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Menstrual blood-derived mesenchymal stromal cells (MenSCs) have emerged as
a novel source for regenerative medicine, offering a unique alternative to
traditional stem cell types, including adipose-derived and bone marrow-
derived mesenchymal stromal cells. MenSCs are characterized by their
pluripotency, multi-lineage differentiation potential and immunomodulatory
properties, which enable them to contribute to the regeneration of various
tissues such as skin, uterus, muscle, connective tissues and nerves.
Extracellular vesicles (EVs) secreted by MenSCs contain biologically active
molecules, including proteins, lipids, and miRNAs, which play a key role in
mediating these regenerative effects. Compared to other MSC-derived EVs,
MenSC-EVs offer distinct advantages due to their enhanced regenerative
capabilities and lower immunogenicity. Moreover, MenSC-EVs are a promising
source for disease biomarkers in various diseases, including female reproductive
system issues such as infertility. This manuscript reviews the latest findings on
MenSCs and their EVs, highlighting their cargo composition, regenerative
potential and as a source of biomarkers across multiple tissues, comparing
their cargo profiles with EVs derived from other MSC sources.
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1 Introduction

Over the past few decades, mesenchymal stromal cells (MSCs) have gained significant
attention in regenerative medicine. Traditional sources of MSCs, such as adipose tissue and
bone marrow, have been studied and applied in various models due to their multipotency,
immunomodulatory properties, and secretion of bioactive molecules, establishing their
regenerative potential (Lu et al., 2023; Lei et al., 2013; Tran et al., 2011; Baghaei et al., 2017;
Maslennikov and Maksym, 2023; Lee et al., 2013; Asadian et al., 2021; Sober et al., 2023; Xie
et al., 2009). However, alternative and relatively less studied sources for MSCs can offer
unique advantages over conventional MSC sources. Menstrual blood, accessible without
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invasive procedures, provides an abundant reservoir of menstrual
blood MSCs (MenSCs) possessing multipotency and even
pluripotency-like features, including multi-lineage differentiation
potential and the ability to promote regeneration of different
tissues including the skin, uterus, bones, and muscles (Aleahmad
et al., 2018; Rahimi et al., 2018; Mou et al., 2013; Sheikholeslami
et al., 2021; Akhavan-Tavakoli et al., 2017; Meng et al., 2007). These
features make MenSCs a valuable and a potential candidate for
cellular therapy.

MSC extracellular vesicles (EVs), nano-sized particles that
encapsulate bioactive molecules such as proteins, lipids and RNA
have attracted attention from both scientists and clinicians. Among
them, MenSC-EVs have been studied the least. These EVs are key
mediators of the regenerative and therapeutic effects of MenSCs,
facilitating cellular communication and modulating immune
responses (Robalo Cordeiro et al., 2024; Chen et al., 2021; de
Pedro et al., 2023). Compared to EVs derived from other MSC
sources, MenSCs-EVs exhibit enhanced regenerative properties, a
lower immunogenic profile and a greater potential for personalized
therapeutic applications. It was shown that MenSC-EVs possess
potential wound healing properties, including cardiac, neural, liver
tissue repair (Dalirfardouei et al., 2019; Lopez-Verrilli et al., 2016;
Wang et al., 2017; Chen et al., 2017) and most importantly–hold
promise in female reproductive tissue regeneration (Robalo
Cordeiro et al., 2024; Marinaro et al., 2018; Zhang et al., 2021b).
Furthermore, the cargo within MenSC-EVs is a potential source for
disease biomarkers, offering new strategies in diagnostics and
treatment for issues in female infertility and more. For instance,
MenSC-EVs can be used for evaluation of endometriosis and
endometriosis-related infertility compared to healthy donors
(Cordeiro et al., 2023; Zhou et al., 2020). Additionally, undefined
female infertility biomarkers can be detected and validated by
MenSC-EVs (Vaiciuleviciute et al., 2025).

This review explores the characteristics and functions of
MenSCs, comparing them to pluripotency-possessing embryonic
stem cells and classical MSCs, focusing on their EVs as a novel
therapeutic and diagnostic tool in regenerative medicine. By
comparing MenSC-EV cargo to those from other MSC sources,
we aim to highlight the unique properties of MenSCs in personalized
therapy, tissue regeneration, and disease management, with an
emphasis on different disease conditions, such as reproductive
system, heart, liver and skin degeneration. Through this review,
we illustrate the need for continued research to fully understand the
potential of MenSC-EVs, aiming for improved clinical outcomes in
the future.

2 Menstrual blood-derived
mesenchymal stromal cells and their
pluripotent-like properties

Endometrial cells exhibiting stemness were first discovered in
2004 (Gargett, 2004) and further characterized as a menstrual-blood
stromal cell population in 2007 (firstly referred to as endometrial
regenerative cells). MenSCs are collected from menstrual blood,
which contains cellular material shed from the functionalis layer of
the endometrium during the menstrual phase. This includes
endometrial stromal cells and progenitor-like populations with

mesenchymal and pluripotency-like features. Unlike amniotic
fluid-derived MSCs, which have been shown to originate, at least
in part, from exfoliated fetal kidney cells during nephrogenesis and
deposited via fetal urine (Rahman et al., 2018), MenSCs represent an
adult-derived MSC source from hormonally regulated, cyclic
endometrial tissue of two major zones: the functional layer as
well as a supportive stroma (Achmad and Götte, 2014).

It was shown that MenSCs possess more advantageous
properties compared to BMMSCs, as they are easy to harvest,
differentiate into a variety of tissue cells, have a high proliferative
rate (doubling every 19.4 h, compared to around 40–45 h for
BMMSCs) (Meng et al., 2007) and low immunogenicity (Chen
et al., 2019; Gargett et al., 2016; Tabatabaei and Ai, 2017; Liu
et al., 2018; Alcayaga-Miranda et al., 2015).

Furthermore, a great advantage of MenSCs is the ability to
collect them repeatedly throughout the lifetime during
menstruation, presenting potential use for autologous
transplantation, and lack of ethical concerns compared to
sourcing other types of stem cells. Menstrual blood can be kept
at 4°C for up to 3 days with no changes in MenSC morphology,
marker expression, proliferation capacity or differentiation
potential, adding to the convenience of sourcing them from
donors and transporting them prior to isolation and expansion
(Liu et al., 2018). Also, an important part of MenSCs is their
secretome, which has gained interest as a potential cell-free
therapy, while retaining the immunomodulatory, stimulatory and
paracrine effects of the cells themselves (Uzieliene et al., 2018;
Uzieliene et al., 2023).

