy.
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4.1.4 Alginate
Sodium alginate is a natural polysaccharide derived from brown

algae whose unique ionic cross-linking properties enable it to
undergo a rapid gelation transition in the presence of divalent
cations such as Ca2+, forming a stable three-dimensional network
structure. This gelation process is gentle and controllable, providing
convenient conditions for drug loading and cell encapsulation
(encapsulating living cells within biocompatible materials to form
a physical isolation barrier to protect the cells and promote their
growth and function in a specific environment). Meanwhile, this
structure can better simulate the structural characteristics of
biological tissues and promote the growth and differentiation of
chondrocytes (Ma et al., 2019; Chu et al., 2021). The application of
saline alginate gel in cartilage tissue engineering has received
increasing attention, especially in the construction of three-
dimensional culture environments.

In the treatment of OA, anti-inflammatory drugs or growth
factors can be loaded onto sodium alginate hydrogels. By taking
advantage of their slow release characteristics, continuous inhibition
of local joint inflammation and directional induction and
differentiation of chondrocytes can be achieved, promoting
cartilage repair (Yu et al., 2023). However, constructing an
efficient drug delivery system is another important application of
alginate gel in cartilage repair. The sustained-release kinetics of
drugs is influenced by multiple factors, including the
physicochemical properties of the drugs, the cross-linking degree
of the gel, and environmental conditions, etc. (Zhang W. et al.,
2025). To achieve controlled release of drugs, modified alginate gel is
often used. This modification can enhance the loading capacity and
release control ability of drugs (Liang et al., 2025). However, in the
process of controlled release of drugs, how to balance the release rate
and biological effects remains a technical difficulty. Current research
is still constantly exploring new technologies to enhance the
efficiency of drug delivery systems, such as the combined
application of nanocarriers or bioactive factors. These new
technologies are expected to improve the bioavailability and
therapeutic effects of drugs (Yin P. et al., 2023).

4.2 Synthetic polymer hydrogels

The development of synthetic polymers aims to eliminate the
undesirable properties of natural polymers while retaining their
ideal characteristics (Ozdil et al., 2014; Place et al., 2009). The
desired synthetic polymer hydrogels can be obtained by altering
mechanical strength, porosity, degradation rate, gelation rate, and
other polymer properties. This synthetic polymer hydrogel features
excellent flexibility, durability, and biocompatibility, which makes
controlling its properties easier and reduces the risk of immune
rejection post-implantation (Patel et al., 2024a).

4.2.1 Polyethylene glycol
Polyethylene glycol (PEG) is a biocompatible synthetic polymer

widely used in tissue engineering methods (Zhu, 2010). PEG can be
copolymerized with biocompatible polyesters to prepare
thermosensitive hydrogels. The thermosensitivity of hydrogels
can be improved by adjusting the composition and length of
hydrophilic PEG blocks and hydrophobic polyester blocks. PEG

is mixed with polylactic acid and poly (lactide-co-glycolide) (PLGA)
to form the b-a-b triblock copolymer PLGA-PEG-PLGA. The
temperature sensitivity of copolymers is controlled by the
hydrophilic and hydrophobic groups in the polymers (Chang
et al., 2007). At low temperatures, hydrophobic cores and
hydrophilic shells form micelles through self-assembly. As the
ambient temperature rises, the shell dehydrates, micelle
aggregation increases, and the copolymer undergoes sol-gel and
gel-sol transitions (Yu et al., 2009). Relevant studies also show that
hydrogels synthesized using PEG and PLGA perform well in terms
of drug loading, release rate, and biocompatibility, thus having broad
application potential in fields such as anti-cancer treatment, local
anesthesia, and regenerative medicine (Lei et al., 2021; Kumar et al.,
2022). In addition, an important advantage of PEG hydrogels is that
they can be administered painlessly by injecting low-viscosity
precursor solutions, providing patients with a more comfortable
medication experience (Bakaic et al., 2015). Studies have shown
that the low viscosity property of PEG hydrogels enables them to
flow rapidly after injection and fill the target site, achieving precise
drug release. For instance, injectable PEG hydrogels can be used to
treat bone defects due to their excellent biocompatibility and
biodegradability, effectively promoting bone regeneration without
causing significant discomfort to patients during administration
(Sun et al., 2023). Therefore, by adjusting the physicochemical
properties of PEG hydrogels, more precise and effective drug
delivery can be achieved. This can improve therapeutic effects,
reduce patient discomfort, and offer new strategies for personalized
and precise drug treatment.

4.2.2 Polyvinyl alcohol (PVA)
Polyvinyl alcohol (PVA) is an excellent water-soluble synthetic

polymer and is widely used in the biomedical field. PVA hydrogels
with stable three-dimensional network structures can be formed
through physical crosslinking methods or chemical crosslinking
(Zhong et al., 2024). This structure not only endows PVA with
excellent mechanical properties, but also makes it perform
outstandingly in terms of water absorption and biocompatibility.
Research has found that the crosslinking density and hydration state
of PVA hydrogels directly affect their mechanical properties and
biological behaviors. Appropriate crosslinking can significantly
enhance the strength and durability of hydrogels, making them
more advantageous in biomedical applications (Liu et al., 2023;
Madfoon et al., 2024). The low-friction behavior of PVA hydrogel is
similar to that of cartilage tissue. This feature makes it an ideal
substitute for articular cartilage, effectively buffering and shock-
absorbing, and alleviating joint inflammation and pain (Chen et al.,
2021). However, PVA hydrogels exhibit relatively low biological
activity, and their mechanical strength and durability may not be
sufficient to withstand long-term joint pressure and wear, thereby
limiting their application (Zhao et al., 2020). To address this issue,
researchers began to explore ways to enhance the mechanical
properties of PVA hydrogels by adding reinforcing materials
such as biodegradable glass fibers. Research has found that the
compressive strength of PVA composite hydrogels doped with
biodegradable glass fibers can reach 3.05 MPa, approaching the
mechanical properties of human articular cartilage. This provides
new possibilities for the clinical application of PVA hydrogels in
cartilage repair (Zhu C. et al., 2022).
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4.2.3 Poly (N-isopropylacrylamide)
Poly (N-isopropylacrylamide) (PNIPAm) is a widely studied

thermoresponsive polymer and one of the most thoroughly
investigated thermosensitive polymers in biomedical applications
(Karimi et al., 2016). The chemical structure of PNIPAm consists of
hydrophilic amide groups and hydrophobic isopropyl side chains.
This amphiphilic structure allows PNIPAm’s properties to be finely
tuned. Studies have shown that the LCST of PNIPAm is
approximately 32 °C, which enables reversible thermoresponsive
phase transition near body temperature. Specifically, it is a
transparent aqueous solution below the LCST but rapidly
transforms into a hydrophobic collapsed state when the
temperature rises above the LCST (Narayana et al., 2025). This
property enables thermoresponsive drug release, which can
potentially enhance the bioavailability of drugs and reduce side
effects (Ansari et al., 2022). Consequently, the thermoresponsive
phase transition characteristics of PNIPAm are also utilized in the
design of cell culture scaffolds, allowing cells to attach or detach
rapidly when the temperature changes. This characteristic is
particularly suitable for applications requiring non-invasive cell
collection, such as stem cell culture and regenerative medicine
(Yang et al., 2024; Zhang Z. et al., 2025). Beyond its use in drug
carriers and cell culture scaffolds, PNIPAm is also widely applied in
tissue engineering. Its adjustable mechanical properties and
excellent biocompatibility make it an ideal scaffold material
capable of supporting cell growth and differentiation (Kotova
et al., 2023). For instance, research indicates that combining
PNIPAm with other natural polymers can enhance its
mechanical strength and biodegradability, thereby improving its
functional performance in tissue engineering (Raghuwanshi
et al., 2023).

