
Deep learning on brain metastasis
for predicting EGFR genotype and
EGFR-TKI therapy response in
metastatic NSCLC: a multicenter
study

Shuailin You1,2†, Ying Fan3†, Zhiguang Yang4†, Chunna Yang2,
Yiyao Sun2, Yahong Luo5, Zekun Wang5*, Bo Sun6* and
Wenyan Jiang7*
1College of Technology and Data, Yantai Nanshan University, Yantai, China, 2School of Intelligent
Medicine, China Medical University, Shenyang, Liaoning, China, 3College of Biomedical Engineering,
Fudan University, Shanghai, China, 4Department of Radiology, Shengjing Hospital, Shenyang, China,
5Department of Medical Imaging, Cancer Hospital of China Medical University, Liaoning Cancer Hospital
and Institute, Shenyang, Liaoning, China, 6Department of Radiology, The First Affiliated Hospital of Dalian
Medical University, Dalian, Liaoning, China, 7Department of Scientific Research and Academic, Cancer
Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China

Background: Brain metastases are common in patients with advanced non-small
cell lung cancer (NSCLC), particularly those harboring EGFR mutations, and
accurate prediction of EGFR mutation status and therapeutic response is
crucial for guiding targeted therapy. This study aims to conduct a deep
learning (DL) approach to automatically predict epidermal growth factor
receptor (EGFR) genotype and response to EGFR-tyrosine kinase inhibitor
(TKI) therapy in NSCLC patients with brain metastatic tumor (BM).
Methods: For training and validating the DL models, 388 patients were enrolled
from three centers between Jul. 2014 and Dec.2022 (230 from center 1, 80 from
center 2 and 78 from center 3). Contrast-enhanced T1-weighted (T1CE) and T2-
weighted (T2W) brain MRI images before treatment for each patient were
obtained for analyses. We developed an EGFR-TKI system (ETS) for automated
detection of brain metastatic (BM) lesions and to differentiate EGFR mutation
status and predict response to EGFR-TKI therapy. The models underwent
rigorous evaluation through receiver operating characteristic (ROC) curve
analyses, where metrics such as area under the curve (AUC), sensitivity, and
specificity were examined.
Results: For prediction of EGFRmutation status, the ETS integrating radiological-
based features and clinical factors achieved AUCs of 0.842, 0.833 and 0.832 on
the internal validation, external validation 1 and external validation 2 cohort,
respectively. For forecasting response to EGFR-TKI therapy, the fusion model
created by amalgamating MRI with clinical factors generated AUCs of 0.747,
0.726 and 0.728 on the internal validation, external validation 1, and external
validation 2 cohort, respectively.
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Conclusion: The ETS may have the potential to work as a non-invasive tool for
predicting EGFR mutation status and response to EGFR-TKI therapy, which holds
promise as a non-invasive tool to assist clinicians in making decisions about
personalized treatment strategies.
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1 Introduction

Lung cancer has been a devastating disease and one of the most
frequently diagnosed cancers around the world (Sculier, 2013). Lung
cancer primarily begins in the lung and may spread to other organs
(Boire et al., 2020). The survival statistics of patients with lung cancer
are grim, which is often due to the development of distant metastasis
(Arbour and Riely, 2019; Schuchert and Luketich, 2003). The brain
metastasis (BM) is a major cause of morbidity in lung cancer and
frequently results in poor survival rates of less than 1 year (Boire et al.,
2020; Niu et al., 2016). And it was reported that approximately half of
the lung cancer patients would develop BM (Arbour and Riely, 2019).

