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Purpose: This study aims to develop and validate an interpretable machine
learning model for predicting avascular necrosis (AVN) following talar fracture,
thereby aiding in personalized prevention and treatment.

Methods: A retrospective cohort study included patients undergoing surgical
intervention for talar fractures at Ningbo No.6 Hospital between January
2018 and December 2023. Multidimensional data encompassing demographic
characteristics, fracture-related variables, surgery-related parameters, and
follow-up information were collected. Patients were randomly allocated to
the training and testing sets in a 7:3 ratio. Potential risk factors for
postoperative AVN were screened using univariate and multivariate logistic
regression analyses. Six machine learning algorithms were employed to
construct the prediction models. The performance of the prediction model
was evaluated utilizing metrics including area under the receiver operating
characteristic curve (AUC), calibration curves, decision curve analysis (DCA),
accuracy, sensitivity, specificity, positive predictive value (PPV), negative
predictive value (NPV), precision, recall, and F1 score. The SHapley Additive
exPlanations (SHAP) provided global and local explanations for the
optimal model.

Results: A total of 207 patients with talar fractures were enrolled in our study, with
45 (21.74%) developed AVN, and 162 (78.26%) did not. Univariate andmultivariable
logistic regression identified six independent risk factors including body mass
index (BMI), fracture classification, concomitant ipsilateral foot and ankle
fractures, smoking, quality of fracture reduction, and fracture type.
Performance evaluation demonstrated that Extreme Gradient Boosting
(XGBoost model) achieved high AUC values with superior specificity and
sensitivity in both the training and testing sets. The SHAP was performed to
analyze the relative importance of features within themodel visually and illustrate
the impact of each feature on individual patient outcomes.
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Conclusion: This study successfully developed and validated an interpretable
machine learning model incorporating key clinical and surgical variables to
predict AVN following talar fractures. The prediction model identified high-risk
patients and critical modifiable factors, facilitating personalized prevention
strategies to mitigate this severe complication.
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1 Introduction

Talar fractures are relatively rare injuries, accounting for 0.1%–
2.5% of all fractures and 3%–5% of foot and ankle fractures (Saravi
et al., 2021). Despite advancements in the diagnosis and treatment of
talar fractures, complication rates remain high, and functional
outcomes are generally unsatisfactory (Choi et al., 2023). The
unique anatomical structure of the talus, characterized by
retrograde blood supply via the tarsal canal artery, minimal
ligament and tendon attachments, and limited non-articular
surfaces resulting in poor vascularization, predisposes it to vascular
compromise following high-energy trauma (Kubisa et al., 2024).
Consequently, avascular necrosis (AVN) is one of the major
complications in patients with talar fractures, with an incidence
rate as high as 31.2% (Dodd and Lefaivre, 2015). Patients with
early-stage AVN are usually asymptomatic. Consequently, the
majority of patients present to the clinic at a late stage with long-
term functional impairment that significantly disrupts their quality of
life, and ultimately necessitates interventions such as ankle arthrodesis
or joint replacement. Therefore, early prediction and identification of
risk factors for AVN following talar fractures are critical to optimizing
treatment strategies and improving patient outcomes.

Previous studies have reported traditional risk factors for AVN
following talar fractures such as high body mass index (BMI)
increasing local mechanical stress on the talus and tobacco smoking
which impairs local blood supply (Alley et al., 2024). However, most
studies are not comprehensive in terms of risk factors, and simple risk
factor analysis has limited clinical application. In addition,
radiographic examinations such as computed tomography (CT) and
magnetic resonance imaging (MRI), are employed to assess vascular
integrity to predict AVN (Chen et al., 2014; Kubisa et al., 2024).
However, these parameters inadequately reflect the multifaceted and
complex pathophysiological processes that contribute to the
development and progression of AVN. Consequently, constructing
risk models based on comprehensive clinical characteristics to predict
AVN following talar fractures can assist clinicians in developing
patient-specific management measures and represents a key strategy
for AVN prevention.