4.2.4 Poloxam
Poloxamer is a type of water-soluble nonionic triblock

copolymer, mainly composed of polyethylene oxide (PEO) and
polypropylene oxide (PPO). This unique structure makes
Poloxamer’s behavior in aqueous solutions temperature-sensitive
(Fu et al., 2015). In such solutions, these copolymers form ordered
micelles at appropriate temperatures and concentrations (Bodratti
and Alexandridis, 2018; Thapa et al., 2020). As the temperature rises,
micellar aggregation increases, leading to a sol-gel transition. At low
temperatures, Poloxamer usually exists in liquid form with good
fluidity, facilitating its administration via injection. Once the
temperature reaches or exceeds its critical gel temperature
(CGT)—for instance, at body temperature (37 °C)—Poloxamer
rapidly transforms into a gel state. This process not only
provides sustained local drug release but also enables continuous
drug action at the target site, reducing drug clearance caused by fluid
flow (Uk Son et al., 2020). Additionally, the high water content and
favorable rheological properties of Poloxamer allow it to form
injectable hydrogels, greatly reducing surgical risks in clinical
applications (Chen et al., 2013). Studies have shown that
thermosensitive hydrogels based on Poloxamer turn into a
viscous gel state at body temperature. This effectively maintains
the local drug concentration at the injection site and provides
prolonged drug release rather than rapid diffusion to other areas.
These characteristics make Poloxamer highly promising for
application in local drug delivery systems, especially for diseases

requiring precise targeted treatment, such as tumors and chronic
pain (Abdeltawab et al., 2020). Moreover, Poloxamer demonstrates
excellent performance in regulating the drug release rate. By
adjusting its concentration and temperature conditions, the drug
release rate can be effectively controlled, providing the possibility for
personalized treatment (Rafiee et al., 2024).

In all types of hydrogels, collagen hydrogels, hyaluronic acid
hydrogels, chitosan hydrogels, alginate hydrogels, PEG
hydrogels, and Poloxamer hydrogels are all highly promising
types. They provide effective treatment options in the fields of
OA and cartilage repair due to their good biocompatibility,
biodegradability, lubricity, and ability to control drug release
(Niu et al., 2009). With the continuous advancement of
technology, especially driven by functional design and
combination therapy, the prospects of these hydrogels in
clinical applications will be even broader (Wang F. et al.,
2021; Wu et al., 2020). However, hybrid hydrogels are most
likely to become the main choice for next-generation OA
treatments in future research, as they combine the advantages
of natural and synthetic hydrogels (Mohanty et al., 2024; Gupta
et al., 2022). By providing excellent biocompatibility and
biodegradability through natural polymers, while also
incorporating the mechanical strength and controllability of
synthetic polymers, hybrid hydrogels can offer ideal
mechanical properties and stability. Their adjustable
degradation rate and drug delivery characteristics allow for
precise control of drug release according to treatment needs
and timely degradation after repair (Patel et al., 2024b). In
addition, the flexibility of hybrid hydrogels also supports
personalized treatment, meeting the needs of different
patients. Therefore, it shows broad application potential in
cartilage repair, joint protection, and drug delivery (Xu et al.,
2025; Arif et al., 2025).

5 Application of hydrogels as delivery
systems in the treatment of OS

Injectable hydrogels are prepared by mixing a drug with a
temperature-responsive polymer to form a flowable solution or
suspension. After injecting this hydrogel precursor solution into
the lesion site, a sol-gel transition can occur at body temperature to
form a gel. The resulting hydrogel remains at the disease site,
enabling sustained drug delivery. Due to their in situ
encapsulation and minimally invasive delivery capabilities,
injectable hydrogels can serve as drug delivery carriers that
encapsulate and deliver various substances, such as cells, drugs,
and biomolecules (Oliva et al., 2017; Li et al., 2021; Miller et al.,
2021) (Figure 4).

5.1 Drugs

Although many drugs have been tested in experimental models
of OA, the current primary mode of administration is by mouth
(Zhang et al., 2016). These traditional methods have low
bioavailability and poor absorption, and drugs cannot have a
direct effect on the lesion site (Qindeel et al., 2020). Based on the
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fact that oral drugs do not work well and can cause harmful side
effects, injectable hydrogel treatments for drug delivery are
proposed. Injectable hydrogels can overcome and optimize the
shortcomings of these traditional methods, and injectable
hydrogels can be used as carriers to introduce drugs or natural
active substances into the lesion site (Almawash et al., 2022; Walsh
et al., 2022). This makes injectable hydrogels an excellent candidate
for developing an intra-articular controlled release platform.

5.1.1 Glucocorticoid
Glucocorticoids are commonly used drugs in osteoarthritis

(OA) treatment; they can relieve pain quickly and effectively and
have been widely used in clinical practice. Dexamethasone is an
important glucocorticoid in OA treatment, and it can relieve joint
symptoms and has a cartilage-protective effect (Huebner et al.,
2014). Although intra-articular (IA) injection can enhance
bioavailability and reduce off-target effects, rapid clearance of
therapeutic drugs remains a problem (Zhao et al., 2019).
Therefore, researchers have focused on developing
preparations that prolong the retention of active molecules
in joints.

The injectable thermosensitive hydrogel was prepared by
physically blending chitosan and Pluronic F127. This
thermosensitive property makes the hydrogel fluid at room
temperature for easy injection. At body temperature, it turns
solid, thereby achieving local drug release. This hydrogel has

good biocompatibility and low cytotoxicity, supporting its
potential application in the treatment of osteoarthritis and related
diseases (Kankariya and Chatterjee, 2023; Chakravarti and Joseph,
2025). García-Couce J et al. used the hydrogel as a delivery carrier for
dexamethasone and injected it into the knee joints of collagenase-
induced OA mice. They found that the hydrogel could prolong the
retention time of dexamethasone in the joint space and reduce its
diffusion into surrounding normal tissues and organs, thus
effectively delaying bone destruction in the joint and reducing
inflammation in mice (García-Couce et al., 2022).

Chitosan-borax-glycerol hydrogel is a drug delivery system with
temperature-induced phase transition properties. This hydrogel can
change from liquid to solid at body temperature, thus forming a
stable carrier in the joint space and enabling sustained local drug
release. This phase transition property allows the hydrogel to solidify
rapidly after injection, forming a protective barrier and prolonging
the retention time of the drug in the joint, which enhances
therapeutic efficacy (Kalairaj et al., 2024). Wang et al. loaded this
hydrogel with dexamethasone and injected it into the knee joints of
OA rats. The hydrogel effectively prolonged the retention time of
dexamethasone in the joint space, reduced its diffusion into the
blood, minimized potential side effects associated with low-
frequency treatment, and achieved high and sustained local drug
concentrations. This treatment effectively reduced bone destruction
in the joints and slowed the progression of OA (Wang Q. S. et al.,
2021; Wu et al., 2017).