Epidermal growth factor receptor (EGFR)-tyrosine kinase
inhibitors (TKIs) have been considered as one of the most effective
therapeutic strategies for lung cancers (Lynch et al., 2004). Once the
patient is diagnosed as an EGFR mutant, EGFR-TKI therapy can be
the first-line choice (Yang et al., 2017). However, the effect of the
EGFR-TKI is not always satisfactory, and many cases would suffer
from tumour progression after receiving the EGFR-TKIs (Rebuzzi
et al., 2020). To date, there is still a lack of accurate and reliable
methods for the early detection of the EGFR mutation and evaluating
therapeutic response to EGFR-TKI before treatment. Although biopsy
sampling is routinely used in clinical settings, the biopsy is invasive
and may introduce high risks of tissue damage and tumor cell spread
(Thompson et al., 2016). In addition, intratumoral heterogeneities can
influence the biopsy analysis results because the biopsy can only
reflect a limited region in the tumor (Huang W-L. et al., 2017).
Therefore, biopsy-based assessment of EGFR mutation status or
response to EGFR-TKI is not suggested. Medical imaging-based
assessments, on the other hand, are usually subjective and
unreliable (Chetan and Gleeson, 2021). Radiologists can hardly
evaluate the EGFR mutation status or therapeutic response because
of the absence of a specific marker. There is a great need for an
effective and non-invasive method to assist in preoperatively
determining which patients can benefit from EGFR-TKI therapy.

Radiomics has demonstrated the relationship between underlying
biological mechanisms and clinical significance by computing
quantitative features directly from medical images (Lambin et al.,
2017). While, traditional handcrafted-based radiomics has limitations
(Sculier, 2013): handcrafted features are manually calculated based on
previously proposed formulas, which can cover only limited types of
features (e.g., shape-based, first-order and textural features), and
hence result in limited capabilities of digging valuable information
from imaging data (Lambin et al., 2017); and (Boire et al., 2020) the
process of feature selection and modeling is laborious and time-
consuming (Lambin et al., 2017), which cannot be performed as the
end-to-end training and testing. In contrast to machine learning-
based approaches, deep learning algorithms have been shown to
automatically learn representative information from raw data (Pan
et al., 2019; Magadza and Viriri, 2021). Deep learning-based models

have been proposed for detecting the EGFR mutation, but all focused
on thoracic imaging of the primary lung cancer (Wang S. et al., 2019;
Yin et al., 2021; Wang et al., 2022). While, clinical evidences have
shown that patients with EGFRmutant NSCLC have a high incidence
of BM, which is also known as an important indicator to reflect the
therapeutic efficacy (Boire et al., 2020; De Cos et al., 2009). Recent
handcrafted radiomics studies proved that information highly
associated with response to EGFR-TKI can be captured from the
NSCLC originated BM (Fan et al., 2023a; Fan et al., 2023b; Fan et al.,
2022), but all simply applied conventional machine learning methods
on a limited sample size. To our knowledge, there is still no report
investigating the value of deep learning in predicting therapeutic
efficacy of EGFR-TKI therapy based on BM. In this study, we
proposed an automated artificial intelligence EGFR-TKI system
(ETS) to predict EGFR genotype and response to EGFR-TKI
treatment, aiming to assist clinicians in making appropriate
therapeutic plans based on the ETS predicted possibility of
obtaining the benefit from EGFR-TKI treatment.

2 Methods

2.1 Patients

This study was approved by the ethics committee of our hospital.
A total of 230 patients were enrolled from center 1 between January
2017 and December 2021 and served as the primary cohort.
80 patients were enrolled from center 2 (between Jul. 2014 and
Feb. 2022), and 78 patients were enrolled from center 3 (between
Jan. 2020 and Dec. 2022), and served as the external validation
cohort 1 and 2, respectively. The Response Evaluation Criteria in
Solid Tumors (RECIST) 1.1 (Eisenhauer et al., 2009) was used to
determine treatment response to EGFR-TKI therapy. The inclusion
criteria include (Sculier, 2013): underwent complete T1CE and T2W
brain MRI scans before treatment, and (Boire et al., 2020) had
complete gene test results. The exclusion criteria include (Sculier,
2013): with poor MRI image quality (Boire et al., 2020); age less than
18, and (Arbour and Riely, 2019) carrying a primary brain tumor or
other tumor diseases. Patients from center 1 were divided into
training and internal validation cohorts by random stratified
sampling in a ratio of 8:2. Patients from centers 2 and 3 were
used as independent sets to validate our DLmethods. Figure 1 shows
the screening process for patients from all three centers.

