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Electroactive polymer (EAP) artificial muscles are gaining attention in robotic
control technologies. Among them, the development of self-sensing actuators
that integrate sensing mechanisms within artificial muscles is highly anticipated.
This study aimed to evaluate the accuracy and precision of the sensing
capabilities of the e-Rubber (eR), an artificial muscle developed by Toyoda
Gosei Co., Ltd., and to investigate its potential for healthcare sensing
applications such as smart insoles. The objective was to transform the eR into
a thin capacitor and estimate the applied load by sensing minute changes in the
capacitance. The changes in the EAP dielectric constant, electrode area, and
inter-electrode distance, all of which define the capacitance, are non-linear
functions. The relationship with the external force also exhibits nonlinearity.
To address this issue, we experimentally plotted the load and capacitance
changes and derived a regression equation. We evaluated the sensing
characteristics of both a stand-alone sensor and a sensor embedded in a
smart insole, followed by a precision verification of the load estimation using
the derived regression equation. Load–capacitance changes were measured up
to 400 N at three conditions: 23 °C and 50% humidity, 40 °C and 50% humidity,
and 40 °C and 80% humidity. For the standalone sensor, the coefficient of
variation was less than 1.25% and the confidence interval was 0.25%,
indicating high precision. However, for the sensor embedded within the insole
housing, the coefficient of variation increased to less than 8%, and the confidence
interval was 1.5%, likely owing to the influence of gaps within the insole structure.
Regarding the load estimation equation, a 5th-order polynomial approximation
(R2 >0.999) demonstrated the best fit, indicating that it is sufficiently accurate for
healthcare sensing applications. Although capacitance-based sensors are
increasingly being used in biomedical monitoring for pressure and load
measurements owing to their durability and high sensitivity, their primary
challenge lies in the nonlinearity of the sensing results. Although this
challenge also exists for capacitance sensors utilizing artificial muscles, our
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study shows that developing a regression equation based on the experimental
relationship between the load and capacitance changes can yield sufficient
precision for practical healthcare applications.

KEYWORDS

e-rubber, artificial muscle, capacitance sensor, dielectric elastomer, smart insole, sensing
for healthcare

1 Introduction

Artificial muscles that exhibit expansion, contraction, and other
movements, just like biological muscles, have attracted significant
attention in robotics control (Jing et al., 2023). Typical artificial
muscles driven by electrical energy utilize electroactive polymers
(EAPs), which are polymeric materials capable of changing their
shapes and dimensions, sandwiched between electrodes. EAPs
include dielectric elastomers, piezoelectric polymers, and
adsorption films. When a voltage is applied to the electrodes, the
EAP deforms, resulting in actuation (Maksimkin et al., 2022).

The e-rubber (eR) developed by Toyoda Gosei Co., Ltd. is an EAP-
type artificial muscle that employs a dielectric elastomer. The eR is
composed of multiple layers, including the EAP and electrodes. When
current flows, the dielectric elastomer layer deforms and is converted
into an actuator movement (video). To maintain elasticity while
ensuring lightness, a dielectric elastomer was initially developed
using slide-ring materials (Sapsford and Michieletto, 2025).

In the healthcare field, early intervention is crucial for
preventing the progression of many conditions to severe stages.
For example, osteoarthritis (OA) of the knee can be definitively
diagnosed with radiography, but there are no established biomarkers
for its detection in the early stages, except magnetic resonance
imaging (MRI) (Li et al., 2023; Piccolo et al., 2023). However, it
is known that gait abnormalities are present in the early phases of the
disease (Duffell et al., 2014). Consequently, gait analysis may enable
the detection of early pathological changes even before they are
visible on radiographs (Wipperman et al., 2024).

In this context, smart insoles equipped with soft sensors have been
widely reported, and the technology itself is not novel. Our goal,
however, is to develop a smart insole specifically capable of early
detection of degenerative diseases such as OA. To contribute
effectively to preventive medicine in healthcare, we set two primary
objectives: achieving a consumer-friendly price point of under $250 for
widespread adoption and enabling preventive interventions using the
insole. This contrasts sharply with high-end, high-precision systems
such as Moticon OpenGo (Munich, Germany), Novel Pedar (Munich,
Germany), and Tekscan F-Scan (Norwood, MA, United States), which
are priced over $2,000, with some exceeding $10,000, making them
prohibitive for widespread preventive use.

In addition to their role as actuators, artificial muscles can be
utilized as sensors capable of detecting minute forces. This is
achieved by treating the artificial muscle as a capacitor and
leveraging the change in its capacitance owing to external forces
(Jung et al., 2008). A recent trend in artificial muscle research is the
development of “self-sensing actuators,” which combine actuation
functionality with the ability to sense their activity. This approach
mimics the spindles found in human muscles, enabling self-sensing
of shape changes in the artificial muscle to control the actuator. This
is expected to be applied to robot control using artificial intelligence

(Gonzalez-Vazquez et al., 2023). By integrating a thin sensing
actuator into a smart insole, we envision the possibility of not
only sensing but also delivering interventions based on the sensor
data. For instance, it could alert users to a high risk of falling by
sending signals from the sole or enhance plantar sensation for
patients with diabetes or peripheral neuropathy (Ahmad et al.,
2024). Such plantar actuation could potentially promote active
rehabilitation.

Therefore, we chose eR for our smart insole development, and we
modified the eR into a thin sensor to monitor dynamic plantar pressure
(Figure 1). The sensor was designed with a sandwich-like structure to
mitigate capacitive noise from contact with the plantar skin or socks.
Furthermore, a combination of two distinct materials was utilized to
create a design that reduces hysteresis. To realize eR smart insole, several
challenges must be addressed, including ensuring the accuracy and
reliability of the sensing component, processing measurement data in
real-time, and delivering appropriate actuation based on the results. As
a first step, we must verify the accuracy and precision of the eR sensing
capabilities. Because a thorough validation of eR for such precise
healthcare applications has not been previously undertaken, this
study aimed to perform this foundational evaluation. Consequently,
this study aimed to evaluate the measurement accuracy of the sensor
with the premise of its application as a plantar pressure sensor.

