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Mesenchymal stem cells (MSCs) are emerging as a powerful tool in regenerative
medicine due to their ability to differentiate into mesenchymal lineages, such as
bone, cartilage, and fat, along with their low immunogenicity and strong
immunomodulatory properties. Unlike traditional cell therapies that rely on
engraftment, MSCs primarily function through paracrine signaling—secreting
bioactive molecules like vascular endothelial growth factor (VEGF),
transforming growth factor-beta (TGF-β), and exosomes. These factors
contribute to tissue repair, promote angiogenesis, and modulate immune
responses in damaged or inflamed tissues. Recent studies have identified
mitochondrial transfer as a novel therapeutic mechanism, where MSCs donate
mitochondria to injured cells, restoring their bioenergetic function. This has
expanded the therapeutic potential of MSCs to include conditions such as
acute respiratory distress syndrome (ARDS) and myocardial ischemia.
Clinically, MSCs have shown efficacy in diseases like graft-versus-host disease
(GVHD), Crohn’s disease, and COVID-19. Trials such as REMODEL and REMEDY
have demonstrated improved clinical outcomes, further validating MSC-based
interventions. However, several challenges remain, including variability in cell
potency, poor engraftment, and inconsistent results across clinical trials.
Advances in genetic engineering such as CRISPR-modified MSCs and
biomaterial scaffolds are being developed to enhance therapeutic efficacy and
cell survival. Additionally, AI-driven platforms are being utilized to personalize
MSC therapy and optimize cell selection. Innovative approaches like 3D
bioprinting and scalable manufacturing are paving the way for more
consistent and precise therapies. Moving forward, the integration of
mechanistic insights with robust quality control and regulatory frameworks
essential to translating MSC therapies from bench to bedside and ensuring
their reliable application in clinical practice.
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1 Introduction: mesenchymal stem
cells and their therapeutic potential

Mesenchymal stem cells (MSCs) were first identified in the 1970s
by Friedenstein and colleagues, who isolated them from bone marrow
aspirates (Fridenshtein et al., 1969). These cells stood out due to their
ability to adhere to plastic surfaces and form fibroblast-like colonies,
distinguishing them from other bone marrow-derived cells
(Friedenstein et al., 1970). Since their discovery, MSCs have been
found in a wide variety of postnatal tissues, including adipose tissue,
umbilical cord (Gronthos et al., 2001), dental pulp (Kadar et al., 2009),
synovial fluid (Morito et al., 2008), menstrual blood (Chen et al.,
2019), and hair follicles (Wang et al., 2020). Among these sources,
adipose-derived MSCs (AD-MSCs) (Gronthos et al., 2001) and
umbilical cord-derived MSCs (UC-MSCs), have garnered particular
interest due to their abundance and ease of isolation. Hair follicle-
derived MSCs (HF-MSCs), obtained from the dermal papilla or
sheath, also represent an accessible and promising source due to
their multipotent differentiation capacity and regenerative potential
(Las Heras et al., 2022). Figure 1.

Unlike pluripotent stem cells such as embryonic stem cells
(ESCs) and induced pluripotent stem cells (iPSCs), MSCs are
classified as multipotent (Sensebe et al., 2010). This means they
can differentiate into several mesenchymal lineages including

osteoblasts, chondrocytes, and adipocytes but they do not share
the broader differentiation potential of pluripotent cells.

To promote standardization across research studies, the
International Society for Cellular Therapy (ISCT) established
minimal criteria to define MSCs. These include: (a) adherence to
plastic when cultured under standard conditions; (b) expression of
specific surface markers CD73, CD90, and CD105 alongside the
absence of hematopoietic markers such as CD34, CD45, and CD14;
and (c) the ability to differentiate into osteogenic, chondrogenic, and
adipogenic lineages in vitro (Dominici et al., 2006). One of the defining
immunological features of MSCs is their lack of major
histocompatibility complex class II (MHC-II) expression, which
reduces their immunogenicity (Machado Cde et al., 2013). This low
immunogenic profile supports their use in allogeneic settings, allowing
for “off-the-shelf” therapeutic applications without the need for strict
HLA matching. As a result, MSCs have become highly attractive for
regenerative medicine and cell-based therapies (Kot et al., 2019).

1.1 Mechanisms Underlying MSC
therapeutic effects

Mesenchymal stem cells (MSCs) exert their therapeutic effects
primarily through two mechanisms: direct differentiation into

FIGURE 1
Sources of Mesenchymal StemCells (MSCs) The figure illustrates various tissue sources for derivingMSCs, including bonemarrow, peripheral blood,
adipose tissue, dental pulp, placenta, umbilical cord, synovial fluid, menstrual blood and hair follicle cells. These sources highlight the diverse origins of
MSCs, which are widely studied for their regenerative and therapeutic potential.
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tissue-specific cell types and paracrine signaling via the secretion of
bioactive molecules (Bagno et al., 2022; Han et al., 2022). Although
early research focused heavily on their ability to differentiate, more
recent findings emphasize that the predominant therapeutic impact
of MSCs arises from their paracrine activity (Baglio et al., 2015). This
includes the release of extracellular vesicles (EVs), cytokines, and
growth factors that influence surrounding cells and tissues (Chen
et al., 2008).

In terms of immunomodulation, MSCs interact with both innate
and adaptive immune systems to help restore immune balance. They
inhibit T-cell proliferation through the secretion of
immunosuppressive agents such as prostaglandin E2 (PGE2),
indoleamine 2,3-dioxygenase (IDO), and programmed death-
ligand 1 (PD-L1), thereby tempering overactive immune
responses (Glennie et al., 2005; Selmani et al., 2008). Moreover,
MSCs guide macrophage polarization by converting pro-
inflammatory M1 macrophages into anti-inflammatory
M2 phenotypes through signaling molecules like interleukin-10
(IL-10) and transforming growth factor-beta (TGF-β) (Murray
et al., 2014). This shift plays a critical role in autoimmune
conditions such as multiple sclerosis, where MSCs also promote
the expansion of regulatory T cells (Tregs) to enhance immune
tolerance (Hu et al., 2024).

In addition to their immunomodulatory effects, MSCs secrete a
wide array of trophic factors that support tissue repair. Their
secretome contains growth factors, chemokines, and EVs that
collectively foster regeneration. For example, vascular endothelial
growth factor (VEGF) and basic fibroblast growth factor (bFGF)
promote new blood vessel formation, improving perfusion to
injured areas (Han et al., 2022; Patel et al., 2021). Hepatocyte
growth factor (HGF) contributes to antifibrotic effects by limiting
collagen accumulation in organs like the liver and lungs (Dohi et al.,
2000; Kwiecinski et al., 2011). Meanwhile, insulin-like growth factor
1 (IGF-1) and stromal-derived factor-1 (SDF-1) play protective roles
by inhibiting cell death and preserving tissue structure (Al-Samerria
and Radovick, 2021; Heo et al., 2019). These diverse and
complementary mechanisms highlight the broad therapeutic
potential of MSCs across a range of diseases and injury models.

1.2 Mitochondrial transfer: a novel
mechanism

Recent research has uncovered an innovative mechanism by which
mesenchymal stem cells (MSCs) facilitate tissue repair: the transfer of
mitochondria (Li et al., 2019). Through the development of tunneling
nanotubes slender, dynamic membrane structures MSCs can deliver
healthy mitochondria directly to damaged cells, thereby restoring
cellular energy production in compromised tissues (Delage et al.,
2016; Luchetti et al., 2022). This mechanism has shown significant
potential in conditions characterized by mitochondrial dysfunction,
such as acute respiratory distress syndrome (ARDS) and myocardial
ischemia (Lee et al., 2024; Lesnefsky et al., 2017).