Over the last few decades, therapeutic potential of MenSCs has
been considered in multiple in vitro studies, such as neural, cardiac,
liver, lung, endometrium and cartilage diseases (Mou et al., 2013;
Toyoda et al., 2007; Azedi et al., 2017; Uzieliene et al., 2023; Skliutė
et al., 2021; Valatkaitė et al., 2021). In vivo studies also revealed
positive results of MenSCs transplantation in the reproductive
system. MenSCs transplanted to mice uterus, after endometrial-
factor induced infertility, presented a positive impact on
endometrium restoration and outcomes (Bausyte et al., 2023).
Additionally, it was shown MenSCs increased fertility, number of
offspring and restored the estrous cycle of mice after chemotherapy
that resulted in ovarian degeneration, indicating the restoration of
fertility and ovarian function (Lai et al., 2015). Likewise, a clinical
trial with 36 poor ovarian responder women of mature age (>40) was
carried out in 2018–2019, implanting autologous MenSCs into the
ovaries. The therapy improved oocyte numbers and quality, fertility
and overall success of pregnancy (Zafardoust et al., 2020), showing
consistent results from MenSC therapy in ovarian health and
fertility improvement even in human trials.

2.1 Phenotypic profile and differentiation
capacity of MenSCs

MenSCs possess a typical MSC phenotypic profile (surface
marker expression) compared to other MSCs, although they also
express unique, pluripotency-related surface markers. The
phenotypic analysis of in vitro expanded MenSCs revealed a
positive expression for the surface markers CD44, CD73, CD90,
and CD105 and negative for CD14, CD34, CD45, CD80, and
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TABLE 1MenSC surfacemarker expression and differentiation potential, as compared to embryonic, BMMSC, ATMSC, UC/Wharton jelly MSC, amniotic fluid
and placental MSCs.

Cell type Positive markers Negative
markers

Differentiation
potential

References

Embryonic
stem cells

Pluripotency markers: SSEA-3, SSEA-4,
TRA-1-60, TRA-1-81, GCTM2, GCT343,
CD9, SOX-2, OCT-4, NANOG, TDGF,
GABRB3, DNMT3B,GDF3
class I HLA

Mesenchymal markers
CD44

All three embryonic germ
layers: mesodermal,
ectodermal, endodermal

Nagano et al. (2008)
Quintanilla et al. (2014), Reubinoff et al.
(2000), Asprer and Lakshmipathy (2015)

MenSCs Mesenchymal markers: CD9, CD10, CD29,
CD44, CD72, CD73, CD90, CD105, and
CD146
Pluripotency markers Oct-4, SOX2,
NANOG, and SALL-4

Haematopoietic markers
CD34, CD38, CD45,
CD117, CD133
Endothelial marker:
CD31
Antigen: HLA-DR
Embryonic marker:
SSEA-4
Immune cell marker:
CD14, CD80
Cancer marker: CD117
Mesenchymal marker:
STRO-1

Chondrogenic
Adipogenic
Osteogenic
Cardiogenic
Hepatocyte-like cells
Glucose-sensitive beta like-cells
Oocyte-like cells
Keratinocytes
Nucleus pulposus-like cells
Myogenic-like
Endothelial-like
Respiratory endothelial-like
Neural-like

Izanlou et al. (2023), Hojjat et al. (2023), Hu
et al. (2014), Aleahmad et al. (2018), Rahimi
et al. (2018), Mou et al. (2013), Sheikholeslami
et al. (2021), Akhavan-Tavakoli et al. (2017),
Meng et al. (2007)

BMMSCs Mesenchymal markers: CD13, CD29, CD44,
CD58, CD71, CD73, CD90, CD105,
CD106 CD146, CD166, CD271

Haematopoietic
markers: CD34, CD45
Immune cell marker:
CD14, CD19
Endothelial marker:
CD31
Antigen: HLA-DR

Chondrogenic
Adipogenic (brown fat)
Osteogenic

Lu et al. (2023)
Re et al. (2023)

UC/
Whartton’s
jelly-MSC

Mesenchymal markers
CD29, CD44, CD51, CD56, CD73,
CD90 CD105, CD146, CD166
Pluripotency markers: low levels of Tra-1-60,
Tra-1-81, NANOG, OCT-4, SSEA-3, SSEA-4

Immune cell marker:
CD14, CD19
Haematopoietic
markers: CD34, CD45
Antigen: HLA-DR

Chondrogenic
Adipogenic
Osteogenic
Epithelial-like
Neural-like
Hepatic-like
Myogenic-like
Cardiac-like
Insulin-producing cells
Oocyte-like cells

Wang et al. (2004), Margossian et al. (2012),
Maslennikov and Maksym (2023), Sober et al.
(2023), Toyota et al. (2021), Abouelnaga et al.
(2022), Majore et al. (2011), Chen et al. (2016)

ATMSCs Mesenchymal markers: CD9, CD10, CD13,
CD73, CD29, CD49e, CD54, CD55, CD79a
CD166 and ALCAM, CD44, CD144, CD90,
CD105, CD146, CD106, (HLA)-ABC,
CD271

Haematopoietic
markers: CD45
Endothelial marker:
CD31
Immune cell marker:
CD14, CD11b, CD19,
CD56
Melanoma marker:
CD146

Adipogenic (brown fat)
Osteogenic
Chondrogenic

Yang et al. (2024), Rebelatto et al. (2008)

Amniotic fluid
MSCs

Mesenchymal markers: CD29, CD 90,
CD105, CD73, CD44, CD166
Pluripotency markers: Oct-4, SSEA-4, c-Myc

Immune cell marker:
CD14
Endothelial marker:
CD31
Haematopoietic
markers: CD34, CD45,
CD117

Chondrogenic
Osteogenic
Adipogenic
Myogenic-like
Neural-like
Oocyte-like cells
Keratinocytes
Insulin-producing
Hepatic-like
Vascular endothelial-like

Shamsnajafabadi and Soheili (2022),
Portmann-Lanz et al. (2006), Sober et al.
(2023), Maslennikov and Maksym (2023),
Toyota et al. (2021), Abouelnaga et al. (2022),
Yu et al. (2014); Lan et al. (2020), Zheng et al.
(2008), Markmee et al. (2017), Mu et al. (2017),
Naeem et al. (2022)

Placental
MSCs

Mesenchymal markers: CD105, CD146,
CD29, CD73, CD90, MHC I, CD49a, CD105,
CD106, CD13, CD166, CD146, HLA-ABC
Pluripotent markers: SSEA-4, mRNA of
Nanog, Sox2, Rex-1

Immune cell marker:
CD14, CD40, CD80 and
CD86
Haematopoietic
markers: CD34, CD45
Endothelial marker:
CD31
Antigen: HLA-DR
BMMSC marker: CD271

Chondrogenic
Osteogenic
Adipogenic
Myogenic-like
Neural-like
Cardiac-like
Hepatic-like
Insulin-producing
Oocyte-like