2 Materials and methods

2.1 Structure of the eR sensor

The eR sensor is composed of two 0.5 mm thick urethane foam
dielectric layers and three silver paste electrodes, resulting in a total
thickness of 1.47mm. The dielectric layers possess distinct densities and
mechanical properties, a design that expands themeasurable load range.
Specifically, Dielectric Layer 1 has a density of 150 kg/m3, a compressive
stress of 0.006 MPa at 25% strain, and a compression set of 1.0%,
whereas Dielectric Layer 2 has a density of 240 kg/m3, a compressive
stress of 0.022 MPa at 25% strain, and a compression set of 4.2%.

This configuration, utilizing dielectrics with different elasticmoduli,
facilitates stepwise deformation in the thickness direction.
Consequently, compared to a single-dielectric sensor, the capacitance
change does not saturate, enabling a detectable output over a wider
input range (Zhu et al., 2022). Furthermore, the top and bottom
electrodes are connected to 0V to serve as ground electrodes. These
act as electrostatic shields to mitigate the influence of external noise.

2.2 eR sensing theory

The principle of the eR sensor is to estimate the external force by
treating the eR as a parallel-plate capacitor and utilizing the change
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in capacitance. When the eR deforms owing to an external force, the
electrode area A and the distance between the electrodes d change;
consequently, the capacitance changes. The capacitance C stored in
eR is defined by the following Equation 1:

C � εrε0A
d

(1)

Where ϵr: relative permittivity of the elastomer, ϵ0: permittivity
of vacuum, A: electrode area, d: distance between electrodes. ϵ0 =
8.854 × 10–12 F/m.

By measuring the change in capacitance (ΔC) before and after
the application of an external force, the external force can be
inversely calculated as Equation 2. C was defined by considering
changes in each parameter.

ΔC � εr0 + Δεr( )ε0 A0 + ΔA( )
d0 + Δd − εr0ε0A0

d0
(2)

The relative permittivity of dielectric elastomers is generally
unaffected by external forces or changes in shape, with negligible
variations observed (Zhao and Suo, 2010). The dielectric layer of
e-rubber uses urethane foam, which consists of a bulk material and
air bubbles with different relative permittivity (Figure 1). We
hypothesize that while the relative permittivity of urethane foam
remains largely unchanged at small strains, it changes under load as
air bubbles collapse, causing the bulk material’s properties to
become dominant (O’Neill et al., 2022).

The change in capacitance is defined by the change in the
elastomer permittivity, electrode area, and distance between the
electrodes. However, since the changes in Δd and A are not linear
but rather non-linear functions, and because the elastomer’s
permittivity ϵr changes due to density variations caused by stress
and strain, the capacitance becomes a non-linear function.

Next, we examined the relationship between ΔC and the external
force F. Assuming that the electrode area of eR and the relative

permittivity of the elastomer does not change, the initial capacitance
C0 and the capacitance C1 after loading are given by Equation 1 as
Equations 3, 4:

C0 � εrε0
A

d0
(3)

C1 � εrε0
A

d0 − Δd (4)

Thus, the change in capacitance ΔC is calculated by Equation 5:

ΔC � C1 − C0 � εrε0A
1

d0 − Δd − 1
d0

( ) (5)

When a normal load F is applied to an elastic dielectric
(thickness d0, area A, Young’s modulus E), the change in
thickness Δd is calculated with Equation 6:

Δd � Fd0

EA
(6)

Substituting (6) into (5), ΔC is calculated with Equation 7

ΔC � εrε0A · 1
d0

1
1 − F

EA

− 1( ) � C0
1

1 − F
EA

− 1( ) (7)

Therefore, the relationship between ΔC and F can be defined as a
non-linear relationship. Furthermore, for small deformations where
F≪EA, using the Maclaurin expansion, ΔC is approximated by
Equation 8:

ΔC ≈ C0 · F

EA
( ) (8)

This indicates that, in the small-deformation region, where the
external force is considerably small, the relationship between the
load and capacitance can be defined as linear. However, as the
external force increases, the electrode area of the eR, the relative

FIGURE 1
(A) An eR sensor created by making artificial muscle thinner, and (B) its cross-sectional view.
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permittivity of the elastomer change, and the structural hysteresis of
the elastomer also have an effect. Consequently, the relationship
between the change in capacitance and external force applied to eR
may deviate from the results obtained using this equation.
Therefore, we decided to plot the external force and capacitance
changes experimentally and perform regression using curve fitting.

2.3 Measurement of load and capacitance
change, and evaluation of sensor
measurement characteristics from
obtained results

The measurements were conducted inside a TX411N constant-
temperature chamber (Kusumoto Chemicals, Ltd., Tokyo, Japan)
with a force gauge (EMX-1000N, Imada, Toyohashi, Japan) installed
to ensure constant humidity and temperature (Figure 2). A load was
continuously applied to the sensor using a force gauge, and the
change in capacitance was measured. Loads were applied from 0 to
400 N at a rate of 0.5 mm/s (Figure 3). Capacitance was measured
using an LCR meter (IM 3536, Hioki EE Corp., Ueda, Japan) and a
custom-developed program.

We used 30 eR samples and performed three measurements on
each sample. Since EAP properties vary with temperature and
humidity, measurements were taken under three conditions:
Condition A (room temperature assumed: 23 °C, 50% humidity),
Condition B (close to biological monitoring conditions: 40 °C, 50%
humidity), and Condition C (close to conditions for clothes and
shoes in a sweating state: 40 °C, 80% humidity).