2.2 MRI acquisition and region of interest
(ROI) segmentation

Patients from center 1 were scanned by a 3.0-T MRI scanner
(Siemens Verio, Erlangen, Germany), patients from center 2 were
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scanned by a 3.0-T MRI scanner (Siemens Magnetom Skyra,
Erlangen, Germany), and patients from center 3 were scanned by
a 3.0-T MRI scanner (Philips, Ingenia). In center 1, the T1CE MRI

scanning parameters were as follows: Repeat time (TR) = 270 ms;
Echo time (TE) = 2.48 ms; slice thickness = 5 mm, FOV = 194 ×
230 mm, and matrix size = 320 × 216. The T2W MRI scanning

FIGURE 1
Flowchart of patient recruitment in three centers.

FIGURE 2
Architecture of the proposed ETS.
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parameters were as follows: TR = 3630 ms, TE = 87 ms; slice
thickness = 5 mm; FOV 194 × 230 mm, and matrix size = 384 ×
227 mm. In center 2, the T1CE MRI scanning parameters were as
follows: TR = 1400 ms; TE = 9 ms; slice thickness = 6 mm, FOV =
179 × 230 mm and matrix size = 320 × 187. The T2WMRI scanning
parameters were as follows: TR = 3500 ms, TE = 99 ms; slice
thickness = 6 mm; FOV = 194 × 230 mm and matrix size = 320 ×
270 mm. T1CE MRI images were taken 5 min after Gd-DTPA
injection. In center 3, the parameters of T1CE and T2WMRI were as
follows: T1CE: TR = 180 ms; TE = 2.3 ms; slice thickness = 6 mm,
and matrix size = 256 × 256. T2W: TR = 2000 ms; TE = 80 ms; slice
thickness = 6 mm, and matrix size = 256 × 256. The dose was
0.2 mL/kg, and the injection speed was 3 mL/s. The segmentation of
regions of interest (ROIs) of the brain metastasis (BM) was
performed using the ITK-SNAP (version 3.6.1). A radiologist
with 5 years’ experience was invited to manually segment the
ROI of BM, who was blinded to the clinicopathological
information of the patients, except for the tumor location. And a
senior radiologist with 15 years’ experience was invited to validate all
manual delineations. Volume of peritumoral edema (VPE) was
calculated using ITK-SNAP.

2.3 Development and validation of the ETS

The proposed automated artificial intelligence EGFR-TKI system
(ETS) consists of two main components: (i) automatic tumor region
segmentation and (ii) EGFR genotype prediction. The EGFR-Model
of ETS can automatically recognize the region of interest (ROI), and
directly predict the EGFR mutation status. For patients with EGFR
mutation, the TKI-Model of ETS predicts response to EGFR-TKI
therapy. The architecture of the ETS is shown in Figure 2.

The proposed automated artificial intelligence EGFR-TKI
system (ETS) consists of two main components: (i) automatic
tumor region segmentation and (ii) EGFR genotype prediction.
Specifically, ETS first segments the brain metastasis region using
a modified FC-DenseNet with LeakyReLU and external attention
(EA), and then predicts EGFR mutation status using a DenseNet-
121–based classifier. For patients with EGFR mutation, the system
further predicts the response to EGFR-TKI therapy. The
architecture of ETS is shown in Figure 2.

The segmentation subnetwork for the ETS is based on the FC-
Densenet (Jégou et al., 2017) backbone and uses the LeakyRelu
nonlinear activation function to replace the ReLU nonlinear
activation function. In addition, an EA is added to the network’s
downsampling and upsampling process (Guo et al., 2023). To train
the segmentation network, we first performed data augmentation to
increase the diversity of training samples and improve the robust
performance of the training model. Each MRI image is randomly
rotated by 90 degrees, and in addition, each image is randomly
selected for data enhancement by one of three non-rigid body
transformations: Elastic transform, Grid distortion, and Optical
distortion. In the training process, the model is optimally trained
by adaptive moment estimation (Adam) (Kinga and Adam, 2015)
with a learning rate of 0.0001, the total number of iterations of the
trainingmodel is 100, and the input size of the model is 128 × 128 × 3.