In ARDS, MSCs have been observed to transfer mitochondria to
alveolar epithelial cells, resulting in increased ATP generation,
decreased oxidative stress, and improved survival outcomes in
preclinical models (Wang et al., 2025). Similarly, in the context
of myocardial ischemia, mitochondrial transfer to cardiomyocytes

helps counteract ischemia-reperfusion injury by stabilizing
mitochondrial membrane potential and reducing cell death (Xu
et al., 2025). This novel mechanism underscores the adaptive
capabilities of MSCs and broadens their therapeutic scope
beyond traditional paracrine signaling, offering a promising new
avenue for treating diseases marked by impaired cellular energetics.

1.3 Therapeutic applications of MSCs

The broad therapeutic potential of mesenchymal stem cells
(MSCs) is reflected in their effectiveness across a wide range of
clinical conditions. In autoimmune and inflammatory diseases,
MSCs have shown significant clinical benefit (Zaripova et al.,
2023). For example, in a phase III trial of Remestemcel-L, an
MSC product derived from bone marrow, infusions markedly
alleviated symptoms in pediatric patients with steroid-refractory
acute GVHD, with an overall response rate of 70.4% at day 28 and
durable benefit (Kurtzberg et al., 2020). In cases of treatment-
resistant rheumatoid arthritis (RA), intra-articular injections of
MSCs have been found to reduce synovial inflammation and
promote cartilage regeneration (Lopez-Santalla et al., 2020).
Similarly, preclinical studies on inflammatory bowel disease
(IBD) highlight the ability of MSCs to modulate immune
responses (Saadh et al., 2024); MSC treatment reduces colitis
severity by inducing macrophage polarization toward an anti-
inflammatory state through the secretion of interleukin-10 (IL-
10) (Hosseini-Asl et al., 2020; Shi et al., 2019).

In neurological disorders, MSCs offer unique therapeutic
advantages due to their capacity to cross the blood-brain barrier and
release neuroprotective factors. For instance, MSC-derived exosomes
have been shown to slowmotor neuron degeneration in animal models
of amyotrophic lateral sclerosis (ALS) (Gschwendtberger et al., 2023),
and ongoing clinical trials such as MASTERS-2 are investigating
intravenous MSC therapy to promote neurogenesis and angiogenesis
in stroke patients (Li et al., 2021). In the realm of cardiovascular
medicine, MSCs also play a pivotal role (Bagno et al., 2018). Studies
like the PARACCT trial report that allogeneic MSCs help reduce scar
formation and enhance ejection fraction in patients recovering from
myocardial infarction (MI) (Jackson et al., 2012). Furthermore, MSC-
secreted factors contribute to the attenuation of adverse ventricular
remodeling in heart failure, helping to maintain cardiac function (Guan
et al., 2025; Ranganath et al., 2012).

The COVID-19 pandemic underscored the therapeutic
relevance of MSCs in acute respiratory conditions. Clinical trials
such as REMEDY demonstrated that umbilical cord-derived MSCs
(UC-MSCs) could lower mortality rates and improve oxygenation in
patients with severe COVID-19 by suppressing cytokine storms and
supporting lung tissue repair (Can and Coskun, 2020; Li et al., 2025).
These examples collectively emphasize the wide-ranging clinical
applications of MSCs, driven by their immunomodulatory,
regenerative, and protective capabilities.

1.4 Advantages over other stem cell types

Mesenchymal stem cells (MSCs) offer several key advantages
over embryonic stem cells (ESCs) and induced pluripotent stem cells
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(iPSCs), making them particularly well-suited for clinical use. From
an ethical standpoint, MSCs avoid the controversies linked to ESCs,
as their isolation does not involve the destruction of embryos (Lo
and Parham, 2009). In terms of safety, MSCs present a significantly
lower risk of tumor formation, especially when compared to the
teratoma-forming potential of pluripotent stem cells (Lee and Hong,
2017). Moreover, the establishment of allogeneic MSC banks allows
for readily available, “off-the-shelf” therapeutic products, enabling
rapid intervention in urgent clinical scenarios such as acute
respiratory distress syndrome (ARDS) or myocardial infarction
(Garcia-Bernal et al., 2021). These practical advantages coupled
with MSCs’ robust immunomodulatory and regenerative functions
make them a compelling and scalable option for widespread
therapeutic applications (Patel et al., 2013).

1.5 Challenges and controversies

Despite their therapeutic potential MSC therapies face several
critical challenges that hinder clinical translation. One major
obstacle is the variability in MSC potency, influenced by factors
such as donor age, tissue origin (e.g., bonemarrow vs adipose tissue),
and in vitro culture conditions (Zhou et al., 2021). This
heterogeneity complicates standardization and leads to
inconsistent therapeutic outcomes. Another limitation is the poor
engraftment efficiency of MSCs; studies indicate that less than 5% of
intravenously administered cells successfully home to and persist in
target tissues (Burdick et al., 2016). As a result, there is a growing
need for strategies that enhance MSC trafficking and retention at
injury sites (Ullah et al., 2019).

Clinical trial results have also been mixed. While MSC-based
treatments have shown encouraging outcomes in conditions like
graft-versus-host disease (GVHD) (Kadri et al., 2023) and severe
COVID-19, trials for other diseases such as chronic obstructive
pulmonary disease (COPD) have failed to achieve primary
endpoints (Broekman et al., 2018). These inconsistencies
highlight the importance of developing biomarker-guided
approaches to better identify patients who are most likely to
benefit and refining delivery methods to improve efficacy.
Bridging the gap between preclinical promise and clinical success
will require deeper mechanistic insights and innovative
bioengineering solutions to fully realize the therapeutic
capabilities of MSCs.

2 Mechanistic insights: how MSCs exert
their effects in vivo

MSCs exhibit remarkable therapeutic potential through a
diverse array of biological mechanisms that allow them to
repair injured tissues, modulate immune responses, and
restore homeostasis across various disease conditions
(Jimenez-Puerta et al., 2020). While early research emphasized
their capacity for direct differentiation into tissue-specific cell
types, contemporary studies reveal that MSCs primarily act
through paracrine signaling, immunomodulation, and novel
cell-to-cell interactions such as mitochondrial transfer
(Velarde et al., 2022). These mechanisms operate

synergistically, allowing MSCs to adapt dynamically to injury
microenvironments, even in the absence of long-term
engraftment. Below, we delve into the molecular and cellular
pathways underpinning MSC functionality, integrating
preclinical discoveries with clinical evidence to illustrate their
translational relevance.

2.1 Paracrine signaling: the secretome as a
driver of regeneration

The paracrine activity of MSCs mediated by their secretome, a
rich cocktail of EVs, growth factors, cytokines, and chemokines, it is
now recognized as the cornerstone of their therapeutic effects
(Gonzalez-Gonzalez et al., 2020; Ulpiano et al., 2023; Malhotra
et al., 2022) Figure 2. Unlike terminally differentiated cells, MSCs
secrete bioactive molecules that act on neighboring cells to promote
angiogenesis, suppress apoptosis, and mitigate fibrosis, creating a
regenerative niche conducive to healing (Gong et al., 2017; Nazarie
Ignat et al., 2021; Zou et al., 2023). For instance, vascular endothelial
growth factor (VEGF) and basic fibroblast growth factor (bFGF)
secreted by MSCs stimulate endothelial cell proliferation and blood
vessel formation, a process critical for revascularization ischemic
tissues in conditions such as myocardial infarction (MI) and diabetic
ulcers (Patel et al., 2023; Patel et al., 2021; Potapova et al., 2007). In
the landmark PARACCT trial, allogeneic MSC administration inMI
patients reduced infarct scar size by 33% and improved left
ventricular ejection fraction, outcomes attributed in part to
VEGF-driven angiogenesis (Natsumeda et al., 2017; Williams
et al., 2013).