Polymeric materials such as EAPs exhibit the Mullins effect,
where the elasticity changes after repeated loading. In applications
such as measuring pressure with insoles during walking or pinching
movements of the fingers, repeated loading operations can
potentially alter the measurement values. Therefore, as a
durability test, we performed frequent pressure operations and
measured the changes before and after the operation. The
durability test setup included a constant-temperature chamber
(SH-642, Espec Corp., Osaka, Japan) equipped with a pusher
attached to an air cylinder (COQ2B40-40DZ, SMC, Tokyo,
Japan), which was monitored using a load cell (LUR-2KNSA1,
KYOWA Electronic Instruments, Chofu, Japan) (Figure 3). For
the durability test, simulating actual walking, we applied
200,000 cycles of reciprocal loading from 0 to 100 N per second
within a constant-temperature chamber at 40 °C and 80% humidity.

To evaluate the measurement characteristics of the eR sensor, we
assessed its reliability and validity based on the Consensus-based
Standards for the selection of health status Measurement
Instruments (COSMIN) guideline (Mokkink et al., 2010).
Reliability refers to the dispersion of sample values and its
magnitude represents precision. Conversely, the closeness of the
sample mean indicates that the population mean was calculated with
accuracy. Because the sample values increase with external force,
and consequently, the standard deviation also increases, we
calculated them as coefficients of variation. Accuracy is the
difference between the sample and population means, calculated
using a 95% confidence interval.

To measure the measurement characteristics, we calculated the
coefficient of variation and confidence interval for six conditions

FIGURE 2
Load application test of the eR sensor using a force gauge
installed within a constant temperature chamber. Capacitance was
measured using an LCR meter placed externally.

FIGURE 3
Durability test conducted using a pusher attached to an air
cylinder, installed within a constant temperature chamber; *: Pusher,
#: eR sensor.
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(Conditions A, B, and C before and after durability testing) based on
the measurement values from all samples at load points of 50, 100,
150, 200, 300, and 400 N.We used t-distribution to calculate the 95%
confidence interval, defining the confidence interval width as the
ratio of the estimated population mean divided by the 95%
confidence interval.

2.4 Hysteresis of dielectric layers

We investigated the hysteresis of the two dielectric layer
materials used as Dielectric layers 1 and 2 (Figure 1) in the eR
sensor, using a force gauge according to the procedure described
in Section 2.3. The samples were 32 mm in diameter before
compression. The tests were conducted at 20 °C and 45% relative
humidity. Each sample was compressed from 0 N to 400 N over
12.3 s. We analyzed the relationships between nominal stress
(load divided by sample area) and capacitance, and between
nominal strain (deformation divided by initial thickness) and
capacitance change, during both loading and unloading cycles.

To evaluate hysteresis, we calculated two metrics for each
relationship: The first was the mean hysteresis error (%FS),
defined as the average of the absolute differences in
capacitance between the loading and unloading curves at a
given input value, normalized by the full-scale output. The
second was the normalized hysteresis loop area, obtained by
integrating the area enclosed by the loading and unloading curves
using the trapezoidal rule and dividing it by the product of the
full-scale input and output ranges. These values provided
quantitative measures of the reversibility and repeatability of
the sensor response.

2.5 Insertion into insoles

We aimed to create a smart insole for measuring plantar
pressure using eR and to verify the measurement accuracy of the
sensor for this purpose. The planned smart insole consists of four

sensors: one at the forefoot, one each on the medial and lateral
sides of the midfoot, and one on the hindfoot (Figure 4A). As
shown in the figure, the insole cross-sectional feature sensors
were sandwiched between the Ethylene Vinyl Acetate (EVA)
foam and polyurethane foam (Figure 4B). We created six
smart insoles for measurement and performed three
measurements for each insole.

FIGURE 4
Arrangement of eR sensors within the insole (A) and cross-sectional view (B).

FIGURE 5
Load application test on the insole installed within a constant
temperature chamber. Using a pusher (#), the sensor part is pressed to
measure the amount of applied pressure and the change in
capacitance.
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2.6 Evaluation of load-capacitance change
from insoles and measurement
characteristics of insole-embedded sensors

The measurement characteristics of the sensors inserted into the
insoles were evaluated, as described in Section 2.4. Themeasurement
and durability testing equipment were the same as those described in
section 2.3. The load application speed was 10 mm/min, with loads
ranging from 0 to 400 N. To simulate the plantar pressure
measurement, the force gauge indenter was made of POM resin
and Si rubber, rather than the metal indenter used in the 2.2’s mold
(Figure 5). The indenter was used to apply a load to the insole
(Figure 5). For the load test, we similarly changed the indenter and
applied 200,000 cycles of reciprocal loading from 0 to 230 N per
second in a constant-temperature chamber at 40 °C and
80% humidity.

The 30 eRs were tested under load conditions similar to those
described for the sensor in Section 2.3. For each sample, tests were
conducted three times, both before and after load application, under
Conditions A, B, and C.

2.7 Creation of regression equations for
load-capacitance in insole-embedded
sensors and verification of load
estimation accuracy

We plotted the relationship between the obtained ΔC and the
applied load, then calculated a polynomial to represent this
relationship using curve fitting. The least squares method was
used for the calculation, and Python’s NumPy polyfit and poly1d
libraries were used for the computation. The candidate equations for
curve fitting included a 5th-order polynomial, natural exponential
functions, and integer-based exponential functions. Machine
learning methods can be used as an alternative to curve fitting.
Nevertheless, they were not considered due to the substantial
processing burden they would impose on the insole’s circuitry.
The accuracy of the curve fitting was evaluated using the
coefficient of determination (R2) and the Root Mean Squared
Error (RMSE).