The classification subnetwork uses the Densenet-121 (Huang G.
et al., 2017) as the backbone network. The fully connected layer of

the Densenet-121 was replaced with the global average pooling
(GAP) (Lin et al., 2025) for discriminating the EGFR mutation
status. We applied the ideology of transfer learning, where the
classification network was pre-trained on the ImageNet-1k
dataset to increase the learning efficiency of the network. We
evaluated four model variants, No Seg–VPE, No VPE, No Seg,
and Seg–VPE—to isolate the contributions of the segmentation
network and the volumetric peritumoral edema (VPE) feature.

To predict EGFR-TKI therapy response, we extracted DL features
and handcrafted features from patients with EGFR mutation. The
analysis of variance (ANOVA) and principal component analysis
(PCA) (Witten et al., 2013) were applied to dimensionality reduction
and screen features. Finally, we used a decision tree model to predict
the response to EGFR-tyrosine TKI therapy. To enhance
interpretability and reveal spatial correlations between image
regions and prediction results, we applied Grad-CAM (Selvaraju et
al., 2017) to the final convolutional layer of the DenseNet-121
classifier. This allowed us to visualize the discriminative regions
that most influenced the EGFR mutation prediction. Since the
classifier receives input features extracted from the segmented
tumor region, the resulting attention maps reflect localized regions
within the BM that are most relevant to the model’s decision-making
process. In the training process, the model is optimally trained by
adaptive moment estimation (Adam) (Kinga and Adam, 2015) with a
learning rate of 0.0001; the epoch of the training model was set to 100.
All DL experiments were performed in Python (v.3.6) using Keras
(version 2.3) on a single GPU (Nvidia GeForce 3090) workstation.

To validate the predictive performance of the ETS for both
EGFR-mutation status and EGFR-TKI response, we conducted
independent evaluations on three datasets: an internal hold-out
set (20% of the development data) and two external validation
cohorts. The fully trained ETS was applied to each dataset. For
each task and each cohort (Internal Validation, External Validation
1, External Validation 2), we generated receiver operating
characteristic (ROC) curves and calculated the area under the
curve (AUC), accuracy, F1 score, precision, and recall. Optimal
decision thresholds were selected by maximizing Youden’s index.

2.4 Statistical analysis

All statistical analysis was performed in R software (version 3.6.0).
ANOVA was performed for continuous variables, and the chi-square
test was used for discrete (categorical) variables. Factors with a p-value
less than 0.05 were considered statistically significant. The performance
of the ETS was evaluated using area under the curve (AUC), accuracy,
F1 score, precision, and recall. All evaluationmetrics were implemented
in Python (v.3.6) using the scikit-learn library. The Gradient Weighted
Class Activation Map (Grad-CAM) was implemented on PyTorch
(Version 1.12.0). Figure 3 depicts the workflow of our study.

3 Results

3.1 Clinical characteristics

Table 1 listed demographic and clinical characteristics of the
patients with BM originated from primary NSCLC. From Table 1,
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there was no statistical significance in terms of age, gender, and
smoking history.

3.2 Performance for predicting EGFR
mutation status

Table 2 compared the performance of the proposed EGFR-
ModelNo Seg−VPE, EGFR-ModelNo VPE, EGFR-ModelNo Seg and EGFR-
ModelSeg-VPE for predicting the EGFR mutation status. Without the
subnetwork for segmentating the BM, the EGFR-ModelNo Seg−VPE

yielded lower AUCs, accuracy, F1-score, precision, and recall
compared with EGFR-ModelNo VPE in primary and external

cohorts. The decreased predictive performance in EGFR-ModelNo
Seg−VPE suggested the necessity of the segmentation subnetwork. By
integrating VPE, the EGFR-ModelNo Seg showed better performance
than EGFR-ModelNo Seg−VPE in terms of AUC, accuracy, F1-score,
precision, and recall. This indicated that the VPE can provide
additional information to improve the capability of predicting the
EGFR mutation status. The EGFR-ModelSeg-VPE, integrating both
VPE and segmentation subnetworks, performed the best among all
models for predicting the EGFR mutation status. ROC curves of all
models on primary and external sets were shown in Figure 4. As
shown in Figure 5, the Grad-CAM heatmaps highlight high-
response areas within the segmented tumor region, indicating
that the prediction of EGFR mutation status is driven by