Extracellular vesicles, particularly exosomes, are pivotal
mediators of MSC paracrine effects Figure 2. These nanosized
lipid bilayer vesicles carry proteins, lipids, and nucleic acids (e.g.,
microRNAs, mRNAs) that reprogram recipient cells. In neurological
disorders like amyotrophic lateral sclerosis (ALS), MSC-derived
exosomes deliver neuroprotective miRNAs (e.g., miR-21-5p) to
motor neurons, inhibiting pro-apoptotic pathways and delaying
disease progression in rodent models (Chen et al., 2021;
Malhotra et al., 2022). Similarly, in acute kidney injury, MSC
exosomes enriched with miR-30c-5p suppress mitochondrial
fission and oxidative stress, preserving renal function (Tsuji et al.,
2023). TheMASTERS-2 clinical trial, which investigates intravenous
MSC therapy for ischemic stroke, has identified exosomal miR-124
as a key mediator of neurogenesis and angiogenesis, bridging
preclinical findings to human applications (Yang et al., 2017).

The anti-fibrotic and anti-apoptotic properties of the MSC
secretome further underscore its therapeutic versatility (Alfarano
et al., 2012; Giacomini et al., 2023). Hepatocyte growth factor (HGF)
secreted by MSCs inhibits TGF-β1-driven collagen deposition in
fibrotic liver and lung tissues (Wei et al., 2021), while insulin-like
growth factor 1 (IGF-1) and stromal-derived factor-1 (SDF-1)
activate survival pathways in cardiomyocytes and neurons,
respectively (Baglio et al., 2012; Park et al., 2016). In idiopathic
pulmonary fibrosis (IPF), MSC-conditioned media reduces
myofibroblast activation and collagen synthesis in preclinical
models, prompting ongoing Phase II trials (e.g., AETHER-1)
exploring aerosolized MSC secretions as a non-cell-based therapy
(Filidou et al., 2022).
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2.2 Immunomodulation: orchestrating
immune homeostasis

MSCs possess a unique ability to dynamically modulate immune
responses, balancing pro-inflammatory and anti-inflammatory
signals to restore homeostasis (Faria et al., 2023). This
immunomodulatory capacity is context-dependent: MSCs
suppress hyperactive immune reactions in autoimmune diseases
while enhancing pathogen clearance in infections (Chen et al., 2024).
A key mechanism is their interaction with T cells. By secreting
prostaglandin E2 (PGE2) and indoleamine 2,3-dioxygenase (IDO),
MSCs inhibit T-cell proliferation and shift the Th1/Th17-Th2/Treg
balance toward tolerance (Terraza-Aguirre et al., 2020). In graft-
versus-host disease (GVHD), a life-threatening complication of
hematopoietic stem cell transplantation, MSC infusions reduce
pro-inflammatory cytokines (e.g., IFN-γ, IL-17) and expand

regulatory T cells (Tregs), as demonstrated in the Phase III
REMODEL trial, where 60% of steroid-refractory GVHD patients
achieved complete remission (Kebriaei et al., 2020).

Macrophage polarization represents another critical axis of
MSC-mediated immunomodulation. MSCs reprogram pro-
inflammatory M1 macrophages into anti-inflammatory
M2 phenotypes via interleukin-10 (IL-10) and transforming
growth factor-beta (TGF-β) (Cao et al., 2010; Lu et al., 2023). In
inflammatory bowel disease (IBD), this shift reduces colonic
inflammation (Saadh et al., 2023) and promotes mucosal healing,
as evidenced by decreased TNF-α and increased IL-10 levels in
murine colitis models (Jung et al., 2015). Clinical trials in Crohn’s
disease patients (e.g., Cx601 trial) have shown that locally
administered MSCs induce fistula closure through macrophage
reprogramming, highlighting translational success (Molendijk
et al., 2015).

FIGURE 2
Multifunctional Mechanisms of Mesenchymal Stem Cells (MSCs) in Regenerative Therapy. The figure illustrates four keymechanisms through which
MSCs exert their therapeutic effects: (A) Paracrine Activity of MSCs: MSCs secrete a variety of bioactive molecules, including anti-inflammatory cytokines
(IL-6, IL-10, IL-1Ra), growth factors (VEGF, TGF-β), and tissue-protective factors (TSG-6), which modulate immune responses and promote tissue repair.
(B)Differentiation Potential of MSCs: MSCs possess the ability to differentiate intomultiple cell lineages (e.g., osteocytes, chondrocytes, adipocytes),
contributing directly to tissue regeneration. The secretome of MSCs further supports this process by creating a regenerative microenvironment. (C)
Organelle Transfer: MSCs can transfer functional organelles, such as mitochondria, to damaged cells, restoring cellular metabolism and enhancing
survival in target tissues. (D) Transfer of Molecules by Exosomes and Microvesicles: MSCs release exosomes and microvesicles containing proteins,
nucleic acids, and signaling molecules, which are taken up by recipient cells to mediate therapeutic effects, including immune modulation and
tissue repair.
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MSCs also interact with dendritic cells (DCs) and natural killer
(NK) cells to fine-tune immunity. By inhibiting DC maturation and
antigen presentation via cell-cell contact and soluble factors (e.g.,
galectin-3), MSCs prevent excessive T-cell activation (Duffy et al.,
2011; Simovic Markovic et al., 2016; Sioud et al., 2010; Spaggiari
et al., 2009). Simultaneously, they suppress NK cell cytotoxicity by
downregulating activating receptors (e.g., NKG2D), reducing tissue
damage in conditions like rheumatoid arthritis (RA) (Dehnavi et al.,
2023). Intra-articular MSC injections in RA patients have reduced
synovial inflammation and cartilage degradation, correlating with
diminished NK cell activity and IL-6 levels in synovial fluid (Augello
et al., 2007; Papadopoulou et al., 2012).

2.3 Mitochondrial transfer and beyond:
direct cellular rejuvenation

Emerging research has unveiled a groundbreaking mechanism by
which MSCs directly rejuvenate injured cells: mitochondrial transfer
Figure 2. Through tunneling nanotubes dynamic membrane channels
connecting cells MSCs donate functional mitochondria to energy-
depleted cells, restoring ATP production and mitigating oxidative
stress (Luchetti et al., 2022). In acute respiratory distress syndrome
(ARDS), MSC-derived mitochondria integrate into alveolar epithelial
cells, rescuing them from apoptosis and improving gas exchange in
preclinical models (Su et al., 2021). A randomized controlled trial
conducted in Indonesia evaluated umbilical cord-derived mesenchymal
stromal cells (UC-MSCs) as an adjuvant therapy for critically ill
COVID-19 patients and demonstrated a 2.5-fold increase in
survival, likely due to immunomodulatory effects such as reduced
interleukin-6 levels (Dilogo et al., 2021).

Mitochondrial transfer also plays a pivotal role in cardiovascular
repair. In myocardial ischemia-reperfusion injury, MSCs donate
mitochondria to cardiomyocytes, preserving mitochondrial
membrane potential and reducing infarct size by 40% in rodent
studies (Huang et al., 2021). This process is enhanced under hypoxic
conditions, which upregulate MSC TNT formation. Beyond
mitochondria, MSCs transfer lysosomes to cells with defective
autophagy, as seen in neurodegenerative diseases like Parkinson’s,
where lysosomal delivery clears α-synuclein aggregates and restores
neuronal health (Shin and Lee, 2020).