Vellasamy (2012), Castrechini et al. (2010),
Tran et al. (2011), Abumaree et al. (2013),
Maslennikov and Maksym (2023), Sober et al.
(2023), Portmann-Lanz et al. (2006), Toyota
et al. (2021), Abouelnaga et al. (2022), Roberts
et al. (2019), Chien et al. (2006), Sun and Ji
(2009), Asgari et al. (2017)
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HLA-DR, while endometrial MSCs have positive expression for
CD73, CD90, CD105, CD13, CD29, CD44 markers and the absence
of expression of the hematopoietic cell surface antigens CD19,
CD34, CD45, CD117, CD130 and HLA-DR (class II) (Zemelko
et al., 2012). Moreover, MenSCs possess pluripotency markers, such
as Oct-4, SOX2, NANOG, and SALL-4, which make them a unique,
MSC type, as compared to other sources MSCs (Borlongan et al.,
2010). However, the expression of some pluripotency-associated
markers in MenSCs does not equate to the full functional capacity of
embryonic stem cells or induced pluripotent stem cells (iPSCs). To
date, no definitive evidence has demonstrated the ability of MenSCs
to differentiate into all three germ layers in vivo, which is a critical
hallmark of true pluripotency. Thus, more comprehensive studies,
including comparative transcriptomic and functional analyses are
needed to validate MenSCs pluripotency, while currently MenSCs
remain classified as multipotent.

A MenSC surface marker panel, including positive and negative
markers (expressed and non-expressed) as well as differentiation
capabilities, is provided in Table 1 and summarized in Figure 1,
comparing them to embryonic stem cells, BMMSCs, umbilical cord
(UC)/Wharton’s jelly, adipose tissue (ATMSCs), amniotic fluid and
placental MSCs.

Beside phenotypical differences with other types of stem cells,
MenSCs also differ in their differentiation capabilities. It is known

that MenSCs differentiate into a wide range of cell types, and are
even able to differentiate into cardiomyocytes with the functions of
spontaneously beating cells after induction, resulting in the
decreased myocardial infarction area in a rat model (Hida et al.,
2008; Ikegami et al., 2010). Furthermore, it has been shown that
MenSCs are capable of differentiation into neural, epidermal-like
cells (Azedi et al., 2017; Faramarzi et al., 2016; Chen et al., 2015;
Toyoda et al., 2007), functional hepatocytes (Mou et al., 2013) and
even oocyte-like cells (Asgari et al., 2017) which suggest a superior
spectrum of their differentiation potential compared to other
tissue MSCs.

2.2 MenSCs secretome

MenSCs secrete large amounts of paracrine factors, including
growth factors responsible for endometrium regeneration, which
may be a potential co-stimulant for other tissue regeneration
purposes (Chen et al., 2019; Liu et al., 2018). MenSCs also
secrete angiogenic factors VEGF, HGF, ANG and MMP-1 and
different cytokines (IL-6, IL-8 and IFN-gamma), and most
importantly, MenSCs were shown to be safe to transplant due to
their low tumorigenicity (Liu et al., 2018). The secretome of MenSCs
also includes EVs, containing proteins or miRNAs (more

FIGURE 1
Comparison of MenSCs with Amniotic MSCs, umbilical cordMSCs (UCMSCs), Placenta MSCs, Adipose tissueMSCs (ATMSC) and BoneMarrowMSCs
(BMMSC) differentiation potential.
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information in section 2). Different studies reported secretion of
various growth factors by MenSCs. Table 2 summarizes all current
findings on MenSCs secretome, including protein family, functions
and comparison to other types of MSCs.

Factors secreted by MenSCs already showed positive
immunomodulatory, cardioprotective, angiogenic and
regenerative effects. Paracrine effects of MenSCs were analysed in

numerous studies and their effects were proposed being more
superior to BMMSCs (Alcayaga-Miranda et al., 2015). For
instance, MenSC paracrine factors possessed promising results in
rat model of myocardial infarction by reducing apoptosis of cells and
stimulating endogenous regeneration, while transplantation of
MenSCs achieved significantly better cardiac performance than
BMMSCs or ATMSCs (Jiang et al., 2013; Wang et al., 2017).

TABLE 2 MenSCs secreted proteins and comparison to other types of MSCs.

Family Factors Function MenSC secretome
comparison to other

MSC types

References

Epidermal Growth Factor
(EGF) Family

EGF Stimulate cell growth,
proliferation, and
differentiation

Not compared Jiang and Wang, (2012)

Fibroblast/keratinocyte
Growth Factor (FGF/
KGF) Family

bFGF
KGF

MenSCs secrete more than BMMSCs Alcayaga-Miranda et al.
(2015), Ren et al. (2016)

Vascular Endothelial
Growth Factor (VEGF)
Family

VEGF, angiopoietin-1 (Ang-1),
angiopoietin-2 (Ang-2), Stromal-
derived factor-1 (SDF-1)

vascular remodeling and
angiogenesis

No difference in secretion of Ang-1,
BMMSC secrete more Ang-2
compared to MenSC
No differences in secretion of SDF-1,
VEGF between MenSC and BMMSC
MenSCs had higher VEGF secretion
than dental pulp MSCs in early
passages

Manshori et al. (2022), Jiang
and Wang (2012), Li et al.
(2023), Li et al. (2019)

Transforming Growth
Factor-Beta (TGF-β)
Family

TGF-β, Growth differentiation factor
15 (GDF-15)

Cell growth, differentiation,
and apoptosis

Not compared Jiang and Wang (2012), Li
et al. (2023)

Neurotrophin (NT)
Family

Brain-Derived Neurotrophic Factor
(BDNF), β-Nerve Growth Factor (β-
NGF), Neurotrophin-3 (NT-3),
Neurotrophin-4/5 (NT-4/5), Artemin
(ARTN), Glial cell line-derived
neurotrophic factor (GDNF),
Neurturin (NTN), Prospero
Homeobox Protein 1 (PSPN),
Cerebral Dopamine Neurotrophic
Factor (CDNF), Mesencephalic
Astrocyte-Derived Neurotrophic
Factor (MANF)

Promote survival and
differentiation of neurons

Not compared Li et al. (2019)

Hepatocyte Growth
Factor (HGF) Family

HGF Cell growth, cell motility, and
morphogenesis

No differences in secretion of HGF
between MenSC and BMMSC;
MenSCs had a higher secretion than
dental pulp MSCs

Manshori et al. (2022), Li
et al. (2019), Ren et al. (2016)

Insulin-like Growth
Factor (IGF) Family

IGF-1 Particularly muscle and bone
growth and development

Not compared Li et al. (2019)

Inhibitors of Apoptosis
(IAP) Family

X-linked Inhibitor of Apoptosis
Protein (XIAP)

Suppresses apoptosis Not compared Li et al. (2023)

Hypoxia-Inducible Factor
(HIF) Family

Hypoxia-Inducible Factor 1 α
(HIF-1α)

Cellular response to low
oxygen conditions, involved in
processes like angiogenesis and
metabolism