FIGURE 4
Hydrogels rich in stem cells, drugs, and growth factors. The image is drawn using the BioRender software.
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5.1.2 Non-steroidal anti-inflammatory drugs
(NSAIDs)

NSAIDs are typically described as inhibitors of cyclooxygenase
(COX), which is involved in the metabolism of arachidonic acid and
the generation of prostaglandins. During treatment, NSAIDs often
cause side effects such as gastrointestinal reactions and kidney
damage (Davies et al., 2000). To avoid these adverse reactions,
scholars used alginate and poloxamer to form three-dimensional
network structure hydrogels through ionic cross-linking reactions.
This hydrogel formed a safe and effective drug delivery platform,
demonstrating excellent sustained-release properties (Hu et al.,
2021). Alginate-poloxamer hydrogel has shown a good cartilage
protective effect in the treatment of osteoarthritis. Studies have
shown that hydrogels can effectively inhibit the apoptosis of
chondrocytes and promote the synthesis of collagen, thereby
enhancing the regenerative capacity of cartilage (Ferreira et al.,
2023). Moreover, in vitro and in vivo experiments have found
that the sustained release of indomethacin can enhance the
survival rate of chondrocytes and significantly increase collagen
synthesis. In addition, when this hydrogel is applied in vivo, it can
effectively reduce inflammatory factors in the joint cavity, thereby
lowering local inflammatory responses and promoting the repair
and regeneration of cartilage (Díaz-Rodríguez and Landin, 2015;
Dang et al., 2021).

Sodium diclofenac, as a non-steroidal anti-inflammatory drug,
can effectively inhibit the synthesis of prostaglandins, thereby
reducing inflammation and pain. Studies have shown that when
chitosan hydrogel is used to deliver diclofenac sodium, sustained
drug release can be achieved, which helps maintain the effective
concentration of the drug in the body and thereby enhances its anti-
inflammatory and analgesic effects (Wu et al., 2025). For instance, by
using injectable chitosan hydrogels, the release of diclofenac sodium
can continue for several hours or even days. This sustained-release
property can effectively reduce the frequency of medication for
patients and lower the side effects of the drug. Furthermore,
experimental results show that the hydrogel delivery system can
significantly enhance the local bioavailability of the drug, thereby
achieving a higher drug concentration at the inflammatory site and
further enhancing its therapeutic effect (Hoang et al., 2022). These
findings provide important theoretical and experimental support for
the application of chitosan hydrogel-based drug delivery systems in
chronic conditions such as osteoarthritis.

5.1.3 Native compound
In recent years, natural compounds such as icariin (ICA) and

curcumin have received widespread attention as alternative and
effective means to treat OA. ICA is the main bioactive component of
the Chinese herb Epimedium and has extensive pharmacological
effects (Li et al., 2015; Feng et al., 2019). ICA can significantly induce
stem cells to differentiate into chondrocytes, promote chondrocyte
proliferation and the related gene expression, reduce the expression
of matrix metalloproteinases (MMPs), and enhance the secretion of
the ECM, thus enhancing cartilage repair (Wang et al., 2018). A
biodegradable hydrogel loaded with ICA was prepared through in
situ cross-linking of the hyaluronate-calcium complex (HA-Ca) and
sodium alginate (Alg-Na). This hydrogel can promote chondrocyte
proliferation, inhibit cartilage matrix degradation, alleviate
inflammation and pain, and protect chondrocytes, thereby

delaying osteoarthritis (Zheng et al., 2025). Zhu et al. prepared
hydrogels containing different concentrations of ICA by in situ
cross-linking of hyaluronic acid and Poloxamer 407. Intra-articular
injection of this hydrogel can promote the proliferation of BMSCs
and their differentiation into chondrocytes through the Wnt/β-
catenin signaling pathway. This process effectively repairs
damaged cartilage tissue and slows down the progression of OA
(Park et al., 2022). In addition, this hydrogel can effectively inhibit
the expression of inflammatory factors in the OA model, thereby
significantly alleviating the inflammatory response of the joint and
relieving pain (Chen et al., 2020).

Curcumin is a natural polyphenolic compound extracted from
turmeric, possesses various pharmacological activities (AloK et al.,
2015). Curcumin has anti-inflammatory effects, and has recently
been widely studied for the treatment of OA (Zheng et al., 2015).
However, due to the low solubility of curcumin in aqueous solution,
its systemic bioavailability is poor, which greatly hinders its
therapeutic effect and clinical translation (Gunaratne et al., 2017).
To enhance the water solubility of curcumin, researchers have
employed a variety of technical approaches, among which the
most effective is loading curcumin into a hydrogel composed of
polyethylene glycol (PEG) and gelatin methacrylate (GelMA). The
preparation of PEG-GelMA hydrogel usually involves a
photoinitiated polymerization reaction. This process can not only
effectively encapsulate curcumin in the hydrogel network but also
maintain its biological activity (Lopresti, 2018). In the rabbit OA
model, after loading curcumin into PEG-GelMA hydrogel, the
damaged cartilage area showed good signs of healing. Indicators
of chondrocyte proliferation and differentiation, such as cell viability
and expression of cartilage-specific markers, were significantly
improved. The thickness and surface smoothness of the cartilage
were significantly enhanced, and higher levels of cartilage matrix
synthesis were observed in histological analysis compared to
controls. These results indicate that curcumin not only effectively
alleviates the inflammation caused by arthritis but also improves
joint function by promoting cartilage regeneration (Sun et al., 2022).
At present, research on injectable hydrogels loaded with natural
compounds for the treatment of OA is relatively limited. However,
through in-depth studies of the mechanisms underlying cartilage
repair and anti-inflammatory effects, a foundation can be laid for
future clinical applications, providing patients with better
treatment options.

5.2 Stem cell

Cell therapy is the transplantation of living cells into defective
tissues or organs in vivo to restore their original function. Stem cell
transplantation is a common form of cell therapy (Yamanaka, 2020).
Stem cells are cells with self-renewal and multipotent differentiation
potential, which can repair damaged tissues, improve the
microenvironment, and promote tissue regeneration (Zakrzewski
et al., 2019; Giorgino et al., 2023). Stem cell therapy was developed
alongside drug-loaded injectable hydrogel therapy and plays a
crucial role in joint diseases (Lopez-Santalla et al., 2021; Sabi
et al., 2022; Burdick et al., 2016). Hydrogels protect transplanted
stem cells from host inflammation by providing physical support
that helps maintain their position in the injured area (Huang et al.,
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2017). Meanwhile, stem cells stimulate damaged tissues to form a
balanced inflammatory and regenerative microenvironment by
secreting therapeutic regenerative bioactive factors (Shi et al.,
2018; Collins et al., 2023). Therefore, injectable hydrogel-loaded
stem cells may become a promising method in the treatment of OA.

5.2.1 Bone marrow mesenchymal stem cells
(BMMSCs)

Mesenchymal stem cells (MSCs) therapies have shown good
promise in regenerative medicine and have been successfully used in
preclinical models. In early clinical trials, MSCs administered via
intra-articular injection can migrate chemotactically to the injured
area to secrete growth factors and extracellular matrix molecules,
promoting cartilage regeneration and cell proliferation (Gonzalez-
Fernandez et al., 2024; Mancuso et al., 2019). However, due to the
microenvironment of the lesion site—such as inflammation,
oxidative stress, and mechanical forces—stem cells cannot attach
to the damaged joint to form functional networks. This prevents
them from remaining and surviving in the lesion site for an extended
period, thereby limiting the expected therapeutic effect (Hashimoto
et al., 2023). Hydrogels are ideal biomaterials for assisting the
delivery of MSCs. The combination of hydrogels and cell delivery
systems can stabilize the cells at the injured site and provide the
attachment sites necessary for stem cell survival, directly addressing
the challenges of viability and retention of transplanted cells.
Consequently, this approach improves cell viability after delivery
and prolongs the retention time of stem cells in the target area
(Suzuki et al., 2023; Baldari et al., 2017; Soto-Gutierrez et al., 2010).