Complementing these direct interactions, MSC-derived
extracellular vesicles carry mitochondrial components (e.g.,
mitochondrial DNA, proteins) that independently boost cellular
bioenergetics. In stroke models, MSC-EVs enriched with
mitochondrial cytochrome c oxidase enhance neuronal survival
(Hermann et al., 2025), while in aging-related osteoporosis,
mitochondrial tRNA transfers from MSCs rejuvenate osteoblast
function (Jia et al., 2020). These findings underscore the
adaptability of MSCs, which employ both secretory and direct
contact-dependent strategies to address diverse pathologies.

2.4 Integration of mechanisms and clinical
translation

The therapeutic efficacy of MSCs in vivo arises from the
synergistic integration of paracrine, immunomodulatory, and

direct cellular mechanisms (Fontaine et al., 2016). For example,
in COVID-19-associated ARDS, MSCs concurrently mitigate
cytokine storms (via PGE2 and IDO) (Zhang et al., 2022),
promote lung vascular repair (via VEGF), and rejuvenate alveolar
cells (via mitochondrial transfer) (Tunstead et al., 2024), as
evidenced by improved oxygenation and reduced mortality in
clinical trials. Similarly, in heart failure, MSC secretome factors
(e.g., SDF-1) recruit endogenous stem cells, while mitochondrial
transfer enhances cardiomyocyte survival, collectively improving
cardiac output (Chung et al., 2015).

However, challenges persist in optimizing MSC homing,
survival, and engraftment. Less than 5% of systemically
administered MSCs reach target tissues due to pulmonary
sequestration and anoikis (Gorshkova et al., 1996; Masterson
et al., 2021). Innovations such as magnetic nanoparticle labeling,
hypoxia preconditioning, and 3D bio printed scaffolds enhance
MSC retention and potency (De Palma et al., 2025). For instance,
MSCs preconditioned with TNF-α exhibit upregulated
CXCR4 expression, improving homing to ischemic myocardium
(Ziaei et al., 2014).

The mechanistic diversity of MSCs spanning paracrine
signaling, immune regulation, and direct cellular rejuvenation
positions them as versatile therapeutic agents. By leveraging these
pathways through bioengineering and targeted delivery, researchers
can unlock their full potential, bridging the gap between preclinical
promise and clinical reality.

3 Preclinical evidence: animal models,
efficacy, and safety profiling

The preclinical evaluation of mesenchymal stem cells (MSCs) in
animal models has been instrumental in validating their therapeutic
potential, elucidating mechanisms of action, and establishing safety
profiles prior to human trials (Lee et al., 2014). These studies span a
wide array of diseases, leveraging rodents, rabbits, pigs, and non-
human primates to mimic human pathologies (Feng et al., 2014; Liu
et al., 2016; Pelizzo et al., 2015; Xun et al., 2022). While preclinical
data have consistently highlighted the efficacy of MSCs in mitigating
tissue damage, modulating immune responses, and promoting
regeneration (Cao et al., 2015; Dimarino et al., 2013; Schafer
et al., 2016), they also expose critical limitations and translational
gaps that complicate the extrapolation of results to clinical settings
(Caplan et al., 2019; Levy et al., 2020). This section synthesizes
disease-specific preclinical applications of MSCs, underscores their
successes, and interrogates the challenges inherent in animal models
that hinder seamless translation to human therapies.

3.1 Disease-specific applications in
preclinical studies

Preclinical research has demonstrated the versatility of MSCs
across diverse disease domains, including cardiovascular,
neurological, autoimmune, and degenerative disorders. In
cardiovascular diseases, rodent models of myocardial infarction
(MI) have been pivotal in establishing MSC efficacy (Zhou et al.,
2021). For instance, intramyocardial injection of bone marrow-
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derived MSCs (BM-MSCs) in rats reduced infarct size by 30%–40%,
improved left ventricular ejection fraction, and enhanced
angiogenesis through secretion of vascular endothelial growth
factor (VEGF) and stromal-derived factor-1 (SDF-1) (Poomani
et al., 2022). Similarly, porcine models of ischemia-reperfusion
injury revealed that MSC therapy attenuated ventricular
remodeling and fibrosis, with adipose-derived MSCs (AD-MSCs)
outperforming BM-MSCs in promoting cardiomyocyte survival due
to their higher angiogenic cytokine output (Gubert et al., 2021;
Hegde et al., 2024).

In neurological disorders, MSC efficacy has been explored in
rodent models of stroke, traumatic brain injury (TBI), and
neurodegenerative diseases (van Velthoven et al., 2017).
Intravenously administered MSCs in middle cerebral artery
occlusion (MCAO) mice migrated to ischemic brain regions,
secreted brain-derived neurotrophic factor (BDNF), and reduced
infarct volume by 50%, correlating with improved motor function
(Jeong et al., 2014). In Alzheimer’s disease (AD) transgenic mice,
MSC-derived exosomes carrying miR-29c-3p suppressed β-amyloid
aggregation and neuroinflammation, delaying cognitive decline (Sha
et al., 2021). Studies using Parkinson’s disease models have shown
that intranasally administered MSCs can cross the blood-brain
barrier, reduce dopaminergic neuron loss, and improve motor
coordination through mechanisms involving mitochondrial
transfer and modulation of glial cell activity.

Autoimmune and inflammatory diseases have also been a focus,
with murine models of multiple sclerosis (experimental
autoimmune encephalomyelitis, EAE) and rheumatoid arthritis
(collagen-induced arthritis, CIA) showcasing MSC
immunomodulatory prowess (Constantinescu et al., 2011; Lopez-
Santalla et al., 2021). In EAE mice, systemic MSC administration
reduced demyelination and Th17-mediated inflammation by
expanding regulatory T cells (Tregs) and suppressing dendritic
cell activation. CIA models demonstrated that intra-articular
MSC injections lowered synovial IL-6 and TNF-α levels, while
promoting cartilage repair through chondrocyte differentiation
(Lu et al., 2016). Notably, MSC therapy in a lupus-prone (MRL/
lpr) mouse model extended survival by curtailing autoantibody
production and renal inflammation, findings that informed
subsequent Phase I/II trials in systemic lupus erythematosus
(SLE) patients (Guo et al., 2023).

Pulmonary diseases, including idiopathic pulmonary fibrosis (IPF)
and acute respiratory distress syndrome (ARDS), have benefited from
preclinical MSC studies (Yuan et al., 2024). Bleomycin-induced
pulmonary fibrosis in mice revealed that MSC-derived hepatocyte
growth factor (HGF) suppressed TGF-β1-driven collagen deposition
andmyofibroblast activation, improving lung compliance (Shukla et al.,
2009). In LPS-induced ARDSmodels, MSCs attenuated alveolar edema
and neutrophil infiltration via prostaglandin E2 (PGE2)-mediated
macrophage polarization to the M2 phenotype (Hezam et al., 2023).
These outcomes were replicated in porcine models of ventilator-
induced lung injury, where MSC therapy reduced systemic cytokine
storms and improved oxygenation, laying the groundwork for COVID-
19 clinical trials.