MenSC secrete more than BMMSC Manshori et al. (2022)

Thrombospondins Family Thrombospondin-1, -2, and -5 Play roles in angiogenesis,
tissue remodeling, and cell
adhesion

Not compared Li et al. (2023)

Interleukins (IL) Interleukin-1β (IL-1β) Involved in the inflammatory
response

BMMSC secrete more than MenSC Manshori et al. (2022)

Colony-stimulating
Factor (CSF)

Granulocyte-macrophage colony-
stimulating factor (GM-CSF)

Immune and inflammatory
response, MSC mobilization
and migration

MenSC secretion significantly higher
than umbilical cord MSC

Meng et al. (2007), Kim et al.
(2019)

Frontiers in Bioengineering and Biotechnology frontiersin.org05

Vaiciuleviciute et al. 10.3389/fbioe.2025.1643408

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1643408


Important to note, BMMSCs were shown to secrete higher
concentrations of IL-1β (Jiang and Wang, 2012; Manshori et al.,
2022). Also, it was revealed that MenSC secrete higher amounts of
EGF, FGF and HIF-1α, as compared to BMMCS, while no
differences were observed in VEGF or angiopoietin secretion,
which were higher in the MenSC secretome compared to UC
and dental pulp MSCs. Moreover, MenSC secrete higher levels of
HGF than dental pulp MSCs and higher levels of GM-CSF
compared to UCMSCs.

Noteworthy, MenSC secretome can be modulated by different
environmental conditions. For instance, under hypoxic conditions
MenSCs secreted significantly higher levels of VEGF, while EGF and
TGF-β secretion was not affected (Jiang and Wang, 2012; Alcayaga-
Miranda et al., 2015). Hypoxia can also enhance the release of EVs,
as previously shown in UCMSCs (Zhang et al., 2012). Moreover, it
was demonstrated that endometrial MSC MiRNAs: miR-148a-3p,
hsa-miR-378a-3p (related to angiogenesis, wound healing), hsa-
miR-424-5p (associated with angiogenesis), hsa-miR-23a-3p, and
hsa-miR-let-7a-5p (related to immune modulation) were the most
widely expressed in acute hypoxic conditions (0.1%-1%), while hsa-
miR-34a-5p (reduces expression of VEGF), hsa-miR-532-5p, hsa-
miR-221-3p, hsa-miR-93-5p (regulating cell cycle and proliferation)
were detected only under normoxic conditions (de Pedro et al.,
2023). These results are directly associated with MenSC
physiological behavior in vivo and differences obtained in vitro.

In order to stimulate MenSC immunomodulator or regenerative
properties, MenSCs can be additionally stimulated by external
factors using different cultivation conditions. MenSCs increase
IDO1 secretion and EVs release under treatment with IFN-γ and
TNF-α (de Pedro et al., 2021). bFGF and 5-aza increased the levels of

VEGF, SDF-1, HIF-1α, IL-1β, and ANG-1 secretion from MenSCs
(Manshori et al., 2022). Moreover, MenSCs may help protect
insulin-producing pancreatic β-cells from autoimmune attack in
type 1 diabetic mice. By modulating immune responses, these cells
could potentially slow disease progression and preserve insulin
production (Wu et al., 2014).

3 MenSC EVs and their cargo

EVs isolated from human bodily fluids, such as blood, urine,
saliva, or cell culture supernatants have emerged as a promising
approach for non-invasive therapies and diagnostics, also known as
“liquid biopsy” because of their selectively packed cargo, including
proteins, lipids and nucleic acids (Yokoi et al., 2015; Jia et al., 2014;
Ciferri et al., 2021; Matsuzaka and Yashiro, 2022). The cargo of EVs
is essential for cellular responses and can regulate various
physiological and pathological processes, as well as serve as
potential biomarkers for diagnosis (Mir and Goettsch, 2020).
MenSC-EVs have demonstrated regenerative properties, primarily
due to their capacity to transport cargo to recipient cells and
modulate key signaling pathways associated with cell survival,
differentiation, and proliferation (Robalo Cordeiro et al., 2024;
Chen et al., 2021; de Pedro et al., 2023). A schematic
representation of MenSC-EV composition is presented in Figure 2.

The composition of EV cargo is highly specific and depends on
the cell type, metabolic state, and presence of disease. Furthermore,
the cargo of EVs is the main factor that defines their mechanism of
action, application possibilities, and therapeutic effects (Mir and
Goettsch, 2020; Figueroa-Valdés et al., 2021).

FIGURE 2
MenSC-EV cargo.
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3.1 MenSCs and other MSC EV protein cargo

Mainly, MenSC-EVs carry proteins related to processes such as
cellular transport, including vesicle-mediated transport or cell
adhesion and migration. An additional group of proteins is
related to cellular components, including extracellular organelles,
membrane components and parts of the cytosol. MenSC-EVs are
also enriched with different binding proteins. Upon evaluation of
the functional properties of the most abundant proteins in MenSC-
EVs, it was determined that the majority are associated with immune
system processes and extracellular matrix (ECM) organization (de
Pedro et al., 2023). Additionally, MenSC-EVs contain various
bioactive molecules, including cytokines. A comparative analysis
of MenSCs and MenSC-EVs revealed that the latter contain higher
concentrations of IL-6 and IL-8, intercellular cell adhesion
molecule-1 (ICAM-1), angiopoietin-2, Axl, angiogenin, insulin-
like growth factor-binding protein 6 (IGFBP-6), and
osteoprotegerin (Chen et al., 2017). Moreover, it was reported
that MenSC-EV are enriched with E3 ubiquitin ligase (UBR4),
which inhibited fibrosis of rat endometrial stromal cells by
affecting YAP activity (Qi et al., 2023).

The culturing conditions of MenSCs significantly alter the
cargo and the EV-associated proteome. Proinflammatory
conditions were found to downregulate proteins related to
wound healing, adhesion and migration processes and
upregulate proteins involved in angiogenesis and inflammatory
responses. As an example, MenSCs cultured under physioxic
conditions (1%–2% O2) secreted EVs enriched with proteins
related to cell adhesion and intracellular transport. Acute
hypoxia (<1% O2) had different effects on EV cargo–it
upregulated proteins associated with cell adhesion, cell
migration and angiogenesis pathways (de Pedro et al., 2023).

At present, the available information regarding MenSC-EV
cargo is relatively limited in relation to MSC-derived EVs from
alternative sources, such as ATMSCs, BMMSCs, and UCMSCs.
BMMSC-EVs contain proteins involved in ion and other protein
transport. In addition, proteins associated with cell cycle regulation,
transcription and translation regulation, cell adhesion and lipid
metabolism, apoptosis and inflammation were identified in
BMMSCs. Upon classification of proteins according to cellular
components, the majority of proteins were found to be associated
with the cell membrane, nucleus, cytoplasm, mitochondria and
endoplasmic reticulum (McBride et al., 2021).