Bone marrow-derived mesenchymal stem cells (BMMSCs) can
improve pain relief and repair knee function, and are considered a
promising therapeutic alternative (Orozco et al., 2013). Currently,
the combination of BMMSCs with various structures prepared from
natural or synthetic materials has been extensively studied in the
medical field (Liao et al., 2014; Seo et al., 2014). For example, Liu
et al. found that PEG-polypeptide triblock copolymer hydrogels
enhanced the adhesion and proliferation of BMMSCs in vitro, and
mediated cartilage differentiation and in situ deposition of ECM by
BMMSCs, leading to enhanced regeneration of hyaline cartilage
accompanied by reduced fibrous tissue formation, thus promoting
cartilage repair (Liu H. et al., 2018). In addition, Zhang et al. used a
poly (N-isopropylacrylamide-co-acrylic acid) derivative, covalently
bonded to hydrolyzable degradable crosslinkers, N,O-
dimethylacrylamide hydroxamide, as a carrier to support MSCs,
and injected the hydrogel into the joints of OA rats. This hydrogel
promoted the expression of chondrogenesis-related genes and ECM,
induced chondrogenesis, and relieved cartilage defects (Zhang
et al., 2020).

5.2.2 Adipose stem cells (ADSC)
Adipose stem cells (ADSCs) are pluripotent cells that can be

obtained from healthy donors in a minimally invasive manner and
are considered important stem cells in regenerative medicine
(Bhattacharjee et al., 2022; Yuan et al., 2021). Due to the
complex microenvironment of the lesion site, injection of ADSCs
alone may lead to their loss of function or even inactivation. To
overcome these limitations, delivery systems capable of maintaining
the survival and function of implanted cells are needed. These
systems stimulate endogenous regeneration by promoting the

interaction between transplanted cells and host tissues
(Bhattacharjee et al., 2022). Wei et al. prepared an injectable,
ECM-mimicking hydrogel as a cell delivery carrier, providing a
favorable microenvironment for ADSC diffusion and proliferation.
In a surgically induced rat model of OA, intra-articular injection of
ADSC-containing hydrogels significantly reduced cartilage
degradation, joint inflammation, and subchondral bone loss (Yu
et al., 2021). Hyaluronic acid hydrogel microparticles (HMPs) are
used to encapsulate exosomes secreted by ADSCs to prepare an
injectable, sustained-release local drug delivery system. This system
can prolong the retention time of the exosomes, enhance
biocompatibility, promote ECM synthesis in chondrocytes, and
facilitate the repair of damaged cartilage in OA (Yin Z. et al., 2023).

5.2.3 Umbilical cord blood stem cells
Human cord blood-derived MSCs (hUCB-MSCs) are isolated

non-invasively and have a high proliferative capacity to provide
sufficient cells for therapeutic applications, (Kern et al., 2006).
Experiments have also shown that hUCB-MSCs seeded on
polylactic-glycolic acid copolymer scaffolds can promote cartilage
regeneration in rabbit models with cartilage defects, (Lin et al.,
2015). In addition, Piao et al. embedded hUCB-MSCs in hyaluronic
acid hydrogel and injected them into the cartilage defect sites of
osteoarthritis in elderly patients; this treatment effectively promotes
cartilage regeneration and joint repair (Park et al., 2017).

5.3 Growth factors (GFs)

Growth factors (GFs) are effective yet sensitive therapeutic
compounds that can stimulate the growth of specific tissues.
Studies have found that various GFs, such as insulin-like growth
factor 1 (IGF-1), transforming growth factor β (TGF-β), and TGF-
β3-loaded compounds, can be used in the treatment of OA (Patil
et al., 2011). However, GF therapy still faces problems such as
difficulty in controlling the release kinetics profile and rapid
clearance by the immune system. These issues limit its wide
application (Takematsu et al., 2023). Therefore, as a material
with good biocompatibility, hydrogels can overcome these
drawbacks and become ideal carriers for GFs. Hydrogels not only
provide a biocompatible microenvironment but also control the
release rate of GFs by regulating the physicochemical properties of
the hydrogels themselves, thereby achieving more effective
therapeutic effects (Hiruthyaswamy et al., 2025; Salama et al., 2025).

The interpenetrating polymer network (IPN) hydrogel based on
gelin-SH and polyethylene glycol diacrylate (PEGDA) forms a stable
three-dimensional network through chemical and physical cross-
linking. This hydrogel exhibits good cytocompatibility and
effectively supports cell adhesion and proliferation (Zou et al.,
2020). Insulin-like growth factor-1 (IGF-1) is a biological
stimulant that promotes chondrogenic differentiation by inducing
the expression of chondrogenic markers and regulating apoptosis
(Aboalola and Han, 2017). The loading efficiency of IGF-1 and its
protective effect in the IPN hydrogel are critical features of the
hydrogel in the treatment of osteoarthritis. Studies have shown that
IPN hydrogels based on gelatin-SH and PEGDA can efficiently
encapsulate IGF-1 and maintain its biological activity during the
release process. The structure of this hydrogel allows IGF-1 to be
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released in vivo at a controllable rate, thereby prolonging the
duration of its efficacy (Kang et al., 2024). Furthermore, the IPN
hydrogel has a significant protective effect on IGF-1, preventing its
inactivation under environmental factors such as variations in
pH and temperature. This protection ensures the maintenance of
IGF-1’s biological activity during the treatment process, thereby
promoting the regeneration and repair of bone tissue (León-Campos
et al., 2024).

The TGF-β family plays an important regulatory role in the
process of cartilage repair. Specifically, TGF-β promotes the
proliferation of chondrocytes and matrix synthesis by activating
the SMAD signaling pathway. This process involves the binding of
TGF-β to its receptor, thereby activating downstream SMAD
proteins, which then enter the cell nucleus to regulate the
expression of genes related to cartilage formation. For instance,
TGF-β1 and TGF-β3 play a crucial role in the proliferation and
differentiation of chondrocytes, effectively promoting the synthesis
of type II collagen and other matrix components and maintaining
the structure and function of cartilage (Lee et al., 2024). Calcium
alginate hydrogel has become an important material in the growth
factor delivery system due to its superior biocompatibility and
adjustable physical properties. The calcium ion cross-linking
process is essential in the formation of alginate hydrogels. This
process not only affects the structure and mechanical properties of
the hydrogels but also has a significant impact on the protection and
release of growth factors such as TGF-β. Studies have shown that
calcium ions can effectively stabilize TGF-β molecules and prevent
their inactivation in organisms; thereby prolonging their biological
half-life and enhancing therapeutic effects (Petrushenko et al., 2025).
Research has found that TGF-β can be loaded into calcium alginate
hydrogel for the treatment of OA. The use of alginate hydrogels can
selectively control the delivery of TGF-β to the injured site. This
targeted delivery promotes the repair of damaged articular cartilage
and avoids systemic side effects (Mierisch et al., 2002; Wang P. et al.,
2021). TGF-β3 is an important member of the TGF-β family, which
can significantly enhance the synthesis of collagen and
glycosaminoglycans by chondrocytes and promote the formation
of cartilage matrix (Du et al., 2023). In the treatment of OA, the
hydrogel combination of hyaluronic acid (HA) and TGF-β3 has
shown good application potential. HA hydrogels can continuously
release TGF-β3 by controlling their crosslinked structure and
network porosity (Shen et al., 2020). This continuous release can
effectively maintain the biological activity of TGF-β3 and promote
cell proliferation and differentiation. Researchers found that by
adjusting the crosslinking degree of HA hydrogels, the release
time of TGF-β3 could be significantly prolonged, thereby
providing more durable growth factor support in the treatment
of osteoarthritis. In addition, this hydrogel has good
biocompatibility and promotes the synthesis of chondro-specific
matrix and collagen, further enhancing its ability to repair defects
(Fan et al., 2020). However, hydrogels have demonstrated significant
advantages as growth factor (GF) carriers in the treatment of OA,
including controlled release and protective activity. Despite these
benefits, their application still faces limitations, such as
uncontrollable release kinetics, the loss or degradation of growth
factor activity in the in vivomicroenvironment, and the difficulty in
precisely regulating the spatiotemporal release sequence of different
growth factors. Future breakthroughs should focus on intelligent