FIGURE 3
Study design of our work for predicting response to EGFR-TKI treatment. (A) Model construction. (B) Model application.

TABLE 1 Clinical characteristic of patients from three centers.

Characteristic Center1 (n = 230) Center 2 (n = 80) Center 3 (n = 78) P

Age (Mean ± SD) 58.52 ± 9.64 57 ± 10.3 62.26 ± 9 0.216

Sex 0.276

Male 102 (44.3%) 44 (55.0%) 42 (53.8%)

Female 128 (55.7%) 36 (45.0%) 36 (46.2%)

Smoking History 0.137

Yes 92 (40.0%) 26 (32.5%) 30 (38.5%)

No 138 (60.0%) 54 (67.5%) 48 (61.5%)

PS Score <0.001

<2 144 (62.6%) 75 (93.75%) 67 (85.9%)

≥2 86 (37.4%) 5 (6.25%) 11 (14.1%)

SD, standard deviation; PS, performance status.
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biologically relevant features. These results illustrate a link between
the model architecture, particularly the segmentation-guided feature
extraction, and the spatial mapping of predictive regions.

3.3 Performance for predicting response to
EGFR-TKI therapy

Table 3 compared the performance of the proposed TKI-
ModelNo Seg−VPE, TKI-ModelNo VPE, TKI-ModelNo Seg and TKI-
ModelSeg-VPE for predicting response to EGFR-TKI. The TKI-
ModelNo Seg−VPE without the subnetwork for segmenting the BM

genarated lower AUC and ACC compared with TKI-ModelNo VPE

that has the segmentation subnetwork. The result indicates the
necessity of the segmentation subnetwork. The TKI-ModelNo Seg

integrating VPE outperformed the TKI-ModelNo Seg−VPE that is
without VPE in terms of AUC and ACC in primary and external
cohorts. This suggested that the VPE holds additional information
correlated to the efficacy of EGFR-TKI. The TKI-ModelSeg-VPE

integrating both VPE and the segmentation subnetwork achieved
the best predictive performance with AUCs of 0.747, 0.726, and
0.728 in the internal validation, external validation 1 and external
validation 2 cohort, respectively. Figure 6 depicted the ROC curves
of the TKI-Model for predicting response to EGFR-TKI.

TABLE 2 Performance of the ETS for predicting the EGFR mutation status.

Model Cohort AUC Accuracy F1-score Precision Recall

EGFR-ModelNo Seg−VPE Internal Validation 0.700 0.699 0.694 0.720 0.664

External Validation 1 0.684 0.683 0.696 0.654 0.626

External Validation 2 0.675 0.676 0.675 0.675 0.675

EGFR-ModelNo Seg Internal Validation 0.745 0.743 0.734 0.784 0.690

External Validation 1 0.739 0.738 0.751 0.699 0.812

External Validation 2 0.731 0.732 0.731 0,732 0.731

EGFR-ModelNo VPE Internal Validation 0.825 0.823 0.871 0.873 0.767

External Validation 1 0.821 0.821 0.819 0.808 0.829

External Validation 2 0.808 0.811 0.809 0.820 0.808

EGFR-ModelSeg-VPE Internal Validation 0.842 0.841 0.835 0.892 0.784

External Validation 1 0.833 0.833 0.828 0.835 0.821

External Validation 2 0.832 0.838 0.835 0.842 0.832

EGFR-ModelNo Seg−VPE: Without the subnetwork for segmentation and without adding volume of peritumoral edema (VPE); EGFR-ModelNo Seg.