Orthopedic applications of MSCs, particularly in bone and
cartilage repair, have been validated in large animal models.
Ovine osteochondral defect studies demonstrated that MSC-
loaded scaffolds enhanced hyaline cartilage regeneration and

subchondral bone integration, outperforming microfracture
techniques (Araki et al., 2015; Wang et al., 2024). Similarly,
canine models of spinal cord injury showed that MSC-seeded
hydrogels promoted axonal regrowth and functional recovery,
with MRI evidence of reduced lesion volume (Cai et al., 2023;
Straley et al., 2010).

3.2 Limitations and translational gaps in
animal models

Despite promising preclinical outcomes, the translation of MSC
therapies to the clinic remains hampered by several key limitations.
One major challenge is the discrepancy in disease pathophysiology
between animal models and human conditions. For instance,
bleomycin-induced lung fibrosis in mice does not replicate the
chronic, multifactorial progression of IPF in humans, which
involves complex genetic and environmental interactions
(Lawson et al., 2013). Similarly, rodent stroke models often lack
relevant comorbidities such as hypertension or diabetes, leading to
overly optimistic assessments of therapeutic efficacy (Macrae, 2011).
The use of young, genetically uniform animals further limits clinical
relevance, as human patients are typically older and biologically
diverse, with diminished regenerative potential (Osier et al., 2016)

Species-specific immune responses also hinder translation.
Murine macrophages display distinct cytokine profiles and
polarization behaviors compared to human cells, often
exaggerating MSCs anti-inflammatory effects (Chen et al., 2023).
While humanized mouse models improve immunological relevance,
they are expensive and still do not fully replicate human immune
complexity (Chuprin et al., 2023). Additionally, although MSCs are
considered immune-privileged in rodents, clinical studies show they
may be recognized and cleared in immunocompetent humans,
reducing their long-term effectiveness (Ankrum et al., 2014).

Technical inconsistencies further complicate translation.
Variability in MSC sourcing, donor age, culture protocols, and
delivery methods affects cell behavior and therapeutic outcomes
(Heyman et al., 2025; Kolliopoulos et al., 2023). For example,
intravenous MSCs often become sequestered in the lungs, while
local injections improve tissue retention but are less applicable for
systemic diseases (Sanchez-Diaz et al., 2021). Most preclinical
studies also lack long-term follow-up, missing delayed adverse
effects such as tumorigenicity. Rare cases of MSC-induced
osteosarcoma in immunodeficient mice raise safety concerns,
especially in immunosuppressed patients (Christodoulou et al.,
2018). Finally, dose scaling from small animals to humans
remains imprecise, with large-animal studies underutilized due to
high costs. To bridge these gaps, researchers are adopting
humanized models, organ-on-chip platforms, and machine
learning to better simulate human physiology and refine
preclinical study designs (Ching et al., 2021; Ingber, 2022).

4 Clinical translation: progress and
pitfalls in human trials

The development of MSC therapies has been characterized by
both promising breakthroughs and significant hurdles. Over the past
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2 decades, numerous clinical trials have explored the application of
MSCs across a broad spectrum of diseases including autoimmune,
degenerative, inflammatory, and ischemic conditions providing
valuable insights into their safety, therapeutic potential, and
translational limitations (Hussen et al., 2024; Patel et al., 2013).
Early-phase studies (Phase I/II) have largely confirmed the safety
and feasibility of MSC administration, with preliminary evidence
supporting their clinical benefit in select cases (Harris et al., 2018).
However, as trials have advanced to Phase III, challenges related to
standardization, scalability, and reproducibility have become
increasingly evident, particularly under heightened regulatory
oversight (Taylor et al., 2022). These issues highlight the inherent
complexities of translating MSC-based therapies into routine
clinical use. This section reviews the progress made in human
trials, distills lessons learned from early and late-stage studies,
and examines the key barriers that must be overcome to fully
realize the clinical potential of MSC therapies (Hetta et al., 2025;
da Silva et al., 2025).

4.1 Phase I/II trials: safety and early efficacy

Phase I and II trials represent critical early stages in the clinical
translation of MSC therapies, focusing primarily on safety while
offering initial insights into efficacy. Globally, over 1,200 MSC-
related trials have been registered, the majority in these early phases
(Galderisi et al., 2022; Guan et al., 2025). Across diverse delivery
routes intravenous, intra-articular, intramyocardial, and intrathecal
MSC therapies have shown consistent short-term safety, with
minimal adverse effects (Bagno et al., 2022). For instance,
intravenous infusion of BM-MSCs in GVHD patients at doses up
to 10 million cells/kg produced no acute toxicity or ectopic tissue
formation. Likewise, intra-articular injections of AD-MSCs in
osteoarthritis were well-tolerated, with only transient swelling
(Song et al., 2020).

These trials also provide compelling early evidence of efficacy. A
pivotal Phase II study (NCT00366145) in steroid-refractory GVHD
reported a 70% response rate following BM-MSC infusion,
prompting further validation in the Phase III REMODEL trial
(Kebriaei et al., 2020). In Crohn’s disease-related fistulas, the
Cx601 trial showed a 50% closure rate with local AD-MSC
administration, leading to EMA approval of Alofisel in 2018
(Panes et al., 2018). The POSEIDON trial for ischemic
cardiomyopathy found that allogeneic MSCs improved ejection
fraction and reduced scar size. In neurology, MASTERS-2
demonstrated improved stroke outcomes and MRI evidence of
white matter repair, while MSCs slowed disease progression in
ALS and reduced mortality in severe COVID-19 cases (Hare
et al., 2017).

However, key challenges persist. Product variability due to
donor age, tissue source, and culture conditions continues to
affect consistency. Optimal dosing and delivery remain
unresolved, as intravenous MSCs are largely sequestered in the
lungs. Moreover, patient selection is often suboptimal, with few
trials stratifying based on biomarkers of response. These limitations
underscore the need for more precise trial design to enhance
reproducibility and therapeutic impact.

4.2 Phase III trials and regulatory challenges

Phase III trials serve as the definitive evaluation of MSC
therapies, demanding robust evidence of efficacy, safety, and
clinical benefit compared to standard care. While several MSC
products have progressed to this stage, results have been
inconsistent, reflecting the complexities of large-scale translation
(Parekkadan and Milwid, 2010; Cesnik and Svajger, 2024).

In acute GVHD, the Phase III REMODEL trial (NCT02336230)
achieved a 60% complete response rate with BM-MSCs, leading to
the approval of Temcell in Japan in 2015 the first globally sanctioned
allogeneic MSC product (Kurtzberg et al., 2020; Galipeau, 2020). In
contrast, the Phase III STAR trial for chronic GVHD failed to meet
its primary endpoint, underscoring disease-specific differences in
MSC responsiveness (Kadri et al., 2023). Similarly, the ADMIRE-CD
trial demonstrated a 53% fistula closure rate in Crohn’s disease
patients, securing EMA approval for Alofisel, though the FDA
withheld approval due to concerns over long-term durability
(Garcia-Olmo et al., 2022).

Cardiovascular trials have proven more challenging. The
CHART-1 trial in chronic heart failure showed neutral results
despite promising earlier data, likely due to variability in cell
potency and delivery (Rheault-Henry et al., 2021; Tompkins
et al., 2017). The CHART-1 trial utilized cardiopoietic MSCs that
underwent lineage-specific induction, representing a differentiated
MSC therapy rather than native MSC administration (Dilogo et al.,
2021). The TRIDENT trial also failed to demonstrate significant
improvement in myocardial infarction (Piccini et al., 2011).
Neurological studies faced similar setbacks; the NeuroNEXT ALS
trial showed no survival benefit, and MASTERS-2 revealed reduced
effect sizes in Phase III, reflecting challenges in scaling early success
to broader populations (Cudkowicz et al., 2022; Shefner and
Cudkowicz, 2024).