material design, mechanical properties tailored to different scales,
and optimization of clinical-grade production processes. These
advances will help transition from merely providing “carrier
function” to achieving true “therapeutic effectiveness.”

The above-mentioned studies indicate that injectable hydrogels
are an effective drug delivery system capable of delivering various
substances, such as cells, drugs, and biomolecules, for the treatment
of OA (Table 1). Injectable hydrogels have advantages such as
minimally invasive, local persistence, controllable combined drug
delivery and promotion of tissue repair in this combined treatment
of OA. They can overcome the problem of limited efficacy of single
treatment methods and are an ideal platform for achieving multi-
target comprehensive intervention in OA. However, co-loading
systems typically provide stronger therapeutic effects compared
to single drug carrier systems. By co-loading multiple active
molecules (such as drugs, natural compounds, or growth factors)
in hydrogels, a synergistic effect can be achieved, leveraging their
respective advantages to enhance overall therapeutic efficacy (Jia
et al., 2024; Quagliariello et al., 2016). Furthermore, co-loading
systems can reduce the issues of mutual interference or premature
release of drugs by precisely controlling the spatiotemporal sequence
of different drug releases, thereby enhancing the continuity and
specificity of treatment (Sattari et al., 2020). In summary, a well-
designed co-loading system can optimize the bioavailability of drugs
and improve therapeutic effects, especially showing significant
advantages in the treatment of chronic diseases such as OA
(Handali et al., 2019).

6 Therapeutic mechanism of injectable
hydrogels in OA

6.1 Anti-inflammatory response

Polylactide polyethylene glycol polylactide (PLGA-PEG-PLGA)
has excellent plasticity and good biocompatibility. It can encapsulate
drugs and cells and can be designed as a reservoir to control the
release of therapeutic compounds. At the same time, it can solve the
problem of systemic side effects of oral drugs and the short duration
of efficacy of drugs injected directly into the joint (Yu et al., 2010;
Zhou et al., 2023). Interleukin-36 receptor antagonists (IL-36Ra) can
effectively control inflammatory responses, thereby protecting
cartilage and slowing down the development of OA (Yuan et al.,
2019). Yi et al. constructed a PLGA-PEG-PLGA hydrogel loaded
with IL-36Ra for the treatment of OA in a mouse model. The
injectable hydrogel loaded with IL-36Ra was injected into the knee
joints of OA mice, and the hydrogel acted as a drug reservoir to
slowly release IL-36Ra and maintain local drug concentration to
effectively control inflammation. The hydrogel also adheres to the
lesion site, acting as a lubricant to maintain the surface integrity of
articular cartilage, reduce the degradation of cartilage matrix, and
promote cartilage formation, thus effectively delaying the
progression of degenerative OA changes (Yi et al., 2023). In
addition, PLGA-PEG-PLGA hydrogel can also be loaded with
flurbiprofen to enable continuous drug release in the joint cavity
in a rat knee OA model induced by collagenase II. This approach
inhibits OA inflammation by reducing the levels of pro-
inflammatory cytokines (IL-1β, IL-6, and TNF-α) (Li P. et al.,
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2020). Furthermore, Dong developed a novel injectable hydrogel
based on double crosslinking via Schiff base bonds and catechol-Fe
coordination. This hydrogel stimulated the HIF-1α signaling
pathway and inhibited inflammation, thus promoting cartilage
differentiation. The hydrogel loaded with dexamethasone can
exert anti-inflammatory effects to promote cartilage repair (Dong
et al., 2022).

6.2 Anti-oxidative stress

Oxidative stress is an important pathological process in OA.
Oxidative stress prevents chondrocytes from binding to the ECM,
thus leading to chondrocyte apoptosis (Olofsson et al., 2003; Altay
et al., 2015). Excessive ROS can serve as an important intracellular
signaling molecule. It enhances inflammation in joints, promotes
chondrocyte death, and leads to joint injury (Bordy et al., 2018;
Mateen et al., 2016). Hydrogel scaffolds have been reported to
effectively clear ROS (Cheng et al., 2017). GHC hydrogel
(composed of gelatin, hyaluronic acid, and chondroitin sulfate)
possesses multifunctional properties, including tissue adhesion
ability, anti-ROS function, and the ability to promote cartilage

formation, making it an ideal cartilage repair material (Tong
et al., 2024). Polycitrate-based materials, specifically PCCGA
hydrogels as an emerging biomaterial, have shown great potential
in the treatment of osteoarthritis. The self-polymerization property
of PCCGA hydrogel enables it to form a stable three-dimensional
network structure in vivo, providing excellent biocompatibility and
adjustable physicochemical properties. Therefore, it has received
extensive attention in cartilage repair and regeneration (Xia et al.,
2025). PCCGA hydrogel also inhibits the expression of matrix
metalloproteinase-13 (MMP-13) by regulating the redox state
inside and outside cells. MMP-13 is a key enzyme closely related
to cartilage degradation. Excessive MMP-13 can lead to the
degradation of cartilage matrix and accelerate the progression of
osteoarthritis (Wang et al., 2024). A study using PCCGA hydrogel to
treat OAmice found that the hydrogel could significantly reduce the
expression of MMP-13, thereby protecting chondrocytes from
damage by inflammatory mediators and promoting the recovery
of cell metabolic function (He et al., 2024). Epigallocatechin-
hyaluronic acid (EGCG-HA) hydrogel, as a new type of long-
acting injectable carrier, has received extensive attention in the
treatment of OA in recent years. This hydrogel not only has
excellent biocompatibility but also effectively improves the

TABLE 1 Application of hydrogels as delivery systems in OA.