ATMSC-EVs encompass a multitude of proteins which play
crucial roles in various biological processes. These processes include
cellular migration, modulation of immune responses, proliferation
of cells, formation of new blood vessels, metabolism of osteocytes,
and regeneration of nerve tissue (Alonso-Alonso et al., 2022).

Human UCMSC exosomes are enriched with proteins related to
different mechanisms and signaling pathways. The majority of
proteins detected in UCMSC exosomes play roles in modulating
various biological processes, including complement response, HIF-
1, MAPK signaling, metabolic pathways, NF-κB pathway, and
microbial infection. Additionally, proteins related to PI3K-AKT,
cholesterol metabolism, IgA production, VEGF, and B-cell receptor
signaling pathways were detected (Bi et al., 2022). Table 3 presents a
more detailed categorization of cargo proteins in different MSC-
derived EVs and their respective functions.

3.2 MenSCs and other MSC EV miRNA cargo

MenSC-derived EVs contain a broad range of microRNAs
(miRNAs). The identified mi RNAs in MenSC-EVs included let-
7a-5p, miR-143-3p, miR-21-5p, let-7b-5p, let-7f-5p, miR-16-5p,
miR-199a-3p, miR-199b-3p, miR-126-3p, let-7i-5p, miR-26a-5p,
which are involved in the regulation of cell cycle, proliferation,
differentiation, apoptosis and angiogenesis (Marinaro et al., 2019).
Let-7 and miR-21 play crucial roles in controlling mitochondrial-
DNA damage, promoting cell survival and proposed to provide
superior cardioprotection and alleviate pulmonary fibrosis (Wang
et al., 2017; Sun et al., 2019). Cargo of MenSC-EVs also contain
information related to certain diseases and their predispositions to
them. The elevated levels of miR-4443 found in MenSC-EVs were
discovered to play a role in the progression of endometriosis. This
specific miRNA was found to suppress ACSS2 expression and as a
result activate the PI3K/AKT signaling pathway. This activation
resulted in enhanced migration and proliferation of endometrial
stem cells (Ji et al., 2024).

An analysis of EVs from MenSCs, BMMSCs, and ATMSCs
revealed that MenSC-EVs exhibited the highest levels of miR-21
among the three sources of EVs. Additionally, the paracrine effect of
MenSCs on rat myocardial infarction was compared to that of
BMMSCs and ATMSCs. MenSCs were found to enhance
cardioprotection through the transfer of miR-21 via EVs. miR-21
from menstrual blood EVs downregulated phosphatase and tensin
homolog (PTEN), enhancing Akt survival kinase activity, resulting
in reduced apoptosis in cardiomyocytes and improved angiogenesis
in endothelial cells (Wang et al., 2017). This finding demonstrates
the superior cardioprotective effect of MenSC-EV cargo compared
to BMMSC or ATMSC EVs. Additionally, EVs derived from
MenSCs attenuate severe pulmonary inflammation and damage
through the transmission of miRNA-671. This miRNA is known
to target the kinase AAK1 for post-transcriptional degradation.
AAK1 positively regulates the NF-κB signaling pathway (Lian
et al., 2023).

MiRNAs highly expressed in BMMSC-EVs were found to be
associated with cellular proliferation, death, metabolism and
immune regulation (miRs-21, miR-22, miR-26a, miR-10b, miR-
99b, miR-125b, andmiR-148a) (Vaka et al., 2023; Baglio et al., 2015).
In comparison with BMMSC-EVs, UCMSC-EVs are enriched with
miRNA related to regenerative processes, aging and cell
proliferation (Vaka et al., 2023). Several studies reported, that the
most abundant miRNA in UCMSC-EVs are miR-16, miR-21, miR-
23, miR-34, miR-146a and miR-222, which are associated with cell
proliferation and immune regulation (Jothimani et al., 2022).
MenSC-EV and other MSC EV miRNAs are presented in Table 4.

4 MenSC-EV potential in tissue
regeneration

MenSC-EVs showed promising therapeutic potential for
regeneration of different tissues, but the most significant effects
were demonstrated for the regeneration of female reproductive
system tissues, including endometrium and ovaries in diseases,
such as Premature Ovarian Insufficiency (POI) and Intrauterine
Adhesion (IUA). In addition to that, numerous studies have also
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TABLE 3 Comparison of EVs protein cargo from different sources of MSCs.

Source
of EVs

Method of EV
isolation

Proteins Function References

MenSCs Ultracentrifugation (UC) N/A Protein, ATP, RNA, enzyme, collagen, cadherin
binding

ECM organisation
ECM-receptor interaction

Platelet activation, signaling and aggregation
Elastic fibre formation

Non-integrin membrane-ECM interactions
GPER1 signaling

Post-translational protein phosphorylation
B cell receptor signaling pathway
Positive regulation of cell motility

L1CAM interactions
Acute inflammatory response

Basement membrane organisation
Complement system

Response to hormone/steroid hormone
Humoral immune response
ADP metabolic process

de Pedro et al.
(2023)

ExoQuick-TC IL-6, IL-8, ICAM-1, Axl, IGFBP-6 Inflammatory and Immune Response Chen et al. (2017)

Filtration/centrifugation
combination

COL1A1, COL1A2, COL3A1, COL5A1,
COL5A2, COL6A1, COL6A3, COL12A1, LUM,

ECM1, SPARC, TGFBI, PCOLCE

ECM and Structural Proteins Marinaro et al.
(2019)

VIM, ACTN1, ACTN4, ACTA1, ACTB, FLNA,
VCL, MYH9, TPM1, TPM4, PFN1

Cytoskeletal and Structural Proteins

LGALS1, LGALS3BP, ISLR, SPON2, CLSTN1 Cell Adhesion and Signaling Proteins

TIMP1, TIMP2, MMP2, MMP3, SERPINF1,
CST3, A2M

Protease Inhibitors and Enzymatic Regulators

ALB, HPX, PSAP, NUCB1, PPIA, PPIB Plasma and Transport Proteins

IGFBP5, IGFBP7, DKK3 Growth Factor Binding Proteins

THBS1, C1S, C1R, NID1, PTGDS, TAGLN Functional Proteins

BMMSCs ExoQuick-TC® ULTRA EV
Isolation Kit

UC

CACNA1G, CACNA1H, CACNB2, RYR1,
ATP2C1, S100A8

Calcium transport-related proteins McBride et al.
(2021)

Pomatto et al.
(2021)

UC SCN4A, SCN10A, TRPM2 Sodium-related channels Pomatto et al.
(2021)