Machine learning is a subset of artificial intelligence that focuses
on the application of algorithms to analyze complex datasets and learn
from previous experience, surpassing traditional methods in
predicting clinical outcomes (Churpek et al., 2020; Haug and
Drazen, 2023). Recent studies have demonstrated the widespread
application of machine learning in the field of orthopaedics, such as in
the early detection of implant failure and bone nonunion (Harris et al.,
2018; Karnuta et al., 2021). However, its application in predicting
complications following talar fractures remains underexplored. In
addition, machine learning techniques are often considered “black-

box” because explaining the decision-making process of the algorithm
is complex and challenging (Fanizzi et al., 2024; Hu et al., 2024). The
SHapley Additive exPlanations (SHAP), a component of Explainable
Artificial Intelligence (XAI), provides transparent explanations of
machine learning decisions and elucidates the rationale behind
predictions (Wang et al., 2023), thereby addressing the “black-box”
limitation by revealing the mechanisms underlying model decisions.

Therefore, this study aimed to develop and validate an
explainable prediction model for AVN following talar fracture
surgery by leveraging six advanced machine learning algorithms
and integrating multidimensional data including patient clinical,
radiographic, and operative variables. Subsequently, we evaluated
model performance to identify the optimal algorithm and
incorporated SHAP analysis to improve interpretability. Our
study aimed to provide guidance for surgeons in implementing
personalized prevention and treatment strategies by identifying
high-risk patients with AVN, and ultimately reduce the
morbidity associated with this devastating complication.

2 Methods and materials

2.1 Study population

This study enrolled patients with talar fractures who underwent
surgical interventions at Ningbo No.6 Hospital between January
2018 and December 2023. Inclusion criteria: (1) patients diagnosed
with fresh talar fractures (time from injury to surgery <3 weeks); (2)
patients who underwent internal fixation; (3) age ≥18 years; (4)
patients with complete clinical data and follow-up > 12 months.
Exclusion criteria: (1) primary arthrodesis or amputation; (2)
previous ankle or foot surgery; (3) severe foot neuropathy or
vascular insufficiency; (4) patients with serious clinical or
laboratory data missing; (5) incomplete follow-up information.
The study was conducted in accordance with the Declaration of
Helsinki and approved by the Institutional Review Board of Ningbo
No.6 Hospital. The need for individual patient consent was waived
by the Institutional Review Board due to the retrospective nature of
the study and the use of anonymized data.

2.2 Data collection and processing

Baseline variables were selected based on clinical expertise and
relevant literature. Clinical data were extracted from electronic
medical records and categorized as follows: (1) demographic
characteristics including gender, age, ASA class (American
Society of Anesthesiologist physical status classification), BMI,
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TABLE 1 Comparison of baseline characteristics between training and testing sets.

Variable Total (N = 207) Training set (N = 144) Testing set (N = 63) P value

Age (years) 43.92 ± 13.81 42.99 ± 13.40 46.05 ± 14.59 0.136

Gender [N(%)] 0.519

Male 165 (79.71) 117 (81.25) 48 (76.19)

Female 42 (20.29) 27 (18.75) 15 (23.81)

ASA class[N(%)] 0.380

1 34 (16.43) 21 (14.58) 13 (20.63)

2 173 (83.57) 123 (85.42) 50 (79.37)

BMI (kg*m-2) 23.89 ± 3.47 23.95 ± 3.42 23.76 ± 3.62 0.715

Hypertension [N(%)] 0.252

No 169 (81.64) 121 (84.03) 48 (76.19)

Yes 38 (18.36) 23 (15.97) 15 (23.81)

Diabetes [N(%)] 0.757

No 200 (96.62) 140 (97.22) 60 (95.24)

Yes 7 (3.38) 4 (2.78) 3 (4.76)

Heart disease [N(%)] 0.702

No 197 (95.17) 136 (94.44) 61 (96.83)

Yes 10 (4.83) 8 (5.56) 2 (3.17)

Smoke [N(%)] 0.509

No 143 (69.08) 102 (70.83) 41 (65.08)

Yes 64 (30.92) 42 (29.17) 22 (34.92)