Encapsulated
substances

Hydrogel composition Specific
substances

Function References

Stem cells Polyethylene glycol polypeptide triblock
copolymer hydrogel

BMMSCs Promote cartilage differentiation of
BMMSCs and in-situ deposition of ECM,
promotes cartilage regeneration

Liu et al. (2018b)

Poly (n-isopropylacrylamide-co-acrylic acid)
derivatives

MSCs Induce chondrogenesis and relieve
cartilage defects

Zhang et al. (2020)

ECM simulates hydrogels ADSCs Reduces cartilage degradation, joint
inflammation and subchondral bone loss

Yu et al. (2021)

Hyaluronic Acid ADSCs Promote ECM synthesis in chondrocytes
and promote cartilage repair

Yin et al. (2023b)

Hyaluronic Acid hUCB-MSCs Inhibits inflammation, promotes cartilage
regeneration and joint repair

Lin et al. (2015)

Hyaluronic Acid hUCB-MSCs Promotes cartilage regeneration and joint
repair

Park et al. (2017)

Drugs Chitosan and Plannick-F127 Dexamethasone Inhibits inflammation, synovitis, bone
destruction and cartilage destruction

García-Couce et al. (2022)

Alginate and Poloxam NSAIDs Reduces inflammation and the destruction
of cartilage and bone, and promotes the
formation of osteoarthritis chondrocytes

Qi et al. (2016), Chen et al.
(2017b)

Hyaluronic acid-calcium complex (HA-Ca)
and sodium alginate (Alg-Na)

Icariin Inhibit the degradation of cartilage matrix,
reduce inflammation and relieve pain, and
protect cartilage cells

Zhu et al. (2022b)

Poly (ethylene glycol) dimethacrylate -
gelatin methacrylate

Curcumin Induces cartilage regeneration and
promotes the repair of cartilage damage

Sun et al. (2022)

Growth factors Gelatin -SH/PEGDA IPN hydrogel IGF-1 and ADSC Promote cartilage formation and ECM
deposition, and enhance cartilage tissue
regeneration

Cho et al. (2020)

Hyaluronic acid (HA) gel TGF-β3 Improve cartilage microenvironment and
regeneration of cartilage defects

Lee et al. (2024)

calcium alginate hydrogel TGF-β Improve the repair of articular cartilage
defects

Mierisch et al. (2002)
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microenvironment within the OA joint through its powerful
antioxidant properties (Jin et al., 2020). Li et al. found that
injecting EGCG-HA hydrogel into the joints of OA rats could
significantly induce synovial macrophages to polarization into the
M2 phenotype, reduce the expression of pro-inflammatory
cytokines (such as IL-1β, MMP-13, and TNF-α), and thereby
promote the formation of cartilage matrix and repair damaged
cartilage tissue in the OA model (Li et al., 2022). In addition to
the above-mentioned hydrogels, hydrogen-releasing hydrogels
(Zhang et al., 2023), selenium nanoparticle-loaded hydrogels (Hu
et al., 2023), and siMMP13-loaded liposome hydrogels (Ji Z. et al.,
2024) can also eliminate ROS and reduce the expression of related
inflammatory cytokines, thereby promoting cartilage repair.

6.3 Promoting cartilage regeneration

Cartilage destruction is caused by matrix metalloproteinases
produced by chondrocytes, synovial fibroblasts, and synovial
macrophages, as well as disintegrating proteins and
metalloproteinases with platelet protein motifs (Araki et al.,
2016). Currently, treatment options for cartilage repair are very
limited, and conventional drug therapy cannot restore damaged
cartilage. Given the various properties of injectable hydrogels, their
development for cartilage repair may be an effective strategy
(Levinson et al., 2019). Platelet-derived growth factor-BB (PDGF-
BB) has been found to significantly reduce the apoptosis rate of
chondrocytes and promote the migration of cells to the injury site,
which is crucial for cartilage self-repair (Zhu et al., 2021). Li et al.
constructed a bioactive injectable porous hydrogel microsphere with

sustained paracrine signaling activity through freeze-drying
microfluidic technology by combining PDGF-BB and exogenous
MSCs. Injecting this hydrogel into the joint cavity of OA rats can
effectively promote the interactions between cells and ECM, as well
as between cells, and enhances paracrine signaling, thereby
promoting the regeneration of articular cartilage (Li X. et al.,
2023). Bone morphogenetic protein-7 (BMP-7) is an important
growth factor that has been widely studied for cartilage formation
and regeneration. Kalairaj MS et al. discovered that incorporating
BMP-7 into a novel polymer hydrogel enhances its biocompatibility
and drug release characteristics, effectively promotes the
differentiation of chondrocytes, and significantly improves the
repair efficacy for cartilage defects in in vivo experiments
(Kalairaj et al., 2024). This combined strategy offers a new
approach for cartilage regeneration, especially in clinical
applications, where it can enhance the success rate and efficiency
of cartilage repair by precisely regulating the release and action of
growth factors (Figure 5).

Additionally, researchers have developed a hydrogel (T-GAG)
cross-linked from hyaluronic acid (HA) and aggrecan, with
adjustable mechanical properties that mimic the viscoelastic
characteristics of cartilage. This study indicates that the
aggregation coefficient (compressive modulus) of T-GAG
hydrogel can be controlled by adjusting the concentrations of
HA and aggrecan, and at certain concentrations, its aggregation
coefficient can reach or exceed the literature-reported values for
articular cartilage. Furthermore, T-GAG hydrogel exhibited a
characteristic tension relaxation response typical of biphasic
materials (such as cartilage) in closed compressive tests,
demonstrating its mechanical properties similar to those of

FIGURE 5
Schematic diagram of preparation of hydrogel drug delivery system for OA by intra-articular injection. The image is drawn using the
BioRender software.
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articular cartilage (Mintz and Cooper, 2014; Han et al., 2010).
Although the aforementioned research provides preliminary data
on hydrogels simulating cartilage ECM, there is still a lack of studies
comparing in vitro test results with actual joint loading conditions.
To better assess the performance of hydrogels in the joint
environment, future research should consider combining in vitro
tests with in vivo models for more accurate evaluation and
optimization. For example, animal models or biomechanical
simulations could be used to simulate the effects of joint
movement on hydrogels, thus enabling a more accurate
assessment of their performance in practical applications (Qiu
et al., 2025; Almeida et al., 2016).

7 Challenges and prospects of
injectable hydrogels in the treatment
of OA

7.1 Current research challenges

7.1.1 Regulation of stability and degradability
of hydrogels

In the treatment of OA, the regulation of stability and
degradability of hydrogels is of vital importance, but it also faces
many challenges. On the one hand, hydrogels need to maintain
sufficient stability in the body to ensure that they can continuously
exert therapeutic effects. During the drug delivery process, hydrogels
need to maintain structural integrity to ensure that drugs are
released at the expected rate. If the stability of the hydrogel is
insufficient, it may disintegrate before the drug is fully released,
resulting in rapid drug leakage, thus failing to achieve long-term
treatment. For some hydrogels used to repair cartilage defects, a
stable structure can provide continuous support for the growth and
proliferation of chondrocytes and promote the regeneration of
cartilage tissue. If the hydrogel degrades prematurely,
chondrocytes will lose their suitable growth environment,
affecting the cartilage repair effect. Conversely, after the
treatment is completed, the hydrogel should be able to degrade
and be eliminated from the body in a timely manner to avoid
remaining in the body and causing adverse reactions. However, at
present, it is often difficult to balance the stability and degradability
of the hydrogel simultaneously.

In addition, the matching of degradation rate and union rate is
also a crucial factor in the design of hydrogels (Erickson et al., 2020).
The ideal hydrogel should be able to match the process of cartilage
repair, with its degradation rate coordinated with the healing speed
of cartilage tissue. If the degradation of the hydrogel is too fast, it
may lead to the premature loss of its supportive function, affecting
cartilage regeneration. Conversely, if the degradation is too slow, it
may result in hydrogel residue, triggering immune responses or
affecting normal joint function (Lalitha Sridhar et al., 2017).
Therefore, optimizing the degradation rate of hydrogels to ensure
they provide sufficient support for chondrocytes during the repair
process and can degrade in a timely manner after cartilage healing is
an important consideration in the design of hydrogels.