Without the subnetwork for segmentation; EGFR-ModelNo VPE: Without adding VPE; EGFR-ModelSeg-Vpe: combined subnetwork for segmentation and VPE.

FIGURE 4
ROC curves of the ETS for predicting the EGFRmutation status in the internal validation (A), external validation 1 (B), and external validation 2 (C) set.
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4 Discussion

Current guidelines for clinical assessment of EGFR genotype
and therapeutic response to EGFR-TKI rely on visual radiologic
assessment, which is subjectively biased and unreliable (Lowery and
Yu, 2017). Previous works have shown the power of deep learning in
evaluating the efficiency of EGFR-TKI treatment in lung cancer
(Song et al., 2021; Deng et al., 2022; Lu et al., 2023), but all have been
based on the primary lesion. To our knowledge, deep learning has
not been applied to lung cancer-originated brainmetastasis (BM) for
determining the presence of EGFR mutation and the efficiency of
EGFR-TKI therapy.

This study constructed an ETS integrating a segmentation
subnetwork and a classification subnetwork. Considering the BM
only occupies a small percentage of the brain area, and thus using the
whole brain MRI image as input to the network may introduce
numerous noise features, we extracted the BM as an upstream task to
determine the EGFR genotype. Prior research has indicated that
lesion size plays a pivotal role in segmentation accuracy (Wang F.
et al., 2019). To enhance the efficiency and expediency of brain
tumor extraction, we expanded the region of interest (ROI) by
5 pixels to create a mask patch, thereby increasing the area of the
segmentation region. Meanwhile, the external attention (Guo et al.,
2023) was introduced into our segmentation subnetwork, which

FIGURE 5
Attention heatmaps on the brain metastasis (BM) visualized by Grad-CAM. The first row shows heatmaps in T1CE MRI. The second row shows
heatmaps in T2W MRI.

TABLE 3 Performance of the TKI-Model for predicting response to EGFR-TKI.

Model Cohort AUC Accuracy F1-score Precision Recall

TKI-ModelNo Seg−VPE Internal Validation 0.624 0.624 0.636 0.651 0.622

External Validation 1 0.599 0.603 0.558 0.569 0.547

External Validation 2 0.612 0.612 0.612 0.612 0.612

TKI-ModelNo Seg Internal Validation 0.658 0.660 0.686 0.700 0.673

External Validation 1 0.629 0.632 0.672 0.652 0.662

External Validation 2 0.627 0.629 0.627 0.627 0.627

TKI-ModelNo VPE Internal Validation 0.723 0.724 0.746 0.758 0.734

External Validation 1 0.711 0.711 0.697 0.745 0.655

External Validation 2 0.715 0.717 0.714 0.714 0.715

TKI-ModelSeg-VPE Internal Validation 0.747 0.748 0.768 0.779 0.757

External Validation 1 0.726 0.725 0.713 0.759 0.672

External Validation 2 0.728 0.733 0.727 0.726 0.729

TKI-ModelNo Seg−VPE: Without the subnetwork for segmentation and without adding volume of peritumoral edema (VPE); TKI-ModelNo Seg.

Without the subnetwork for segmentation; TKI-ModelNo VPE: Without adding VPE; TKI -ModelSeg-Vpe: combined subnetwork for segmentation and VPE.

Frontiers in Bioengineering and Biotechnology frontiersin.org07

You et al. 10.3389/fbioe.2025.1637095

mailto:Image of FBIOE_fbioe-2025-1637095_wc_f5|tif
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1637095


implicitly considers the relationship between different brain MRI
feature maps and weights, and sums the different feature maps to
realize the effective fusion of information, thus improving the
segmentation performance.