2.8 Dynamic characteristics analysis of
insole-embedded sensors

Using the system described in section 2.4, a dynamic
characteristics analysis was conducted by applying continuous
loads to the insole sensors to simulate walking. The loading
cycles were set to simulate different walking speeds: a 2-s cycle
for a slow walk (S), a 1-s cycle for a normal walk (N), and a 0.6-s
cycle for a quick walk (Q). A load of 0–240 N was repeatedly applied
50 times for each condition (Figure 6). The initial 10 cycles of each
loading session were excluded from the data, and the subsequent
40 cycles were used for the dynamic analysis. The capacitance of the
insole was sampled every 20 ms. This loading procedure was
performed under the three environmental conditions A through
C, detailed in section 2.4. The same durability test as in section 2.4
was conducted to examine changes before and after the test. The

investigated parameters were the difference between the loading
interval and the detected waveform peak interval, and the signal
drift rate. To assess whether the two groups were statistically
equivalent, we conducted an equivalence test using the two one-
sided test (TOST) procedure. The equivalence margin was pre-
specified as 50% of the standard deviation. Equivalence was
concluded if the 90% confidence interval of the mean
difference fell entirely within the predefined margin, and both
one-sided p-values were below 0.05. Analyses were performed
using Python 3.12. The signal drift rate was calculated for all
conditions from section 2. By dividing the difference in estimated
load (derived from capacitance) before and after the durability
test by the pre-test estimated load.

3 Results

3.1 Load-capacitance relationship and
measurement characteristics of the sensor
unit alone

The relationship between the load value from the continuous
pressure applied by the force gauge and the change in capacitance of
the sensor unit alone showed a linear increase in the small
deformation region up to 20 N under all conditions (A, B, and
C). Beyond 20 N, it exhibits a non-linear monotonic increase, closely
resembling a logarithmic curve (Figure 7). Although there were
differences between individual samples, no variations were observed
among the samples. After the durability test, a slight change in the
capacitance output was observed; however, the shape of the curve
remained consistent (Figure 7).

The coefficients of variation and confidence interval widths for
all samples at the specified loads are listed in Tables 1–3. The
coefficient of variation was less than 1.25%, indicating that sample
variability was within acceptable precision limits. Furthermore, the
confidence interval width showed a slight increasing trend after
durability testing, but was generally less than 0.25%, which was
deemed acceptable in terms of accuracy.

3.2 Evaluation of load-capacitance change
and measurement characteristics of insole-
embedded sensors

When comparing measurements from the sensor unit alone to
those from sensors inserted into the insole casing, differences in the
load-capacitance relationship were observed. Specifically, the
sensors within the insole casing showed a gentler increase in the
load-capacitance curve compared to the standalone sensor, which
was influenced by the gaps within the insole casing (Figure 8).

The coefficients of variation and confidence interval widths at
the specified loads are listed in Tables 4–6. The coefficient of
variation was less than 8%, indicating that while the sample
variability was greater than that of the standalone sensor, it was
still considered within acceptable precision limits. The confidence
interval width also showed a slight increasing trend after durability
testing, but was generally less than 1.5%, which was deemed
acceptable in terms of accuracy.
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3.3 Hysteresis of dielectric layers

For both dielectric layers, hysteresis curves were generated by
plotting capacitance against nominal stress and nominal strain.
These plots revealed a disparity between the loading and
unloading paths, indicating the presence of hysteresis (Figure 9).
The average hysteresis error with respect to both nominal stress and
nominal strain was below 10% for both dielectric layer 1 and layer 2
(Table 7). Furthermore, the normalized hysteresis loop area for both
layers was 0.1 or less. While this performance is not comparable to
that of state-of-the-art sensors, it demonstrates a moderate level
of precision.

3.4 Curve fitting of load-capacitance in
insole-embedded sensors and verification of
load estimation accuracy

The load-capacitance curve for the sensors embedded within the
insole casing was regressed to a polynomial. A 5th-order
polynomial, as shown Equation 9, was adopted:

Load N[ ] � a · ΔC5 + b · ΔC4 + c · ΔC3 + d · ΔC2 + e · ΔC + f (9)

For example, the plot results obtained from a forefoot sensor
in one casing are shown in Figure 7. From this result, the curve

FIGURE 6
Load application pattern in dynamic characteristics analysis. Initially, a single load is applied for 10 s, followed by a 3-min no-load period.
Subsequently, to simulate a slow walk (Simulation S), a 2-s cycle (1-s load, 1-s no-load) is repeated 50 times. Next, to simulate a normal walk (Simulation
N), a 1-s cycle (0.5-s load, 0.5-s no-load) is repeated 50 times. Finally, to simulate a quick walk (Simulation Q), a 0.6-s cycle (0.3-s load, 0.3-s no-load) is
repeated 50 times. For the analysis of S, N, and Q, the last 40 of the 50 loading cycles are used.

FIGURE 7
Capacitance-load curves for the standalone sensor.
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fitting yielded: a = 2.26 x 10−3, b = −9.67 x 10−2, c = 1.53, d = −10.4,
e = 33.1, f = 1.34. The accuracy of the curve fitting was calculated
as R2 = 0.998839 and RMSE = 3.687313 (N). We determined that
the 5th-order polynomial provided a better fit for regression than
a natural exponential approximation (R2 = 0.99856) or an
integer-based exponential function (R2 = 0.99856), and
thus adopted it.

The relationship between load and capacitance differs for each
sensor. Therefore, we perform an individual calibration for each

sensor embedded in the insole to determine the coefficients
of Equation 9.

3.5 Results of dynamic characteristics
analysis of insole-embedded sensors

The results for the detected pressure peak intervals are shown in
Tables 8–10. No significant differences were observed in any of the

TABLE 1 Measurement Characteristics of the Standalone Sensor Unit (23 °C, 50% humidity).