To solve this difficult problem, researchers have attempted to
regulate the stability and degradability of hydrogels through various
methods. In terms of material selection, optimizing the structure and

composition of polymer materials is key. For instance, chemical
modification of natural polymers can alter the structure and
properties of their molecular chains. Quaternization of chitosan
can enhance its stability; moreover, by controlling the degree of
modification, its degradation rate can be regulated. In terms of the
preparation process, precisely controlling the type and
concentration of crosslinking agents can effectively regulate the
crosslinking density of hydrogels, thereby influencing their
stability and degradability. Increasing the concentration of
crosslinking agents usually enhances the stability of hydrogels,
but it reduces their degradation rate. Studying the influence of
different crosslinking agents on the performance of hydrogels
and screening the most suitable crosslinking system for the
treatment of osteoarthritis are also current research focuses.
Additionally, developing hydrogels with environmental
responsiveness is an effective strategy. By taking advantage of
changes in environmental factors such as temperature, pH value,
and enzymes, the stability and degradability of hydrogels can be
intelligently regulated. At the site of joint inflammation, the
pH value is usually low. Designing pH-responsive hydrogels
enables these materials to accelerate degradation in an acidic
environment, ensuring stability under normal physiological
conditions while also degrading promptly after application.

7.1.2 Large-scale preparation and quality control
For injectable hydrogels to move from laboratory research to

clinical application, large-scale preparation and quality control
are the major challenges that must be overcome. Among these
challenges, ensuring process repeatability during large-scale
preparation is critical. During laboratory preparation,
hydrogels are usually prepared under conditions of small
volume and precise control. However, during large-scale
production, it is difficult to fully reproduce these conditions.
Because factors such as the temperature of the reaction system,
the stirring speed, and the uniformity of raw material mixing are
difficult to control precisely in large-scale production, variations
in mechanical properties and functional performance arise in
hydrogels prepared from different batches. These variations may
affect the therapeutic effect and safety of hydrogels, limiting their
clinical application. During large-scale preparation of alginate
hydrogel, ensuring the exact same mixing ratio of sodium alginate
and crosslinking agent in each batch is challenging, which leads to
variability in degree of crosslinking and mechanical properties of
the hydrogel.

The uniformity of product quality is also an important issue
faced in large-scale production. The uniformity of quality of
hydrogels includes the uniformity of physical properties (such as
mechanical and swelling properties), chemical composition, and
drug loading amount. Hydrogels with non-uniform physical
properties may experience inconsistent injection resistance during
the injection process, which can affect clinical operations. Moreover,
variations in chemical composition can lead to differences in
biocompatibility and degradability of hydrogels, thereby
increasing the risk to patients. Uneven drug loading will not only
affect the drug release behavior but also the therapeutic effect. In the
preparation of hydrogels loaded with drugs, if the drugs are not
evenly distributed, it may lead to excessively high drug
concentrations in some areas, causing toxicity and adverse side
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effects. Meanwhile, in other areas, the drug concentrations may be
too low to achieve therapeutic effects.

At present, the application of industrial production technology
in the preparation of injectable hydrogels is not yet mature. The
traditional methods for preparing hydrogels are often inefficient and
difficult to meet the demands of large-scale production. However,
some advanced preparation technologies, such as microfluidic and
3D printing technologies, show good application prospects in the
laboratory. Nevertheless, they still face many problems during
industrial scale-up. When preparing hydrogels using microfluidic
technology, how to achieve large-scale fabrication and integration of
microchannels as well as how to improve production efficiency and
reduce costs are urgent problems to be solved. 3D printing
technology has advantages in preparing complex-structured
hydrogels; however, it is slow in printing speed, results in
significant material waste, and may introduce impurities during
the printing process, which affects the quality of the hydrogel.

To achieve large-scale preparation and quality control of
injectable hydrogels, it is necessary to enhance the research and
optimization of the preparation process. It is necessary to develop
automated and intelligent preparation equipment, precisely control
reaction conditions, and enhance the repeatability and stability of
the preparation process. Establish strict quality control standards
and testing methods to conduct comprehensive tests on the physical
properties, chemical composition, and drug loading capacities of
hydrogels, ensuring the uniformity of product quality. Strengthen
cooperation with the industrial sector, introduce advanced
industrial production technologies into the field of hydrogel
preparation, and promote the industrialization process of
injectable hydrogels.

7.1.3 Clinical translational disorders
Injectable hydrogels face numerous challenges in safety

evaluation and regulatory approval as they transition from
laboratory research to clinical application. Although injectable
hydrogels have demonstrated good biocompatibility in both
in vitro and animal experiments, uncertainty remains about how
well these safety data can be extrapolated from animal models to
humans. The physiological environment and immune system within
humans are more complex, and the long-term safety of hydrogels in
vivo still requires verification. Moreover, the metabolic pathways
and potential toxicity of hydrogel degradation products in the
human body remain unclear. These degradation products may
have toxic, immunogenic, or other harmful effects on human
health. For example, some hydrogels may produce small
molecular weight compounds during degradation. Whether these
compounds cause damage to vital organs such as the liver and
kidneys warrants further in-depth research.

Clinical trial design also faces many challenges. Determining the
appropriate endpoints of clinical trials is one of the key issues. At
present, the clinical trial endpoints of osteoarthritis mainly include
the extent of pain relief, the improvement in joint function, and
changes in imaging biomarkers. However, these indicators are often
influenced bymultiple factors and vary significantly among different
patients; this leads to a certain degree of subjectivity and uncertainty
in the evaluation of clinical trial results. The extent of pain relief is
primarily assessed based on the patient’s subjective reporting.
Different patients have different tolerance levels and ways of

describing pain, which may affect the accuracy of the assessment
of pain relief. Selecting objective, accurate, and quantifiable clinical
trial endpoints is an urgent problem to be solved. This would allow a
more scientific evaluation of the therapeutic effect of injectable
hydrogels. Moreover, clinical trials need to take into account
factors such as sample size, control group setting, and trial
duration. As osteoarthritis is a chronic disease with a long
course, it requires long-term clinical trial observation. This not
only increases the cost and difficulty of the trial but may also lead to
a decline in patient compliance, affecting the reliability of the trial
results. Moreover, reasonable setting of the control group is also an
important part of clinical trial design. The selection of appropriate
control treatment methods, such as placebo controls and existing
standard treatment controls, requires a comprehensive
consideration of multiple factors, including ethics and
clinical practice.

In terms of regulatory approval, as a new type of biomaterial, the
relevant regulations and standards for injectable hydrogels are still
incomplete at present. The approval requirements for biomaterials
vary among different countries and regions, which poses difficulties
for the global promotion of injectable hydrogels. The regulatory
approval process is usually rather complicated and requires a large
amount of experimental data and numerous materials. These
include material preparation processes, quality control, safety
evaluation, and clinical trial results. Moreover, for complex
biomaterials like injectable hydrogels, meeting the requirements
of regulatory approval and accelerating the approval process are
key to clinical translation. The approval standards in some countries
focus on safety, while others pay more attention to effectiveness.
Enterprises need to formulate corresponding regulatory application
strategies in accordance with the regulatory requirements of
different countries and regions, which increases the costs and
difficulties of research, development, and promotion.