Our classification network conducts feature extraction on the
patch, including BM. Concurrently, handcrafted features are
introduced to augment the comprehensiveness of the features,
thereby enhancing the accuracy of EGFR prediction. This
approach aligns, in part, with the findings by Nanni et al.
(2017), which underscored the contribution of manual features
in improving classification accuracy. Our model underwent a more
detailed analysis based on both deep learning features and
handcrafted features. The developed EGFR-Model generated
AUCs of 0.832, 0.833, and 0.842 for predicting the EGFR
mutation in the internal validation, external validation 1, and
external validation 2 sets, respectively. This was much higher
than previous works based on the primary lesion that obtained
AUCs ranging from 0.575 to 0.762 (Tu et al., 2019; Mei et al., 2018;
Digumarthy et al., 2019; Liu et al., 2016; Zhang et al., 2018; Gevaert
et al., 2017; Yuan et al., 2017; Pinheiro et al., 2020). Our TKI-Model
also outperformed the recent handcrafted-based radiomics study
based on BM that generated AUCs ranging from 0.671 to 0.780
(Wang et al., 2021). The model’s effectiveness was further validated
using a decision tree applied to both deep learning and handcrafted
features. This dual-pronged approach showcased the model’s
robust performance in predicting EGFR genotypes and
treatment efficacy. The concurrent demonstration of efficacy on
the internal validation set and two external test sets attests to the
strong generalization ability of our model, as presented in Table 2,
3. This underscores its potential as a versatile tool for clinical
decision-making in the context of personalized treatment for
NSCLC patients with BM.

We identified the volume of peritumoral edema (VPE) as an
independent clinical factor that is highly associated with the EGFR

mutation status and response to EGFR-TKI. Integration of the VPE
to the ETS can improve the system’s performance. The finding is
consistent with previous histopathological reports that indicated
that the peritumoral edema is causally linked to compressive
ischemia, vascular shunting attributable to membranous
microvascular parasitism, and secretory-excretory phenomena
within tumor cells (Tamiya et al., 2001; Nakasu et al., 2005).
Moreover, the cortical blood supply emerges as a critical factor
influencing the development of peritumoral edema (Tamiya et al.,
2001; Nakasu et al., 2005). This insight underscores the multifaceted
nature of peritumoral edema and its relevance as a clinically
significant factor in predicting EGFR mutation and response to
EGFR-TKI. Our finding was supported by recent radiomics studies
focusing on primary brain tumors that showed the peritumoral
edema holds additional information associated with tumor
diagnoses beyond the primary lesion (Kim et al., 2018; Prasanna
et al., 2017; Joo et al., 2021), and the VPE and imaging-based
radiomics can provide complementary information (Fan
et al., 2023a).

First, the current study was retrospective, and the developed
models therefore need to be further validated with prospective data.
Second, the study only evaluated T1CE and T2W MRI, and the
performance of the models may be potentially improved by
incorporating more MRI sequences, e.g., diffusion-weighted
imaging and fluid-attenuated inversion recovery MRI. Third, it is
pivotal to recognize that the segmentation network used in this study
operates at a patch level. For a more meticulous delineation of tumor
boundaries, there exists a need for a segmentation approach that
offers greater precision.Fourth, this study focused on predicting the
presence of EGFR mutation, without differentiating specific
subtypes such as exon 19 deletion or L858R. This may limit the
model’s utility for precise therapeutic decision-making. Future work
will explore subtype-level prediction for improved clinical relevance.
Finally, this study only evaluated the EGFR gene mutation; other

FIGURE 6
ROC curves of the ETS for predicting response to EGFR-TKI in the internal validation (A), external validation 1 (B), and external validation 2 (C) set.

Frontiers in Bioengineering and Biotechnology frontiersin.org08

You et al. 10.3389/fbioe.2025.1637095

mailto:Image of FBIOE_fbioe-2025-1637095_wc_f6|tif
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1637095


important genes that may also influence the effect of targeted
therapy should be included in future studies.

5 Conclusion

In this study, we developed an automated EGFR-TKI system
(ETS) to detect brain metastases and predict EGFR mutation status
and therapy response.The system has been validated in both internal
and external cohorts, demonstrating consistent performance. As a
non-invasive method for detecting EGFR mutations, it holds
potential to assist clinical decision-making and provide valuable
support for non-small cell lung cancer (NSCLC) patients
undergoing EGFR-TKI treatment.
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