Before Durability Test After Durability Test

Load(N) Capacitance
Mean ± SD (pF)

CV(%) Width of 95%CI (%) Capacitance
Mean ± SD (pF)

CV(%) Width of 95%CI (%)

50 42.13 ± 0.45 1.07 0.19 43.77 ± 0.5 1.14 0.18

100 48.74 ± 0.4 0.82 0.18 50.5 ± 0.39 0.77 0.18

150 51.93 ± 0.34 0.65 0.19 53.48 ± 0.36 0.67 0.17

200 53.92 ± 0.29 0.54 0.15 55.25 ± 0.35 0.63 0.18

300 56.18 ± 0.35 0.62 0.21 57.19 ± 0.43 0.75 0.23

400 57.4 ± 0.45 0.78 0.19 58.22 ± 0.52 0.89 0.21

SD, standard deviation; CV, coefficient of variation.

CI, confidence interval.

TABLE 2 Measurement Characteristics of the Standalone Sensor Unit (40 °C, 50% humidity).

Before Durability Test After Durability Test

Load(N) Capacitance
Mean ± SD (pF)

CV(%) Width of 95%CI (%) Capacitance
Mean ± SD (pF)

CV(%) Width of 95%CI (%)

50 45.63 ± 0.41 0.90 0.15 47.53 ± 0.51 1.07 0.19

100 52.43 ± 0.33 0.63 0.15 54.3 ± 0.36 0.66 0.13

150 55.67 ± 0.27 0.49 0.13 57.24 ± 0.31 0.54 0.12

200 57.65 ± 0.23 0.40 0.12 58.97 ± 0.3 0.51 0.15

300 59.86 ± 0.26 0.43 0.15 60.79 ± 0.35 0.58 0.18

400 61.05 ± 0.33 0.54 0.11 61.69 ± 0.41 0.66 0.15

TABLE 3 Measurement Characteristics of the Standalone Sensor Unit (40 °C, 80% humidity).

Before Durability Test After Durability Test

Load(N) Capacitance
Mean ± SD (pF)

CV(%) Width of 95%CI (%) Capacitance
Mean ± SD (pF)

CV(%) Width of 95%CI (%)

50 48.03 ± 0.43 0.90 0.17 50.15 ± 0.63 1.26 0.20

100 55 ± 0.35 0.64 0.15 57.06 ± 0.48 0.84 0.18

150 58.28 ± 0.31 0.53 0.14 60.02 ± 0.41 0.68 0.17

200 60.29 ± 0.32 0.53 0.15 61.7 ± 0.41 0.66 0.18

300 62.48 ± 0.4 0.64 0.21 63.47 ± 0.49 0.77 0.22

400 63.59 ± 0.52 0.82 0.19 64.37 ± 0.55 0.85 0.17

Frontiers in Bioengineering and Biotechnology frontiersin.org08

Yoneda et al. 10.3389/fbioe.2025.1639630

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1639630


FIGURE 8
Capacitance-load curves for the sensor within the insole casing.

TABLE 4 Measurement Characteristics of Insole-Embedded Sensors (23 °C, 50% humidity).

Before Durability Test After Durability Test

Load(N) Capacitance
Mean ± SD (pF)

CV(%) Width of 95%CI (%) Capacitance
Mean ± SD (pF)

CV(%) Width of 95%CI (%)

50 45.75 ± 1.78 3.89 0.57 48.37 ± 3.48 7.19 1.14

100 102.75 ± 1.22 1.19 0.21 108.33 ± 4.87 4.50 0.83

150 148.52 ± 1.51 1.02 0.19 158.85 ± 9.61 6.05 1.16

200 199.93 ± 1.64 0.82 0.16 217.77 ± 16.34 7.50 1.42

300 304.33 ± 1.98 0.65 0.15 334.32 ± 27.51 8.23 1.94

400 385.85 ± 2.49 0.65 0.17 423.52 ± 32.45 7.66 2.08

TABLE 5 Measurement Characteristics of Insole-Embedded Sensors (40 °C, 50% humidity).

Before Durability Test After Durability Test

Load(N) Capacitance
Mean ± SD (pF)

CV(%) Width of 95%CI (%) Capacitance
Mean ± SD (pF)

CV(%) Width of 95%CI (%)

50 39.62 ± 2.72 6.87 1.03 42.57 ± 3.1 7.28 1.13

100 85.61 ± 3.83 4.47 0.77 90.25 ± 4.58 5.07 0.90

150 129.87 ± 6.54 5.04 0.87 141.32 ± 10.53 7.45 1.32

200 179.4 ± 8.97 5.00 0.89 198.44 ± 15.46 7.79 1.39

300 277.68 ± 12.57 4.53 1.06 308.47 ± 23.43 7.60 1.81

400 362.26 ± 13.74 3.79 0.00 397.57 ± 28.13 7.08 1.97

Frontiers in Bioengineering and Biotechnology frontiersin.org09

Yoneda et al. 10.3389/fbioe.2025.1639630

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1639630


conditions (p < 0.05). The signal drift rate ranged from 5% to 10%,
varying with environmental and walking conditions, which suggests
that correction may be necessary for long-term use (Table 11).

4 Discussion

Polymer actuators composed of EAP and metal composites have
been developed as artificial muscles because they can deform and

generate stress in response to external signals (Rus and Tolley, 2015).
Compared with ion-driven EAPs, electric-field-driven EAPs,
including eRs, require higher driving voltages but offer faster
response times and capabilities for large deformations, making
them highly suitable as actuators (Bar-Cohen, 2004). Moreover, if
the eR is treated as a capacitor, leveraging the instantaneous nature
of the capacitance changes within the EAP, it can be applied as a
sensor to inversely calculate the applied external forces. Sensing is
possible with a significantly smaller voltage application–far less than

TABLE 6 Measurement Characteristics of Insole-Embedded Sensors (40 °C, 80% humidity).