7.2 Future outlook

7.2.1 Material design and performance
optimization direction

In the future, injectable hydrogels are expected to make
significant breakthroughs in material design, and the
development of new intelligent response materials will become a
research hotspot. With the in-depth understanding of the
pathogenesis of osteoarthritis and the microenvironment of
joints, it has become possible to develop hydrogels that can
respond to various stimuli. In addition to the common responses
to temperature and pH values, hydrogels can also respond to specific
molecules in the joint microenvironment such as inflammatory
factors and reactive oxygen species. When the concentration of
inflammatory factors in the joint cavity increases, the hydrogel can
rapidly release anti-inflammatory drugs, which precisely inhibit the
inflammatory response. This multi-responsive hydrogel can
intelligently adjust the drug release profile according to the real-
time changes of the joint microenvironment, improving the
targeting and effectiveness of treatment.

Optimizing the mechanical properties and biological activities of
materials is also an important development direction in the future.
Regarding mechanical properties, it is necessary to develop
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hydrogels with adaptive mechanical properties, enabling them to
automatically adjust their mechanical strength under different joint
movement states to better meet the mechanical requirements of
joints. Hydrogels can enhance their mechanical strength to provide
sufficient support when joints bear weight. When the joints are in
motion, hydrogels can maintain good flexibility and not affect the
normal movement of the joints. By introducing materials with
special mechanical properties, such as shape memory polymers
and self-healing materials, the mechanical properties of hydrogels
can be adaptively regulated.

In terms of biological activity, it is important to further enhance the
affinity of hydrogels for cells and their ability to promote cell functions.
Introducing more bioactive molecules, such as growth factors, cell
adhesion peptides, and signaling pathway activators, into the hydrogel
can construct a system with multifunctional bioactivity. These
bioactive molecules can interact with receptors on the cell surface,
activate intracellular signaling pathways, promote the proliferation and
differentiation of chondrocytes, and the synthesis of extracellular
matrix, thereby accelerating cartilage repair.

At the same time, the optimization of biodegradation kinetics will
become a key factor in material design. The degradation rate of
hydrogels should be reasonably designed to ensure that they maintain
sufficient mechanical strength during the treatment process and
degrade at the appropriate time, thereby promoting sustained
therapeutic effects and tissue repair (Cota Quintero et al., 2025).
Regarding bioactivity, the affinity of hydrogels for cells and their
ability to enhance cell function should be further improved. To this
end, more functional biomolecules, such as growth factors, cell
adhesion peptides, and signaling pathway activators, should be
introduced into hydrogels to construct a multifunctional bioactive
hydrogel system. These molecules can interact with receptors on the
cell surface and activate intracellular signaling pathways. They also
promote the proliferation, differentiation, and extracellular matrix
synthesis of chondrocytes, thereby accelerating cartilage repair.

By integrating artificial intelligence and machine learning
technologies, the material properties of injectable hydrogels can be
designed and optimizedmore efficiently. Specifically, by establishing a
mathematical model between the structure and properties of
hydrogels, and using machine learning algorithms to analyze and
predict large datasets of experimental data, hydrogel materials and
formulations with ideal properties can be quickly screened out.
Artificial intelligence can also assist in designing the microstructure
of hydrogels, endowing them with better drug loading and release
performance and enhanced cell biocompatibility. By simulating the
behavior of hydrogels with different structures in vivo, the hydrogels’
therapeutic effects can be predicted, providing a scientific basis for the
optimal design of hydrogels.

7.2.2 Trend of interdisciplinary integration
The integration of multiple disciplines such as biomedicine,

materials science, nanotechnology, and gene therapy will bring
unprecedented opportunities for the application of injectable
hydrogels in the treatment of osteoarthritis. In the field of
biomedicine, in-depth research on the pathogenesis of
osteoarthritis can provide more precise targets and therapeutic
strategies for the design and application of injectable hydrogels.
Through research on cytokines, signaling pathways, gene
expression, and other aspects in the microenvironment of

osteoarthritis joints, new therapeutic targets are discovered, and
injectable hydrogel drug delivery systems capable of targeting them
are developed. Understanding the aberrant expression of specific
genes in osteoarthritis allows the design of hydrogels capable of
carrying related gene therapy drugs to regulate disease-related genes
and address the underlying causes of OA.

The development of materials science has provided novel
materials and preparation techniques for injectable hydrogels. The
synthesis and modification of new polymer materials can endow
hydrogels with enhanced mechanical strength, biocompatibility, and
degradation profiles. Researchers develop polymer materials with
higher biocompatibility, mechanical properties, and degradation
performance to lay the foundation for the application of hydrogels.
Advanced preparation techniques, such as electrospinning,
microfluidics, and 3D printing, can precisely control the
microstructure and macroscopic shape of hydrogels, enabling
personalized customization. Using 3D printing technology,
injectable hydrogel scaffolds that match the specific morphology
and cartilage defects of the patient’s joints can be printed, thereby
enhancing the therapeutic effect.

The combination of nanotechnology and injectable hydrogels
can further enhance the performance and functionality of hydrogels.
Nanomaterials possess unique physical and chemical properties,
such as high specific surface area, small size effect, and quantum size
effect. Introducing nanomaterials such as nanoparticles, nanofibers,
and nanotubes into hydrogels can enhance their mechanical
properties, drug loading capacity, and targeting capabilities. The
incorporation of nano hydroxyapatite into hydrogels can enhance
their biological activity and mechanical strength, as well as promote
the adhesion and proliferation of chondrocytes. Targeted
nanocarriers developed using nanotechnology, when combined
with injectable hydrogels, can achieve precise drug delivery,
improve therapeutic effects, and reduce drug side effects.

The combination of nanotechnology and injectable hydrogels
can further enhance the performance and functionality of hydrogels.
Nanomaterials possess unique physical and chemical properties,
such as high specific surface area, nanoscale size effects, and
quantum size effects. Introducing nanomaterials—such as
nanoparticles, nanofibers, and nanotubes-into hydrogels can
improve their mechanical strength, drug loading capacity, and
targeting capabilities. For example, the incorporation of nano-
hydroxyapatite into hydrogels can enhance their biological
activity and mechanical strength, as well as promote the adhesion
and proliferation of chondrocytes. Moreover, targeted nanocarriers
developed using nanotechnology combined with injectable
hydrogels enable precise drug delivery, improve therapeutic
effects, and reduce drug side effects.

8 Conclusion

Osteoarthritis (OA) is a common degenerative joint disease that
can involve various pathological changes such as cartilage
degradation, synovitis, and subchondral bone remodeling. The
current treatment options for OA aim to alleviate pain and
disease activity, and to prevent inflammation and the progression
of destructive processes. However, due to the complex pathological
processes and local microenvironment of OA, as well as the limited
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variety of treatment methods and the low efficiency of traditional
administration routes, achieving satisfactory therapeutic effects
remains challenging. In this context, the emergence of advanced
injectable hydrogels offers a promising approach to overcoming
these limitations. Injectable hydrogels are a unique type of
hydrophilic polymer characterized by a cross-linked three-
dimensional network structure. They feature excellent mass
transport capacity, biocompatibility, biodegradability, and
adjustable mechanical properties. These unique properties make
them effective functional matrices for drug delivery. Injectable
hydrogels enable the controlled release of drugs as well as tissue
repair factors, providing a promising therapeutic platform for the
treatment of OA.
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