These discrepancies underscore systemic issues in late-stage
MSC development:

a. Product Standardization: Unlike pharmaceuticals, MSCs are
live products sensitive to manufacturing variables. The absence
of universal potency assays metrics quantifying MSC function
(e.g., immunosuppressive capacity, VEGF secretion) has led to
batch-to-batch variability. For example, Prochymal, an MSC
product for GVHD, faced criticism for inconsistent IDO
enzyme activity across batches, potentially undermining
efficacy (Chinnadurai et al., 2018).

b. Placebo Effects and Trial Design: Many MSC trials lack
adequate blinding, particularly in open-label surgical
deliveries (e.g., intramyocardial injections), inflating placebo
effects. The ACT34-CMI trial for critical limb ischemia was
confounded by high placebo responses, obscuring MSC
benefits (Losordo et al., 2011; Losordo et al., 2012).

c. Regulatory Fragmentation: Global regulatory agencies impose
conflicting requirements. The EMA emphasizes long-term
safety and immunogenicity data, while the FDA prioritizes
mechanistic biomarkers and potency assays (Kang et al., 2023).
Japan’s PMDA, meanwhile, fast-tracks MSC approvals based
on Phase II data for unmet needs, creating uneven commercial
landscapes.
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To overcome manufacturing and regulatory challenges, MSC
innovators are embracing advanced technologies such as closed-
system bioreactors and xenogen-free culture media to enhance
consistency, while improved cryopreservation extends shelf life
without compromising cell viability (Rogers et al., 2021). Trials
like MSC-NTF in ALS have demonstrated the benefits of potency
standardization through neurotrophic factor enrichment.
Regulatory agencies are also evolving; the FDA’s 2022 draft
guidance recommends potency assays aligned with mechanism of
action, such as IDO activity for immunomodulatory products,
promoting better translational alignment (Hoang et al., 2025).

MSC therapies have reached a pivotal stage in clinical
translation. While early-phase trials affirm safety and signal
therapeutic promise in conditions from GVHD to COVID-19
ARDS, Phase III failures have underscored the need for
improved standardization, mechanistic clarity, and precision in
trial design (Horie et al., 2020; Ragel et al., 2023). Successes like
Alofisel and Temcell show that with robust manufacturing and
targeted applications, regulatory approval is attainable (Lu and
Allickson, 2024). Future progress hinges on biomarker-guided
patient selection, validated potency assays, and adaptive clinical
strategies to fully realize the potential of MSCs in
regenerative medicine.

5 Biosafety and immunogenicity:
addressing concerns in MSC therapies

MSC therapies represent a promising frontier in regenerative
medicine and immunomodulation, offering therapeutic potential for
a wide range of diseases, including osteoarthritis, myocardial
infarction, GVHD, and autoimmune disorders (Guo et al., 2020;
Mancuso et al., 2019). Their clinical appeal lies in their capacity to
differentiate into multiple lineages, secrete trophic factors that
promote tissue repair, and modulate immune responses (Ayala-
Cuellar et al., 2019). However, as these therapies advance in clinical
use, two critical concerns biosafety and immunogenicity must be
thoroughly addressed to ensure therapeutic efficacy and
patient safety.

Biosafety challenges include risks such as tumorigenicity,
unintended differentiation, microbial contamination, genetic
instability from extended culture, and issues related to
manufacturing consistency (Neri, 2019). Although MSCs are
generally considered non-tumorigenic, prolonged in vitro
expansion may introduce chromosomal abnormalities or
oncogenic mutations, increasing the risk of malignant
transformation (Momin et al., 2010; Tarte et al., 2010). Rare
cases of ectopic tissue formation have been observed in animal
studies, though they are infrequent in clinical trials (Fujiwara et al.,
2023). To mitigate these risks, regulatory agencies mandate rigorous
preclinical testing, including karyotyping, tumorigenicity assays,
and genetic stability evaluations via comparative genomic
hybridization or next-generation sequencing (Sato et al., 2019).
The route of MSC administration also influences safety; while
systemic infusion may cause pulmonary entrapment or
embolism, localized delivery can limit systemic exposure and off-
target effects. Long-term follow-up in clinical trials remains essential
for monitoring delayed adverse events.

Immunogenicity, though less severe in MSCs compared to other
cell types, presents nuanced challenges, especially in allogeneic
applications (Li et al., 2024b). MSCs were once considered
immune-privileged due to low MHC class II and co-stimulatory
molecule expression (Kapranov et al., 2016). However, repeated
dosing or inflammatory environments can prompt immune
recognition, especially through HLA mismatches, leading to
T-cell or antibody-mediated responses (Ravindranath et al.,
2021). MSCs display context-dependent behavior acting as
immunosuppressive under certain conditions (e.g., via PGE2 and
TGF-β secretion), yet potentially immunogenic when primed by
interferon-gamma (IFN-γ) or Toll-like receptor (TLR) activation
(Haddad and Saldanha-Araujo, 2014). Strategies to reduce
immunogenicity include HLA matching, genetic editing to knock
out MHC expression using CRISPR-Cas9, IFN-γ priming to
enhance IDO activity, and encapsulation within biomaterials to
evade immune surveillance (Hoerster et al., 2020).

MSC source and culture conditions significantly affect both
safety and immune compatibility. UC-MSCs often show higher
proliferative rates and lower immunogenicity compared to BM-
MSCs (Hori et al., 2024). Serum-free media and xenogen-free
protocols reduce variability and contamination risks, while 3D
and hypoxic cultures help preserve MSC functionality
(Gottipamula et al., 2013). Standardized potency assays
measuring factors like IDO or PGE2 support batch consistency,
while emerging tools such as single-cell RNA sequencing enable
deeper characterization of MSC subpopulations with favorable
safety profiles (Xie et al., 2022).

Finally, evolving regulatory frameworks are critical to balancing
innovation with patient protection. Phase I trials focus on acute
toxicity and biosafety, while later stages include immunogenicity
monitoring via anti-MSC antibody detection and T-cell assays.
Predictive biomarkers, such as soluble HLA-G or extracellular
vesicle signatures, are being explored (Shan et al., 2024). As
gene-edited or cytokine-engineered MSCs enter trials, regulatory
oversight must adapt to assess new risks like insertional mutagenesis
or transgene immunogenicity (Jadlowsky et al., 2024). In
safeguarding MSC therapy requires an integrated,
multidisciplinary approach encompassing advanced
manufacturing, precise immunological assessment, and dynamic
regulatory adaptation (Fernandez-Santos et al., 2022). Only
through such comprehensive strategies can MSCs realize their
full clinical potential while maintaining the highest standards of
safety and efficacy.

6 Scalability and manufacturing:
barriers to commercialization

The commercialization of MSC therapies faces major hurdles,
including biological variability, regulatory complexity, and
challenges in scalable, cost-effective manufacturing
(Beheshtizadeh et al., 2022; Zhou et al., 2021). Ensuring product
consistency, viability during storage, and compliance with quality
standards remains difficult. Overcoming these bottlenecks requires
innovations in bioprocessing, automation, and logistics, alongside
harmonized regulatory frameworks to streamline development and
ensure broad clinical accessibility.
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6.1 Standardization challenges: donor
variability and product heterogeneity

Achieving product consistency is a major barrier to MSC
commercialization. Unlike small-molecule drugs, MSCs are
living cells whose therapeutic function varies with donor
characteristics (e.g., age, sex, health), tissue source (bone
marrow, adipose, umbilical cord), and culture conditions
(media, oxygen levels) (Mastrolia et al., 2019; Maged et al.,
2024). For example, MSCs from older donors exhibit reduced
proliferation and diminished secretion of regenerative factors.
AD-MSCs produce more VEGF, favoring ischemic indications,
while BM-MSCs are often more immunomodulatory (Maged
et al., 2024). This biological variability complicates dose
standardization and contributes to inconsistent clinical
outcomes, as seen in Prochymal’s Phase III failure for GVHD,
partly due to variable IDO activity (Kadri et al., 2023). The lack of
standardized potency assays further exacerbates the issue.
Current ISCT criteria (CD73/CD90/CD105 expression and
trilineage differentiation) fail to predict clinical efficacy
(Cesnik and Svajger, 2024; Robb et al., 2019). Regulators now
recommend mechanism-specific potency tests, e.g., IDO for
immunosuppression or VEGF for angiogenesis but integrating
these assays into large-scale production remains technically and
economically challenging.