Before Durability Test After Durability Test

Load(N) Capacitance
Mean ± SD (pF)

CV(%) Width of 95%CI (%) Capacitance
Mean ± SD (pF)

CV(%) Width of 95%CI (%)

50 43.79 ± 3.45 7.88 1.16 45.84 ± 3.95 8.62 1.33

100 96.34 ± 5.49 5.70 0.94 102.87 ± 4.87 4.73 0.83

150 158.6 ± 11.51 7.26 1.20 178.19 ± 10.8 6.06 1.04

200 229.31 ± 16.32 7.12 1.23 263.47 ± 15.74 5.97 1.06

300 374.45 ± 22.65 6.05 1.43 430.41 ± 22.84 5.31 1.27

400 425.92 ± 26.68 6.26 1.48 567.3 ± 28.84 5.08 1.42

FIGURE 9
Hysteresis of materials constituting two dielectric layers. (A) Material constituting Dielectric Layer-1, (B) Material constituting Dielectric Layer-2.

TABLE 7 Differences between pressure intervals and peak capacitance intervals of force gauges before and after durability testing in slow walking
simulation.

Mean hysteresis error (%FS) Normalized hysteresis loop area

Dielectric Layer 1 Nominal Stress 9.98 0.100

Nominal Strain 8.13 0.075

Dielectric Layer 2 Nominal Stress 7.75 0.058

Nominal Strain 6.28 0.050

%FS, percent of full scale.
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TABLE 8 Differences between pressure intervals and peak capacitance intervals of force gauges before and after durability testing in slow walking
simulation.

Temperature and humidity Force gauge
pressure interval
Mean ± SD (ms)

Peak capacitance
interval

Mean ± SD (ms)

Difference
Mean (95%CI)

Before the Durability Test 23 °C, 50% humidity 2000.28 ± 28.24 1999.70 ± 15.49 −0.577* (−1.200, −1.061) EQ

40 °C, 50% humidity 2000.11 ± 31.29 1999.70 ± 21.77 −0.406* (−0.879, −0.712) EQ

40 °C, 80% humidity 1999.74 ± 35.65 1999.79 ± 21.28 0.047* (−0.009, 0.191) EQ

After the Durability Test 23 °C, 50% humidity 2000.10 ± 34.71 1999.82 ± 12.35 −0.276* (−0.616, −0.466) EQ

40 °C, 50% humidity 2000.26 ± 34.22 1999.73 ± 18.64 −0.531* (−1.113, −0.969) EQ

40 °C, 80% humidity 1999.80 ± 37.28 1999.71 ± 18.69 −0.092* (−0.254, −0.105) EQ

EQ, equivalent, * Indicates statistical equivalence, with both one-sided tests from the TOST, procedure reaching significance (p < 0.05) and the confidence interval entirely within the equivalence

bounds.

TABLE 9 Differences between pressure intervals and peak capacitance intervals of force gauges before and after durability testing in normal walking
simulation.

Temperature and humidity Force gauge
pressure interval
Mean ± SD (ms)

Peak capacitance
interval

Mean ± SD (ms)

Difference
Mean (95%CI)

Before the Durability Test 23 °C, 50% humidity 999.98 ± 10.08 999.96 ± 3.6 −0.021* (−0.068, −0.016) EQ

40 °C, 50% humidity 999.98 ± 8.76 999.91 ± 5.77 −0.064* (−0.151, −0.1) EQ

40 °C, 80% humidity 999.95 ± 11.18 999.81 ± 4.18 −0.140* (−0.306, −0.242) EQ

After the Durability Test 23 °C, 50% humidity 999.86 ± 12.96 999.94 ± 4.96 0.079* (0.125, 0.184) EQ

40 °C, 50% humidity 1,000.04 ± 10.75 999.98 ± 4.41 −0.055* (−0.131, −0.084) EQ

40 °C, 80% humidity 1,000.24 ± 10.33 999.91 ± 2.89 −0.330* (−0.667, −0.625) EQ

TABLE 10 Differences between pressure intervals and peak capacitance intervals of force gauges before and after durability testing in quick walking
simulation.

Temperature and humidity Force gauge
pressure interval
Mean ± SD (ms)

Peak capacitance
interval

Mean ± SD (ms)

Difference
Mean (95%CI)

Before the Durability Test 23 °C, 50% humidity 599.94 ± 4.03 599.96 ± 3.88 0.021* (0.026, 0.058) EQ

40 °C, 50% humidity 599.85 ± 3.38 599.98 ± 3.45 0.128* (0.233, 0.269) EQ

40 °C, 80% humidity 600.02 ± 4.66 599.95 ± 5.41 −0.070* (−0.159, −0.116) EQ

After the Durability Test 23 °C, 50% humidity 600.02 ± 4.04 600.02 ± 3.97 0.000* (−0.017, 0.017) EQ

40 °C, 50% humidity 600.04 ± 1.78 599.96 ± 4.75 −0.073* (−0.157, −0.13) EQ

40 °C, 80% humidity 600.02 ± 4.74 599.96 ± 4.94 −0.055* (−0.125, −0.09) EQ

TABLE 11 Signal drift rate calculated by comparing before and after endurance testing under various temperature and humidity conditions.

Temperature and humidity environment Slow walk Normal walk Quick walk

23 °C, 50% humidity 8.88% 8.21% 7.21%

40 °C, 50% humidity 8.63% 6.95% 5.81%

40 °C, 80% humidity 9.72% 8.25% 6.99%
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the power required for actuator actuation–if minute changes in
capacitance can be detected (O’Brien et al., 2010).

Integrating both sensing and actuation functionalities into an
artificial muscle can not only lighten the overall system and simplify
wiring but also enable the construction of real-time feedback control
loops based on the state of the actuator. This mimics the reflex loops
of biological proprioception, allowing adaptive movements that
emulate the human body’s reflex structures (Anderson et al.,
2012; Rizzello, 2023; Prechtl et al., 2024). Intrinsic Self-Sensing,
which utilizes the changes in the physical properties of EAP
material’s physical properties (Prechtl et al., 2024). Although this
method eliminates the need for additional components, it requires
the separation of the actuation signal from the sensing signal.
Currently, this has not yet been achieved with the eR, posing a
future challenge.