RPB1, MINA Transcriptional regulators

CCL2, CSF3, CXCL1, CXCL9, IL-10 Inflammatory and Immune Response

FN1, THBS1 Extracellular matrix and cell adhesion

EPO, PDGFRA, NRG3, RET Growth factors

LYN, TEC Signal Transduction and Kinases

ALDOA, MAN2B1 Metabolism and Enzymes

APOA4, NPTX1, POMC, MUSK Neural and Neuroendocrine Function

ATMSCs UC ADGRB1, IL1R1, IL1RL1, IL2RB, LHCGR,
PDGFRB, TNFRSF13C, TNFRSF8

Receptors and Signal Transduction
Receptors involved in cell communication,

proliferation, immune response and immune cell
activation

Pomatto et al.
(2021)

Xing et al. (2020)

ANGPT1, BMP5, BMP7, FGF10, FGF16, FGF18,
GDF1

Growth Factors and Developmental Proteins

C2, CCHCR1, CCL19, CCL28, CCL4, CSF2RA,
CXCL2, LAG3, LTA, TNF

Immune system proteins

CLU, DKK4, MMP20, MUC16 Extracellular Matrix and Structural Proteins

(Continued on following page)
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indicated the MenSC-EV therapeutic potential on wound healing,
neural, liver, heart tissue repair and more.

4.1 MenSCs-EV therapeutic effect on female
reproductive tissues

In a rat model of POI induced by chemotherapeutic agents,
MenSC-EVs restored ovarian function by increasing ovarian
weight, follicle numbers at various developmental stages, and
serum estrogen levels. The therapeutic effects were associated
with activation of the PI3K/AKT signaling pathway, inhibition
of apoptosis, and overall enhancement of ovarian
microenvironment stability (Robalo Cordeiro et al., 2024).

MenSC-EVs contribute to endometrial repair by enhancing cell
proliferation and stimulating VEGF production, which promotes
angiogenesis (Marinaro et al., 2018). A study by Zhang et al.
demonstrated that MenSC-EVs had the effect of promoting
ovarian cell proliferation, inhibiting apoptosis and regulating
the ovarian extracellular matrix, while increasing the expression
of follicle markers DAZL and FOXL2 in rat ovaries. Also, MenSC
exosome injections restored the female rat estrous cycle and
increased fertility, as treated subjects exhibited increased
endometrial thickness, improved glandular formation and
reduced fibrosis. Notably, repeated EV administration enhanced
endometrial receptivity and improved embryo implantation rates,
suggesting potential clinical applications in infertility treatment
(Zhang et al., 2021b).

TABLE 3 (Continued) Comparison of EVs protein cargo from different sources of MSCs.

Source
of EVs

Method of EV
isolation

Proteins Function References

ALPP, CHI3L1, CKB, EPX, HRG, IAPP Metabolic and Enzymatic Proteins

UBB Ubiquitin-Related Protein

UCMSCs UC TALDO1, LDHA, ENO1 Metabolism and Energy Production Bi et al. (2022)

MARCKS, DSTN, CFL1, MSN, CDC42, NRAS Cytoskeletal and Structural Proteins

YWHAZ, YWHAH, YWHAG, NAP1L1,
EIF4A1, SRI, PRDX6

Signaling and Regulatory Proteins

SLC44A2, SLC39A14, SLC1A5, RAB11B,
TSPAN4

Membrane and Transport Proteins

HSPAB, CNDP2, PPIA Stress Response and Enzymatic Proteins

UC FN1, EMLIN1, OLFML3, ITGA4 ECM and Adhesion Proteins Bi et al. (2022)

CORO1A, DNMIL, FARP1 Cytoskeletal and Structural Proteins

APOE, APOC3, PLTP, PYGB Plasma and Transport Proteins

PRKAR28, PPPICB, GNAO, RABSA, NAPA Signaling and Regulatory Proteins

JCHAIN, C4B Immune System and Complement Proteins

UC COL6A1, COL6A2, COL6A3, EDIL3, ITGA6,
ITGB1, ITGA2, ITGA2B, ILK, TLN1, FERMT3

ECM and Structural Proteins Bi et al. (2022)

ACTC1, ACTN1, ACTR3, ANXA1, ANXA3,
ANXA7, ANXA11, ARPC1B, ARPC2, CAPZA1,
CAPZB, CNN2, FLNA, GAPDH, PGK1, PFKP,
RAP1B, ROCK2, SRC, TPM4, VCL, WASF2,

WDR1

Cytoskeletal and Structural Proteins

CD9, CLU, CORO1C, FCGBP, LGALS1,
LGALS3BP, SND1, STXBP2, TAGLN2

Cell Adhesion and Signaling Proteins

A2M, ADAM10, SERPIND1, SERPINE1,
SERPINE2, ITIH2, ITIH4, MME, C3, C1R,

F13A1

Protease Inhibitors and Enzymatic Regulators

A2M, APOA1, APOA4, APOB, APOC1, APOD,
APOL1, CEMP, CP, FGA, F5, HP, Gc, HBA1

Plasma and Transport Proteins

ADH5, CBR1, GAPDH, PFKP, PKM, PGK1 Metabolism and Energy Production Proteins

ARF4, RAB1A, RAB7A, RAB14 GTPases and Vesicular Transport Proteins

HSP90B1, STOM Heat Shock and Stress Response Proteins

AP1B1, CAP1, CLTC Clathrin and Vesicle Trafficking Proteins

HLA-A, IGHM Immune System and Complement Proteins
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TABLE 4 Comparison of EVs miRNA cargo from different sources of MSCs.

Source of EVs Method of EV isolation miRNA Function References

MenSCs MagCapture Exosome isolation kit let-7 Cell Cycle and Proliferation, apoptosis and tumor suppression Sun et al. (2019)

UC miR-21 Cell Cycle and Proliferation, Apoptosis and Tumor suppression Wang et al. (2017)

UC miR-4443 Inflammation Ji et al. (2024)

UC miR-671 Neuroprotection Lian et al. (2023)

Filtration/centrifugation combination let-7a-5p, let-7b-5p, let-7f-5p, let-7c-5p, let-7i-5p, let-7e-5p, let-7g-5p
miR-21-5p, miR-126-3p, miR-126-5p, miR-223-3p, miR-103a-3p, miR-

486-5p

Cell Cycle and Proliferation Marinaro et al. (2019)

miR-143-3p, miR-145-5p, miR-34a-5p, miR-155-5p, miR-203a Apoptosis and Tumor Suppression

miR-126-3p, miR-126-5p, miR-221-3p, miR-222-3p Angiogenesis and Vascular Regulation

miR-142-3p, miR-142-5p, miR-223-3p, miR-155-5p, miR-451a Inflammation and Immune Response

miR-122-5p, miR-425-5p, miR-191-5p Metabolism and Homeostasis

miR-125b-5p, miR-125a-5p, miR-23a-3p, miR-23b-3p, miR-26a-5p,
miR-26b-5p, miR-30a-5p, miR-30d-5p, miR-30e-5p