Alcohol [N(%)] 0.951

No 173 (83.57) 121 (84.03) 52 (82.54)

Yes 34 (16.43) 23 (15.97) 11 (17.46)

Injury mechanism [N(%)] 0.695

High energy 88 (42.51) 63 (43.75) 25 (39.68)

Low energy 119 (57.49) 81 (56.25) 38 (60.32)

Fracture side [N(%)] 0.314

Left 98 (47.34) 72 (50.00) 26 (41.27)

Right 109 (52.66) 72 (50.00) 37 (58.73)

Fracture classification [N(%)] 0.163

Hawkins I 5 (2.42) 1 (1.59) 4 (2.78)

Hawkins II 25 (12.08) 21 (14.58) 4 (6.35)

Hawkins III 20 (9.66) 9 (6.25) 11 (17.46)

Hawkins IV 9 (4.35) 7 (4.86) 2 (3.17)

Sneppen II 46 (22.22) 29 (20.14) 17 (26.98)

Sneppen III 6 (2.90) 3 (2.08) 3 (4.76)

Sneppen IV 34 (16.43) 26 (18.06) 8 (12.70)

Sneppen V 47 (22.71) 34 (23.61) 13 (20.63)

(Continued on following page)
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hypertension, diabetes, heart disease, smoking, and drinking; (2)
fracture-related variables including injury mechanism, fracture side,
fracture classification (Hawkins classification for talar neck fractures

and Sneppen classification for talar body fractures), fracture type,
and concomitant ipsilateral foot and ankle fractures (Srinath et al.,
2024). (3) surgery-related parameters including time to surgery,

TABLE 1 (Continued) Comparison of baseline characteristics between training and testing sets.

Variable Total (N = 207) Training set (N = 144) Testing set (N = 63) P value

Talar neck and body fractures 15 (7.25) 11 (7.64) 4 (6.35)

Fracture type [N(%)] 0.377

Close fracture 185 (89.37) 131 (90.97) 54 (85.71)

Open fracture 22 (10.63) 13 (9.03) 9 (14.29)

Concomitant ipsilateral foot and ankle fractures [N(%)] 0.223

No 120 (57.97) 79 (54.86) 41 (65.08)

Yes 87 (42.03) 65 (45.14) 22 (34.92)

Time to surgery 7.39 ± 4.32 7.47 ± 4.19 7.21 ± 4.65 0.397

Surgical strategy [N(%)] 0.090

One-stage closed fixation 4 (1.93) 1 (0.69) 3 (4.76)

One-stage open fixation 194 (93.72) 138 (95.83) 56 (88.89)

Multi-stage fixation 9 (4.35) 5 (3.47) 4 (6.35)

Fixation method [N(%)] 0.914

K wire 19 (9.18) 12 (8.33) 7 (11.11)

Cannulated screw 128 (61.84) 89 (61.81) 39 (61.90)

Absorbent rod 18 (8.70) 14 (9.72) 4 (6.35)

Plate 7 (3.38) 5 (3.47) 2 (3.17)

Plate and Cannulated screw 35 (16.91) 24 (16.67) 11 (17.46)

Surgical approach [N(%)] 0.918

Single approach 132 (63.77) 91 (63.19) 41 (65.08)

Combined approach 75 (36.23) 53 (36.81) 22 (34.92)

Lateral malleolus osteotomy [N(%)] 0.769

No 201 (97.10) 139 (96.53) 62 (98.41)

Yes 6 (2.90) 5 (3.47) 1 (1.59)

Medial malleolus osteotomy [N(%)] 0.833

No 187 (90.34) 131 (90.97) 56 (88.89)

Yes 20 (9.66) 13 (9.03) 7 (11.11)

Intraoperative blood loss (mL) 52.56 ± 47.16 53.54 ± 50.07 50.32 ± 40.00 0.930

Operating duration (min) 90.22 ± 36.02 91.25 ± 37.86 87.86 ± 31.56 0.706

Postoperative reduction [N(%)] 0.223

Nearly anatomical 180 (86.96) 122 (84.72) 58 (92.06)

Poor 27 (13.04) 22 (15.28) 5 (7.94)

Follow up (month) 16.53 ± 5.32 16.55 ± 5.25 16.49 ± 5.53 0.873

Fixation removal [N(%)] 1.000

No 182 (87.92) 127 (88.19) 55 (87.30)

Yes 25 (12.08) 17 (11.81) 8 (12.70)
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TABLE 2 Comparison of baseline characteristics between the Non-AVN and AVN groups.