6.2 Bioprocessing hurdles: from laboratory
to industrial scale

Scaling MSC production from lab-scale flasks to industrial-scale
bioreactors poses significant technical and economic hurdles
(Haskell et al., 2024). Traditional 2D culture systems like T-flasks
are labor-intensive, space-consuming, and yield limited cell
numbers (~108 cells per batch), insufficient for clinical demand
(Haskell et al., 2024). Microcarrier-based 3D bioreactors offer a 100-
fold increase in output but require precise control of variables like
shear stress and oxygenation. Systems like Lonza’s Cocoon®
automate expansion in closed environments, yet challenges
remain in maintaining consistent cell potency aggregates often
develop hypoxia-induced senescence (Tang et al., 2025). Cost of
goods (COGs) also constrain scalability. GMP-grade, xenogeneic-
free media (e.g., human platelet lysate) costs $500–$1,000 per liter,
and large-scale doses (100–200 million cells) for indications like
myocardial infarction may require $20,000–$50,000 in media alone.
Cryopreservation adds further expense, with cold-chain logistics
increasing COGs by ~30% due to the need for ultra-low
temperatures (−150°C) and specialized storage systems. Together,
these issues complicate the path to commercial viability.

6.3 Regulatory and quality control
complexities

Navigating regulatory pathways for MSC therapies is complex
and inconsistent across regions. Agencies like the FDA and EMA
classify MSCs as advanced therapy medicinal products (ATMPs),
requiring cGMP compliance, thorough safety evaluations, and

detailed manufacturing documentation (Detela and Lodge, 2019).
However, divergent guidelines complicate approval, for example, the
EMA mandates 24-month tumorigenicity studies in
immunodeficient mice, whereas the FDA emphasizes in vitro
genomic stability assays (Calvisi et al., 2023). Such differences
delay global market access, as seen with Alofisel (darvadstrocel),
approved in Europe but still under FDA review pending more
long-term data.

QC remains a critical challenge. Standard release criteria focus
on viability (>70%), sterility, and surface marker identity, but
functional assays like immunosuppressive mixed lymphocyte
reactions or angiogenesis tests are rarely performed at scale due
to cost and timing. This gap risks releasing subpotent products,
exemplified by a Phase II COPD trial where MSCs with low
hepatocyte growth factor secretion failed to improve outcomes.

6.4 Innovations driving scalable
manufacturing

Despite significant challenges, advances in bioprocessing and
automation are enabling scalable MSC production. Closed-system
bioreactors like the Xpansion® platform facilitate high-density 3D
culture, reducing media use by 60% and doubling yields (Song et al.,
2024). Synthetic peptide substrates replace traditional coatings,
improving reproducibility and reducing batch variability.
Emerging lyophilization methods promise to eliminate cold-chain
dependence, with early data showing 80% viability post-
reconstitution.

Machine learning (ML) is revolutionizing quality control, using
AI-driven analysis of omics and secretome data for real-time
potency prediction and release testing (Wei et al., 2023). For
example, Cellino Biotech’s ML platform cuts production costs by
70%. Concurrently, CRISPR-engineered MSCs with enhanced
homing (CXCR4) or anti-inflammatory (IL-10) traits are
advancing in trials, potentially lowering dose requirements and
costs (Zhou et al., 2021; Hazrati et al., 2022). Overcoming
scalability and manufacturing barriers demands collaboration
across academia, industry, and regulators to standardize
processes, adopt disruptive technologies, and align
reimbursement with therapeutic value. Addressing these will
enable MSC therapies to transition from niche innovations to
accessible mainstream treatments in regenerative medicine.

7 Emerging strategies: engineering and
enhancing MSC functionality

MSCs hold great therapeutic promise but face hurdles like poor
engraftment, limited survival, and functional variability. To
overcome these, researchers are developing advanced strategies
including CRISPR gene editing, biomaterial scaffolds, and
synthetic biology tools to boost MSC regenerative,
immunomodulatory, and homing abilities (Abubakar et al., 2023;
Christidi et al., 2018). Innovations such as bioengineered exosomes
and tailored genetic modifications are enhancing efficacy and
specificity, paving the way for more effective, disease-targeted
MSC therapies (Cao et al., 2024).
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7.1 Genetic engineering: precision-
enhanced MSCs

Genetic engineering is pivotal in enhancing the therapeutic
potential of MSCs. Techniques like CRISPR-Cas9 and lentiviral
vectors enable precise gene edits to boost survival, targeting, and
secretion of therapeutic molecules (Damasceno et al., 2020). For
example, MSCs overexpressing CXCR4 demonstrate improved
homing to ischemic tissues, with a Phase I trial in critical limb
ischemia showing a 40% perfusion increase (Ullah et al., 2019). IL-
10-engineered MSCs have reduced synovial inflammation by 70% in
rheumatoid arthritis models (Choi et al., 2008; Li et al., 2024a).
Advanced approaches using synthetic biology allow programmable
behaviors, such as hypoxia-inducible VEGF expression for
myocardial repair. Safety mechanisms like suicide genes (e.g.,
HSV-TK) allow conditional elimination of MSCs, enhancing
clinical control (Kim et al., 2011; Shen et al., 2008). These
strategies improve efficacy while addressing safety concerns in
MSC-based therapies.

7.2 Preconditioning: priming MSCs for
enhanced performance

Preconditioning MSCs with biochemical or physical stimuli
enhances their therapeutic potential without genetic modification.
Hypoxic preconditioning (1%–5% O2) simulates ischemic tissue
conditions, increasing survival gene expression (e.g., Bcl-2) and
angiogenic factors like VEGF and SDF-1 (Schepici et al., 2022;
Zhuo et al., 2024). In a porcine myocardial infarction model,
hypoxia-treated MSCs improved cardiac function by 50% over
normoxic controls (Chen et al., 2018). Cytokine priming with IFN-
γ or TNF-α enhances immunomodulatory effects by upregulating
IDO and PD-L1, beneficial in GVHD. 3D spheroid culture restores
in vivo-like MSC phenotypes, increasing paracrine activity and
ECM production (Sarsenova et al., 2022; Elmi et al., 2025). In
stroke models, spheroid-derived MSCs tripled BDNF and GDNF
secretion, improving neuronal survival by 60%. Mechanical
preconditioning further boosts MSC secretomes, supporting
tissue repair in tendon and vascular injuries (Cunningham
et al., 2018).