Stem Cell Regulation and Differentiation

BMMSCs UC let-7a-5p, let-7e-5p, miR-197-3p, miR-342-3p, miR-99a-5p Tumor Suppression and Cancer Regulation Pomatto et al. (2021)

miR-483-5p
miR-484

Inflammation and Immune Response

miR-130b-3p, miR-199a-3p, miR-365a-3p, miR-365b-3p Cell Proliferation, Differentiation and Apoptosis

miR-10b-5p
miR-29b-3p
miR-483-5p

Metabolism and Organ Development

UC miR-199a-3p
miR-23a-3p
let-7b-5p

let-7a-5p, miR-125b-5p

Tumor Suppression and Cancer Regulation Vaka et al. (2023)

miR-155-5p Inflammation and Immune Response

miR-877-5p
miR-4454

Metabolic Regulation and Cellular Homeostasis

ATMSCs UC miR-10a-5p
miR-125b-1-3p, miR-126-5p, miR-129-2-3p, miR-136-3p, miR-137,

miR-140-5p, miR-144-5p, miR-145-3p
miR-148a-3p, miR-148b-5p, miR-149-5p

Tumor Suppression and Cancer Regulation Pomatto et al. (2021)
Xing et al. (2020)

miR-142-3p, miR-181a-2-3p Immune System and Inflammation

miR-1291 Metabolism and Drug Resistance

(Continued on following page)
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4.2 MenSCs-EV therapeutic effect on
other tissues

MenSC-EVs have demonstrated efficacy in wound healing by
promoting fibroblast proliferation, collagen synthesis, and reducing
oxidative stress (Zhang et al., 2023). MiRNA cargo, including miR-
21 and miR-29, facilitates keratinocyte migration and
differentiation, accelerating skin repair. In models of skin injury,
MenSC-EVs have been shown to accelerate wound by promoting the
growth of new skin cells (keratinocytes and fibroblasts), increasing
collagen production. MenSC-EV treatment promoted re-
epithelialization, increased angiogenesis, and modulated
inflammation, leading to improved healing outcomes in a
diabetic mouse model (Dalirfardouei et al., 2019). These effects
suggest their potential use in treating chronic wounds or burns.

MenSC-EVs have also shown ability to promote axonal
regeneration and functional recovery following neural injury,
further underscoring their broad therapeutic utility (Lopez-
Verrilli et al., 2016). Moreover, MenSC-EVs can alleviate
fulminant hepatic failure. In experimental models, these EVs
reduced liver inflammation and promoted hepatocyte
proliferation, leading to improved liver function (Chen et al.,
2017). Additionally, MenSC-EVs have been shown to promote
angiogenesis and reduce scarring in heart tissue, ultimately
improving heart function and reducing long-term damage (Wang
et al., 2017). And as mentioned before, MenSC-EVs may help slow
down fibrosis by reducing the activity of fibroblasts (cells that
contribute to scarring) and lowering levels of fibrotic markers,
leading to improved lung function as well (Chen et al., 2021).

In cancer therapy, it was shown that MenSC-EVs block tumor
associated angiogenesis and could be used as a tool for cancer
treatment. MenSC-EVs reduced the secretion of VEGF and NF-
κB activity in human prostate PC3 tumor cells (Alcayaga-Miranda
et al., 2015). Other studies additionally emphasize the pro-
angiogenic effect of MenSC-EVs (Chang et al., 2021a; Wang
et al., 2017). Therefore, the precise mechanism of this targeted
action of MenSC-EVs remains unclear.

MenSC-EVs also exhibit immunomodulatory properties by
regulating T-cell proliferation, macrophage polarization, and
inflammatory cytokine production (Song et al., 2023; Qi et al.,
2023). This suggests potential therapeutic applications in
autoimmune diseases, inflammatory disorders, and systemic
tissue repair.

5 MenSC and menstrual blood EVs–a
source for disease biomarkers and
future diagnostic strategies

EVs show a great potential in diagnostics of different pathologies
with leading studies related to early cancer detection, monitoring
tumor progression and response to treatment (Weng J. et al., 2021;
Kumar et al., 2024). EVs also showed promising results in detection
of neurodegenerative diseases (Parkinson’s disease, Alzheimer
disease) as they had increased levels of tau proteins, contributed
to the diagnosis of cardiac diseases (cardiac fibrosis, ischemic heart
disease, heart failure and others) with increased levels of miR-133a,
miR-499, miR-199a, pregnancy disorders with higher numbers ofT
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circulating EVs in preeclamptic and eclamptic women (Ciferri et al.,
2021; Liu et al., 2021; Zhang et al., 2022; Smith and Russell, 2022).
EVs could potentially improve diagnostic accuracy and further
treatment decisions. The main advantages of EVs for diagnostic
approaches include stability in circulation and ability to protect their
cargo (Kodam and Ullah, 2021). Nevertheless, challenges remain in
EV isolation, especially from human biofluids. Their
characterization needs advanced analysis methods, such as digital
PCR, mass spectrometry, also in addition to proper storage to keep
them intact for clinical application (Weng Z. et al., 2021; Jia et al.,
2014; Kodam and Ullah, 2021). Despite these challenges, EVs hold
significant promise for improving disease diagnosis and monitoring.

EVs isolated from various reproductive biofluids, including
follicular fluid, uterine fluid, peritoneal fluid and serum,
alongside the endometrium and endometrial lesions have
exhibited significant alterations in miRNAs in pathological
conditions such as PCOS premature ovarian insufficiency,
endometriosis, and recurrent spontaneous abortion (Duval et al.,
2024; Esfandyari et al., 2021). However, conventional diagnostic
procedures, such as endometrial biopsies and follicular fluid
collection are often invasive, painful, and associated with
potential complications (Terzic et al., 2022), while MenSC or
menstrual blood serum EVs could be used for the analysis of
uterine lesions and abnormalities.

Beyond the regenerative capabilities of MenSC-EVs, these
vesicles also hold promise in disease diagnostics and biomarker
discovery. Their cargo can provide valuable insights into the
molecular changes associated with aging and disease progression.
Also, the use of MenSCs-EVs for diagnostic purposes could enable
earlier detection and more precise targeting of therapies, leading to
more personalized and effective treatment strategies. MenSC-EVs
represent a promising source of biomarkers for female reproductive
disorders. For instance, we demonstrated that MenSC-EVs can be
used as a source of biomarkers of unexplained infertility (uIF)

(Vaiciuleviciute et al., 2025). These EVs were compared between
healthy and uIF female groups and detected differences included
alterations in cell adherence, inflammatory processes, protein
metabolism of uIF patients, as compared to healthy controls,
which are promising for further uIF validation in women who
are not able to conceive for at least a year. Also, menstrual blood
serum was characterized as a less invasive source of infertility
biomarkers, where EMILIN1, TRIP6, LAMB1, LAMC1, NID1,
APOB, APOA4 were detected as the main differences in uIF
patients as compared to healthy controls (Brennan et al., 2025).
Both MenSCs and MenSC-EVs already showed alterations in
endometriosis and endometriosis-related infertility compared to
healthy donors (Cordeiro et al., 2023; Zhou et al., 2020). MenSC-
EVs even indicated decidual response that is critical for embryo
implantation. Additionally, EVs derived from uterine fluid may
serve as biomarkers for endometrial receptivity assessment in
assisted reproductive technologies (Giacomini et al., 2021).