Variable Total (N = 207) Non-AVN (N = 162) AVN (N = 45) P Value

Age (years) 43.92 ± 13.81 43.76 ± 14.23 44.51 ± 12.29 0.816

Gender [N(%)] 0.128

Male 165 (79.71) 125 (77.16) 40 (88.89)

Female 42 (20.29) 37 (22.84) 5 (11.11)

ASA class[N(%)] 0.961

1 34 (16.43) 26 (16.05) 8 (17.78)

2 173 (83.57) 136 (83.95) 37 (82.22)

BMI (kg*m-2) 23.89 ± 3.47 23.24 ± 3.35 26.23 ± 2.90 <0.001*

Hypertension [N(%)] 0.590

No 169 (81.64) 134 (82.72) 35 (77.78)

Yes 38 (18.36) 28 (17.28) 10 (22.22)

Diabetes [N(%)] 1.000

No 200 (96.62) 157 (96.91) 43 (95.56)

Yes 7 (3.38) 5 (3.09) 2 (4.44)

Heart disease [N(%)] 0.798

No 197 (95.17) 155 (95.68) 42 (93.33)

Yes 10 (4.83) 7 (4.32) 3 (6.67)

Smoke [N(%)] <0.001*

No 143 (69.08) 129 (79.63) 14 (31.11)

Yes 64 (30.92) 33 (20.37) 31 (68.89)

Alcohol [N(%)] 0.338

No 173 (83.57) 138 (85.19) 35 (77.78)

Yes 34 (16.43) 24 (14.81) 10 (22.22)

Injury mechanism [N(%)] 0.578

High energy 88 (42.51) 71 (43.83) 17 (37.78)

Low energy 119 (57.49) 91 (56.17) 28 (62.22)

Fracture side [N(%)] 0.687

Left 98 (47.34) 75 (46.30) 23 (51.11)

Right 109 (52.66) 87 (53.70) 22 (48.89)

Fracture classification [N(%)] <0.001*

Hawkins I 5 (2.42) 5 (3.09) 0 (0.00)

Hawkins II 25 (12.08) 21 (12.96) 4 (8.89)

Hawkins III 20 (9.66) 7 (4.32) 13 (28.89)

Hawkins IV 9 (4.35) 0 (0.00) 9 (20.00)

Sneppen II 46 (22.22) 46 (28.40) 0 (0.00)

Sneppen III 6 (2.90) 6 (3.70) 0 (0.00)

Sneppen IV 34 (16.43) 34 (20.99) 0 (0.00)

Sneppen V 47 (22.71) 34 (20.99) 13 (28.89)

(Continued on following page)
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surgical strategy, fixation method, surgical approach, lateral
malleolus osteotomy, medial malleolus osteotomy, intraoperative
blood loss, operating duration, and quality of fracture reduction. (4)

follow-up information including follow-up time and fixation
removal. AVN was diagnosed based on radiographic criteria,
including sclerosis, cystic changes, or talar collapse observed on

TABLE 2 (Continued) Comparison of baseline characteristics between the Non-AVN and AVN groups.