Realizing artificial muscles with self-sensing actuation
capabilities is a highly challenging endeavor. In light of this, we
prioritized an initial validation of their accuracy specifically as soft
sensors. When using EAP-type artificial muscles solely for sensing,
the most significant difference compared to conventional pressure
sensors is the non-linear relationship between the external force and
capacitance, primarily because of the inherent nonlinearity between
stress and strain in elastomers (Wissler and Mazza, 2007). In this
study, using eR, we observed an approximately linear change up to
10 N, which corresponds to a strain region of less than 10% across all
conditions. However, loads beyond this range exhibit a non-linear
distribution. Therefore, we measured changes in ΔC with increasing
external load to investigate the eR sensor’s measurement
characteristics. The coefficient of variation remained below 2%
and the confidence interval width was within 3%, indicating
acceptable precision and accuracy. Even when the sensor was
integrated into an insole casing, although the precision slightly
decreased, both the precision and accuracy were judged to be
within acceptable limits. We also confirmed that a 5th-order

polynomial provided the most accurate regression for the load
estimation. Because the approximation formula changes with
variations in the elastomer temperature, humidity, and repeated
loading, we conducted measurements under multiple humidity and
temperature conditions, as well as before and after
200,000 durability cycles. The results showed that while a specific
relationship equation needs to be established for each sensor and
temperature/humidity condition, it is entirely feasible to inversely
calculate the load values based on these relationships.

Compared with the standalone eR sensor, the eR sensor placed
within the insole casing showed a different rising profile in its load-
capacitance curve owing to the gaps present within the insole casing
(Figures 7, 8). A fifth-order polynomial was found to be the best fit
for the load estimation from the eR sensors embedded in the insole
casing, a 5th-order polynomial was found to be the best fit. For the
load-capacitance curve of the standalone sensor, while the initial
increase was linear, the overall non-linear behavior remained
unchanged. Similarly, when using a 5th-order polynomial for
regression of the standalone sensor, oscillations were observed in
the regression curve and actual values below 50 N owing to the
Runge phenomenon, making this regression unsuitable for that
range (Figure 10). Based on these characteristics of the regression
curve, the minimum detectable load was set to 50 N. When applying
eR as a capacitance sensor for other purposes, where the capacitance
change behavior might differ, it will be necessary to perform curve
regression based on the load and capacitance changes and to
determine which curve regression equation provides the best fit.
Load estimation using 5th-order polynomial regression is
advantageous, as it involves only a continuous process of
additions and multiplications with just six parameters. This
allows for real-time computation within the insole’s circuitry.
Compared to machine learning-based load estimation, this
method is less prone to delays during the continuous processing
required for walking analysis. Furthermore, the 5th-order

FIGURE 10
Differences in capacitance-load curve fitting between the standalone sensor and the insole-embedded sensor: The standalone sensor showed the
Runge phenomenon during 5th-order polynomial regression (A,B), leading to a discrepancy between actual and estimated load (C).
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polynomial regression approach has an extremely small memory
footprint, contributing to reduced power consumption of the
smart insole.

A primary challenge in capacitive pressure sensors is managing
the trade-off between high sensitivity and low hysteresis. Our design
addresses this by employing a hybrid dielectric structure that pairs a
soft elastomer for high sensitivity with a stiffer elastic layer to

promote mechanical recovery and mitigate viscoelastic hysteresis.
This multi-layer architecture not only reduces hysteresis but also
extends the sensor’s dynamic range by suppressing capacitance
saturation, an approach whose efficacy in improving sensor
metrics is supported by the literature (Zhu et al., 2022; Kumar
et al., 2023). The fabricated sensor demonstrated a hysteresis error of
approximately 10% FS.While this value is higher than the sub-1% FS

TABLE 12 Summary of commercially available smart insole sensors, applications, validation, accuracy, circuit placement, and battery type.

Product name,
manufacturer

Sensors Applications Published accuracy/
Validation

Circuit
placement

Battery
Type

Low
price (-$300)

ORPHE TRACK
ORPHE (Tokyo, Japan)

Embedded 6-axis IMU
module

Running ICC >0.9 was achieved for
multiple items compared to
motion capture analysis (Uno
et al., 2022)

External module Rechargeable
(Built-in)

SALTED Golf Smart
Insole
SALTED (Seoul, South
Korea)

4-point resistive
pressure sensors

Golf Not disclosed Integrated Rechargeable
(Built-in)

A-RROWG
NEC FiNC
Technologies (Tokyo,
Japan)

IMU Walking Not disclosed Integrated Rechargeable
(Built-in)

ARION Smart Insoles
ATO-GEAR B.V.
(Eindhoven,
Netherlands)

8-point resistive
pressure sensors
+ IMU

Running Compared with motion
capture analysis during
treadmill walking, the average
error of the measured items
was 0.09%. (Van Hooren et al.,
2023)

External module Rechargeable
(Built-in)

NURVV Run
NURVV Group
(Twickenham, UK)

16-point resistive
pressure sensors
+ IMU

Running Not disclosed Integrated Rechargeable
(Built-in)

Middle price
($500–2000)

Stridalyzer PRISM
ReTiSense
Technologies
(Bangalore, India)

100-point resistive
pressure matrix + IMU

Gait pressure analysis (clinical
and research)

Not disclosed Integrated Rechargeable
(Built-in)

PRO-SPECS Smart
Insole
LS Networks (Seoul,
South Korea)

Dual-chip IMU +
pressure sensors

Step counting, posture, running
data logging

Not disclosed Integrated Rechargeable
(Built-in)