MenSC-EV-based diagnostics could offer a non-invasive
alternative with significant potential for the monitoring of
endometrial receptivity and pathology diagnostics of female
reproductive diseases. MenSC-EVs not only share the inherent
advantages of EV-based diagnostics but also offer additional
benefits derived from their cellular origin. Menstrual blood
collection is a non-invasive, easily accessible, and repeatable
process, eliminating ethical concerns associated with other
sources of reproductive tract-derived EVs. Importantly, because
menstrual blood is collected during the same phase of the
menstrual cycle, it minimizes variability related to hormonal
fluctuations and serves as a highly localized source of
biomarkers, providing a direct reflection of endometrial status
(Zaheer et al., 2024).

The therapeutic and diagnostic potential of MenSC- EVs is
schematically visualized in Figure 3, presenting current in vitro and
in vivo study discoveries.

FIGURE 3
MenSC-EV therapeutic and diagnostic potential for different types of diseases and immunomodulation.
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6 Discussion and future directions

The uterine endometrium is a unique, fast-regenerating tissue,
which plays an essential role in the female reproductive system. It
has been considered as an easy-accessible source for stem
cells decades ago (Borlongan et al., 2010). The endometrium
undergoes over 400 cycles of regeneration during a woman’s
reproductive life cycle, allowing for pregnancy, and can be
continued to regenerate after menopause using hormone
therapy (Tabatabaei and Ai, 2017). Endometrial stromal
cells–MenSCs, have drawn attention in modern research,
relating to evidence of their pluripotent-like and therapeutic
properties. They offer a non-invasive alternative to traditional
MSC sources and hold promise for regenerative applications,
particularly through EVs, which enhance tissue repair (Chen
et al., 2017; Asl et al., 2023). Even though EVs from all types of
MSCs have positive effects on tissue regeneration–for instance,
BMMSC-EVs showed increased muscle regeneration in a rat
sarcopenia model, restored bone mass and strength in a mice
osteoporosis model, regenerated cartilage, restored heart function
in myocardial infarction in rat models and others (Guo et al., 2024;
Wang et al., 2023; Bian et al., 2013) – MenSC-EVs show
exceptional therapeutic potential in the female reproductive
system, wound healing, neural, liver regeneration, and more, as
discussed previously.

The potential of MenSC-EVs as a therapeutic tool for
postmenopausal women is a promising field in regenerative
medicine. As women age, particularly after menopause, they
face a range of health challenges such as osteoporosis, muscle
degeneration, skin aging, and decreased regenerative capacity
across various tissues. The application of MenSCs and their
EVs presents a novel approach to mitigate these age-related
conditions by enhancing tissue regeneration and reducing the
effects of chronic inflammation and immunosenescence, which
are often observed in postmenopausal women. MenSC-EVs have
shown potential in promoting tissue repair and regeneration
through their cargo, which includes growth factors, cytokines,
lipids, and RNAs that regulate cell survival, proliferation, and
differentiation, as described above. These bioactive molecules help
to modulate immune responses, stimulate tissue repair and
enhance the functionality of damaged cells. Noteworthy, the
ability to collect menstrual blood for autologous treatment with
MenSCs is progressively reduced in elderly women, representing a
limitation for their therapeutic applications. On the other hand, if
these cells could be collected and cryopreserved in advance, there
will always be an opportunity to use them later in the donor’s
lifetime. Additionally, the concept of biobanking MenSCs,
particularly from younger women, holds significant potential
for future therapeutic applications. Cryopreserving MenSCs
could provide a ready and accessible resource for regenerative
therapies in elderly populations. Such biobanks would enable the
use of autologous MenSCs and their EVs for personalized medicine
in later years, overcoming the limitations associated with age-
related declines in stem cell function and regenerative capacity.
This approach could be particularly advantageous for
postmenopausal women, as it offers the possibility of utilizing
young, high-quality MenSCs for future therapies targeting
conditions such as age-related diseases.

6.1 Limitations

Despite the promising potential of MenSC-EVs in regenerative
medicine and disease diagnostics, several limitations of the current
source and EVs should be acknowledged. First of all, there is a lack of
long-term safety and efficacy data in all of the published studies, as
most of them focus on short-term outcomes. Long-term effect of
MenSC-EVs on tissue homeostasis or potential off-target response
remain largely unexplored, where rigous in vivo studies are essential
to ensure translational relevance and clinical safety. Moreover, there
is a significant variability in EV isolation and characterization
protocols across studies, which is an important aspect to bear in
mind working with various EV sources, not only MenSC.
Differences in EV isolation, filtration methods, their parameters,
quantification techniques, instruments used contribute to
inconsistencies in EV purity, yield and functional content. Even
if the protocols are normalized, refined according to the consensus
guidelines as minimal information for studies of EVs (MISEV)
(Welsh et al., 2024), the variability between batch-to-batch
samples is also a significant issue adapting EVs for
therapeutic purposes.

Also, the use of MenSC-EVs faces regulatory, manufacturing,
and bioethical challenges that need to be addressed to ensure their
safe and effective use in clinical applications. On the regulatory side,
the absence of specific guidelines and the complexity of proving
safety, efficacy, and pharmacokinetics make clinical approvals
difficult (Stawarska et al., 2024; Wang et al., 2024).
Manufacturing these EVs at scale while maintaining consistency,
stability, and quality remains a major obstacle (Claridge et al., 2021;
Wang et al., 2024). Ethically, while menstrual blood is a non-invasive
source, it has a significant ethical advantage over other stem cell
sources. Issues such as informed consent and donor privacy must be
carefully managed (Achmad and Götte, 2014; Savary et al., 2023).
Therefore, in order to ensure reproducibility and clinical
applicability, future research should prioritize standardized
methodologies, explore the mechanisms underlying MenSC-EV
therapeuitc actions and conduct controlled in vivo studies with
long-term follow ups to support their safety and integration into
clinical therapies.

6.2 Conclusion

In conclusion, MenSCs and their EVs represent a potential tool
for advancing diagnostics and therapies. Their ability to promote
tissue regeneration, provide diagnostic insights, and enable
personalized treatments holds immense potential for improving
the quality of life for women of all ages. The development of
biobanks for MenSCs could further enhance the accessibility and
applicability of these cells and their EVs, offering a new hope for the
development of innovative treatment strategies for different
conditions.
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