Variable Total (N = 207) Non-AVN (N = 162) AVN (N = 45) P Value

Talar neck and body fractures 15 (7.25) 9 (5.56) 6 (13.33)

Fracture type [N(%)] <0.001*

Close fracture 185 (89.37) 157 (96.91) 28 (62.22)

Open fracture 22 (10.63) 5 (3.09) 17 (37.78)

Concomitant ipsilateral foot and ankle fractures [N(%)] <0.001*

No 120 (57.97) 110 (67.90) 10 (22.22)

Yes 87 (42.03) 52 (32.10) 35 (77.78)

Time to surgery 7.39 ± 4.32 7.30 ± 4.08 7.73 ± 5.15 0.908

Surgical strategy [N(%)] 0.002*

One-stage closed fixation 4 (1.93) 4 (2.47) 0 (0.00)

One-stage open fixation 194 (93.72) 155 (95.68) 39 (86.67)

Multi-stage fixation 9 (4.35) 3 (1.85) 6 (13.33)

Fixation method [N(%)] 0.063

K wire 19 (9.18) 13 (8.02) 6 (13.33)

Cannulated screw 128 (61.84) 106 (65.43) 22 (48.89)

Absorbent rod 18 (8.70) 16 (9.88) 2 (4.44)

Plate 7 (3.38) 5 (3.09) 2 (4.44)

Plate and Cannulated screw 35 (16.91) 22 (13.58) 13 (28.89)

Surgical approach [N(%)] 0.001*

Single approach 132 (63.77) 113 (69.75) 19 (42.22)

Combined approach 75 (36.23) 49 (30.25) 26 (57.78)

Lateral malleolus osteotomy [N(%)] 0.844

No 201 (97.10) 158 (97.53) 43 (95.56)

Yes 6 (2.90) 4 (2.47) 2 (4.44)

Medial malleolus osteotomy [N(%)] 0.072

No 187 (90.34) 150 (92.59) 37 (82.22)

Yes 20 (9.66) 12 (7.41) 8 (17.78)

Intraoperative blood loss (mL) 52.56 ± 47.16 45.19 ± 34.60 79.11 ± 71.50 <0.001*

Operating duration (min) 90.22 ± 36.02 85.00 ± 34.85 109.00 ± 34.17 <0.001*

Postoperative reduction [N(%)] <0.001*

Nearly anatomical 180 (86.96) 155 (95.68) 25 (55.56)

Poor 27 (13.04) 7 (4.32) 20 (44.44)

Follow up (month) 16.53 ± 5.32 16.35 ± 5.47 17.18 ± 4.74 0.231

Fixation removal [N(%)] 0.113

No 182 (87.92) 146 (90.12) 36 (80.00)

Yes 25 (12.08) 16 (9.88) 9 (20.00)

*P < 0.05, with statistical significance.
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postoperative imaging including (plain radiographs, CT, or MRI)
(Alley et al., 2024).

2.3 Factor screening

The dataset was randomly partitioned into training (70%) and
testing (30%) sets. The training dataset was utilized to develop the
prediction model, while the test dataset was reserved for independent
validation. The variables in the training set were initially screened by
univariate logistic regression analyses. Subsequently, the variables
meeting the significance threshold (P < 0.05) were included in
multivariate logistic regression analyses. Ultimately, the variables
that demonstrated statistical significance in the multivariate logistic

regression were incorporated into machine learning algorithms for
prediction model construction (Du et al., 2025).

2.4 Model development and comparison

Six machine learning algorithms were employed in this study
including Random Forest (RF), NaiveBayes (NB), Gradient Boosting
Machine (GBM), K-Nearest Neighbors (KNN), Extra Trees (ET),
and Extreme Gradient Boosting (XGBoost). Hyperparameters were
optimized using grid search combined with manual fine-tuning
(Supplementary Table S1). The training set was exploited to
construct prediction models and the performance of different
algorithms was compared (Li et al., 2025).

TABLE 3 Univariate logistic regression analysis and multivariate logistic regression analysis.

Variable Univariate analysis Multivariate analysis

OR 95%CI
(Lower)

95%CI
(Upper)

P
value

OR 95%CI
(Lower)

95%CI
(Upper)