7.3 Biomaterial scaffolds: guiding MSC
integration and retention

Biomaterial scaffolds are transforming MSC therapy by
enhancing cell retention, survival, and differentiation through
structural and biochemical cues (Zhao et al., 2021). Hydrogels
made from hyaluronic acid, collagen, or decellularized ECM
provide protective niches and controlled release of therapeutic
factors (Saldin et al., 2017). In equine osteoarthritis, MSC-loaded
thermoresponsive chitosan hydrogels achieved 80% cartilage
defect filling in 12 weeks (Spiller et al., 2011; Atwal et al.,
2023). Electrospun nanofibers functionalized with RGD
peptides or laminin promote MSC adhesion and alignment,
aiding nerve and muscle repair (Amores de Sousa et al., 2020).
Advanced 3D-printed scaffolds, such as β-TCP, enable

anatomically tailored implantation and showed superior
calvarial bone healing in rabbits (Guerrero et al., 2024;
Turnbull et al., 2018). Smart scaffolds with embedded sensors
or drug reservoirs allow real-time monitoring and condition-
responsive factor release, improving outcomes in diabetic wound
models through glucose-triggered VEGF secretion (Mirani
et al., 2023).

7.4 Exosome engineering: harnessing MSC-
Derived nanovesicles

MSC-derived exosomes are emerging as promising cell-free
therapies, offering regenerative benefits without the risks of cell
transplantation (Roszkowski, 2024). However, their natural lack of
targeting specificity limits efficacy. To enhance precision, exosomes
are engineered with surface ligands like CD47 or RGD and loaded
with therapeutic cargo such as siRNA or miRNAs (Kim et al., 2024;
Zeng et al., 2023). In glioblastoma, RVG-tagged exosomes delivered
miR-124 across the blood-brain barrier, reducing tumor volume by
65% (Galardi et al., 2023) (Aili et al., 2021). Techniques like
electroporation improve cargo loading, and clinical trials by
companies like Codiak Biosciences are underway.

7.5 Combination therapies: synergizing
MSCs with drugs or cells

Combining MSCs with pharmacological agents or
complementary cell types enhances therapeutic efficacy (Abu-
El-Rub et al., 2022). MSCs with anti-inflammatory drugs like
tocilizumab or JAK inhibitors show synergistic effects, reducing
autoantibodies by 90% in refractory lupus trials (Scott, 2017). In
cancer therapy, MSCs engineered to express TRAIL improve
chemotherapy by targeting resistant cancer stem cells (Fakiruddin
et al., 2018; Minev et al., 2024). Co-transplantation strategies, such as
MSCs with endothelial progenitor cells (EPCs) or CAR-T cells,
enhance outcomes doubling capillary density in limb ischemia and
halving cytokine release syndrome severity in leukemia models
(Rossi et al., 2017).

7.6 AI andmachine learning: optimizing MSC
manufacturing

Artificial intelligence is revolutionizing MSC bioprocessing by
optimizing culture conditions, donor matching, and therapeutic
predictions (Cerbo et al., 2024). Deep learning models identify
biomarkers like miR-335-5p for chondrogenic potential and
refine bioreactor settings to boost efficiency. AI platforms, such
as DeepCell, enhance quality control with 95% accuracy in detecting
senescent cells (Nosrati and Nosrati, 2023). Together with genetic
engineering and biomaterial advances, AI is driving the
development of precision-engineered MSC therapies (Mahima
Choudhury et al., 2025). As these innovations converge, scalable
and effective MSC products become increasingly feasible, though
robust safety and regulatory frameworks remain essential for clinical
translation.
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8 Future directions: personalized
medicine and advanced
delivery systems

The next frontier inMSC therapy lies in integrating personalized
medicine with cutting-edge delivery technologies. As the field moves
beyond the conventional “one-size-fits-all” paradigm, advances in
genomics, biomaterials, and bioengineering are converging to create
tailored MSC treatments that align with individual patient profiles
and disease-specific microenvironments. These innovations are
poised to overcome long-standing challenges, such as poor
engraftment, off-target effects, and inconsistent therapeutic
outcomes, paving the way for precision regenerative medicine.

Personalized MSC therapies are being revolutionized through
biomarker discovery and multi-omics profiling. By leveraging
genomics, transcriptomics, proteomics, and metabolomics,
researchers can map MSC heterogeneity with unprecedented
granularity. For example, single-cell RNA sequencing has
identified MSC subsets with distinct therapeutic potentials, such
as PD-L1+ cells for immunosuppression or CXCR4+ cells for tissue
homing. This stratification allows clinicians to match MSC profiles
with patient biomarkers. A 2023 study found that rheumatoid
arthritis patients with high IL-6 levels responded better to IFN-γ-
primed MSCs, offering a biomarker-driven approach to
preconditioning. Autologous customization, using tools like
CRISPR-Cas9, further allows correction of genetic mutations or
enhancement of therapeutic genes. Clinical trials using gene-edited
MSCs to express dystrophin in Duchenne muscular dystrophy have
shown promise. Similarly, iPSC-derived MSCs provide a scalable
and patient-specific source, currently under evaluation for disorders
like age-related macular degeneration. Rieger et al. demonstrated
that the genetic profile of patients with non-ischemic dilated
cardiomyopathy significantly influenced responsiveness to MSC
therapy, with variant-negative individuals deriving the most
benefit. These findings underscore the value of precision
medicine in MSC-based interventions (Rieger et al., 2019).
Machine learning tools are being employed to predict patient
responses and optimize MSC product selection. DeepCell
Therapeutics, for instance, developed an AI model that
successfully stratified stroke patients based on imaging and
molecular profiles, reducing trial failure rates.

Advanced delivery systems are enhancing MSC retention,
targeting, and therapeutic duration. Biomaterial-assisted
platforms like hydrogels, decellularized ECM, and adhesion
molecule-infused scaffolds are improving engraftment and
guiding MSC differentiation. 3D and 4D bioprinting
technologies enable the construction of precise, vascularized
tissues with functional gradients. In goat models, bio printed
cartilage patches restored joint function, while shape-memory
scaffolds adapted to body contours in pediatric microtia patients.
Furthermore, stimuli-responsive carriers offer targeted and
controlled release. Magnetic nanoparticle-labeled MSCs have
achieved over 90% targeting accuracy, and optogenetically
engineered MSCs can secrete VEGF in response to light,
improving diabetic ulcer treatment.

Digital health integration and closed-loop systems represent the
next step in adaptive MSC therapy. Smart implants with biosensors
can monitor MSC viability and tissue regeneration, transmitting

data in real time. In spinal cord injury models, graphene-based
neural interfaces tracked recovery and activated stimulatory cues to
enhance repair. Closed-loop systems, such as glucose-responsive
devices, have been adapted to release cytokine-secreting MSCs in
inflammatory environments, maintaining disease remission.
Genetic circuits responsive to tumor DNA allow MSCs to deliver
anti-cancer agents like TRAIL specifically within tumor sites,
minimizing systemic exposure.

While MSC therapies have demonstrated immense preclinical
promise, clinical success requires overcoming biological, technical,
and regulatory hurdles. The fusion of personalized omics data,
sophisticated delivery systems, and real-time monitoring is
transforming MSC therapy into a precise, patient-tailored
modality. As these innovations mature, the vision of safe,
scalable, and effective MSC-based treatments is becoming an
attainable reality.

9 Final synthesis

The gap between preclinical promise and clinical reality for MSC
therapies is neither unbridgeable nor inevitable. By embracing
standardization, personalization, and innovation, the field can
transform MSCs from a promising tool into a mainstay of
regenerative medicine. The path forward demands humility to
learn from past failures and audacity to pioneer technologies that
redefine healing. As these cells navigate the complex journey from
bench to bedside, their ultimate success will hinge not just on
scientific ingenuity, but on our collective commitment to
translating hope into tangible, equitable health outcomes.
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