Moticon ReGo/
OpenGo
Moticon ReGo AG
(Munich, Germany)

16-area capacitive
textile pressure sensors
+ IMU

Rehabilitation, sports, and gait
measurement

Compared with force plate
analysis, the correlation of the
force-time curve was 0.8 or
higher (Stöggl and Martiner,
2017)

Integrated Replaceable
Battery

High price
($4,000-)

Loadsol
Novel (Munich,
Germany)

Full-surface capacitive
force sensor

GRF measurement, rehab,
sports science

The mean bias in several
items, including ground
contact time, impulse, peak
force, and time to peak,
was <3.4%. (Seiberl et al.,
2018)

External module Replaceable
Battery

F-Scan
Tekscan
(Norwood,MA,
United States)

954 piezoresistive
sensors

Gait analysis, orthotic and
footwear evaluation, and Sports
biomechanics

ICC 0.83–0.98, CV 2.7%–

13.4% in test–retest reliability
during treadmill walking
(Patrick and Donovan, 2018)

Integrated Rechargeable
(Built-in)

Pedar novel (Munich,
Germany)

99–183 Capacitive
sensors

Clinical and sports gait
research, footwear R&D,
diabetic-foot care, rehab load
monitoring, and biomechanics
teaching

As a result of two
measurements taken 1 week
apart, 93% of the
160 parameters had a
coefficient of variation of 25%
or less (Ramanathan et al.,
2010)

Integrated Rechargeable
(Built-in)

IMU, inertial measurement unit; GRF, ground reaction force; ICC, intraclass correlation coefficients; CV, coefficient of variation.
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achieved in state-of-the-art devices (Huang et al., 2023), it is
comparable to levels reported for other flexible sensors, such as
the 10.3%FS error observed by Shalabi et al. (2022). Therefore, we
contend that this performance represents an acceptable trade-off for
applications that prioritize structural flexibility and a wide dynamic
range over ultra-high precision, rendering the sensor well-suited for
wearable systems aimed at the early detection of osteoarthritis by
monitoring joint loading dynamics.

Over the past decade, several smart insoles have entered the
market, spanning a wide price range from low to high (Table 12).
This diversity is primarily due to differences in their sensor
structures and intended applications. Lower-priced insoles are
typically limited to specific applications, such as certain golf or
running sports. Mid-to high-priced insoles, however, offer a
wider range of applications, from gait analysis for research
purposes to clinical use as medical devices. Common pressure
sensors used in biological monitoring include piezoresistive,
piezoelectric, and capacitive sensors (Hammock et al., 2013),
and smart insoles utilizing the unique characteristics of each have
been reported for plantar pressure measurement (Santos et al.,
2024). For instance, F-Scan (Tekscan, US) uses piezoresistive
sensors but is more suitable for short-term use owing to
hysteresis issues (Zhang et al., 2023). In contrast, there is a
growing trend towards smart insoles that adopt capacitive
sensing, such as Moticon SCIENCE (Moticon ReGo,
Germany) and Pedar (Novel, Germany) (Zhang et al., 2023).
While capacitive sensors have drawbacks such as non-linear
response and susceptibility to noise, they are suitable for long-
term use owing to their low power consumption, high sensitivity,
durability, and low susceptibility to hysteresis. Smart insoles
using artificial muscles, such as eR, for capacitive sensing have
not yet been reported. Because of the technical challenges, insoles
using capacitive sensors are primarily found in the higher price
range (Table 12). However, the eR Smart Insole is expected to be
sold at a low to mid-price point thanks to the mass production of
eR sensors and the efficiency improvements in its
circuit structure.

Accuracy validation is rarely performed for low-priced insoles,
leaving their measurement precision and accuracy questionable.
While most mid-to high-priced insoles undergo accuracy
validation, the methodologies vary among studies. Some compare
multiple gait parameters with values obtained from motion capture
or force plates using intraclass correlation coefficients, while others
assess the reliability of obtained values using the coefficient of
variation. This diversity in validation methods makes a
straightforward comparison of accuracy between different smart
insoles difficult. However, our findings indicate that the
measurement characteristics of the eR as an insole sensor are not
inferior to those of similar capacitive sensors, demonstrating its
potential for application in healthcare devices (Tao et al., 2020; Ho
et al., 2022; Luna-Perejón et al., 2023).

A limitation of this study is that the load values were not
continuous. Furthermore, even if the stress applied to the
elastomer is constant, the capacitance fluctuates over a period,
making it impossible to completely exclude hysteresis effects,
where slight capacitance changes occur depending on the
measurement timing. In addition, because the sensing values
changed after the durability test, periodic calibration was

necessary. Another limitation of this study is that our
investigation was restricted to only three temperature and
humidity conditions. However, because the insole inside a shoe
generally operates under conditions that approximate these, despite
slight variations in temperature and humidity, we believe this does
not pose a significant issue for measurement. An additional
limitation of this sensing approach is the increased coefficient of
variation in sensor readings caused by structural gaps within the
insole. As a potential solution, we considered a simplified film-type
structure in which foamed urethane is sandwiched between
Polyethylene Terephthalate (PET) sheets to suppress such
structural variability. However, this design poses concerns
regarding long-term durability under external forces. This
remains a structural issue that requires further investigation in
future studies. Although the eR was developed as a sensing
actuator, it currently cannot perform actuation and sensing
simultaneously, which requires further improvement.

In conclusion, it has been demonstrated that the eR, originally
developed as an actuator, can be effectively utilized as a sensor to
inversely calculate the external forces applied to the body,
particularly when used as a sensor within an insole casing,
based on its characteristic capacitance change. Its accuracy
and precision strongly support its potential for applications
beyond smart insoles in healthcare fields that require dynamic
monitoring, such as gait and finger movement analysis.
Furthermore, eR has the potential to be integrated as a sensor
in self-sensing artificial muscles.
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