P
value

Age 1.000 0.995 1.004 0.847

Gender 0.880 0.761 1.017 0.146

ASA class 0.974 0.829 1.145 0.785

BMI 1.038 1.021 1.054 <0.001* 1.018 1.006 1.031 0.017*

Hypertension 1.003 0.858 1.171 0.979

Diabetes 0.801 0.567 1.133 0.291

Heart disease 1.037 0.809 1.331 0.807

Smoke 1.495 1.335 1.674 <0.001* 1.175 1.063 1.298 0.009*

Alcohol 1.112 0.952 1.298 0.260

Injury mechanism 1.016 0.906 1.140 0.820

Fracture side 0.986 0.880 1.105 0.841

Fracture classification 1.082 1.060 1.105 <0.001* 1.029 1.009 1.050 0.018*

Fracture type 2.001 1.680 2.382 <0.001* 1.395 1.169 1.667 0.002*

Concomitant ipsilateral foot and ankle
fractures

1.400 1.261 1.554 <0.001* 1.120 1.022 1.229 0.042*

Time to surgery 0.996 0.982 1.009 0.608

Surgical strategy 1.704 1.298 2.239 0.001* 1.164 0.922 1.470 0.282

Fixation method 1.033 0.986 1.082 0.252

Surgical approach 1.182 1.052 1.327 0.019* 1.053 0.954 1.161 0.388

Lateral malleolus osteotomy 0.984 0.720 1.344 0.933

Medial malleolus osteotomy 1.311 1.078 1.594 0.023* 1.127 0.969 1.313 0.195

Intraoperative blood loss 1.003 1.001 1.004 <0.001* 0.999 0.998 1.000 0.105

Operating duration 1.003 1.001 1.004 0.002* 1.001 0.999 1.002 0.510

Postoperative reduction 1.830 1.600 2.094 <0.001* 1.419 1.239 1.624 <0.001*

Follow up 1.002 0.991 1.012 0.818

Fixation removal 1.336 1.124 1.587 0.006* 0.980 0.857 1.120 0.801

*P < 0.05, with statistical significance.
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Receiver Operating Characteristic (ROC) curves were utilized to
evaluate the accuracy of each model, with the Area Under the Curve
(AUC) serving as a performance metric. Additionally, Decision

Curve Analysis (DCA) and calibration curves were plotted to
assess the clinical applicability and calibration of the models.
Additional performance metrics were evaluated, including

FIGURE 1
The comprehensive analysis of six machine learningmodels. (A) The ROC curve of the training set. (B) The ROC curve of the testing set. (C) The DCA
curve of the training set. (D) The DCA curve of the testing set. (E) The calibration curve of the training set. (F) The calibration curve of the testing set.
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accuracy, sensitivity, specificity, positive predictive value (PPV),
negative predictive value (NPV), precision, recall, and F1 score
(Quan et al., 2024).

2.5 Interpretation tools for the model

To address the “black-box” nature of machine learning
models, the SHAP (v1.8.5) was implemented using

KernelExplainer for model-agnostic interpretation. This
approach ranks the importance of input features and
provides explanations for model predictions. The SHAP
offers both global and local explanations: global explanations
provide consistent and accurate attribution values for each
feature, indicating their contribution to the final prediction,
while local explanations provide a tailored risk assessment for
each patient by assessing the contribution of features to an
individual prediction.

FIGURE 2
Performance indicators of six machine learning models in both the training and testing sets. (A) The training set. (B) The testing set.
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2.6 Statistical analysis

Statistical analysis was performed using Python version 3.11.4,
and a significant difference was set as P < 0.05. Continuous variables
were analyzed using Student’s t-test or Mann-Whitney U test, while
categorical variables were assessed using the chi-square test or
Fisher’s exact test, depending on the data distribution.

3 Results

3.1 Patient characteristics

A total of 207 patients undergoing surgical intervention for talar
fractures were enrolled, while 165 patients were excluded based on
the inclusion and exclusion criteria (Supplementary Figure S1).
Complete case analysis was performed and no imputation or data
augmentation was applied. The baseline characteristics of the

included patients are summarized in Table 1. Among these
patients, 45 (21.74%) developed AVN following talar fractures,
and 162 (78.26%) did not.Patients were randomly allocated to a
training set (n = 144, 70%) and a test set (n = 63, 30%). Baseline
characteristics were comparable between the training and test sets,
with no statistically significant differences (Table 2).

3.2 Univariate and multivariable logistic
regression

Univariate logistic regression analysis identified several variables
significantly associated with the development of AVN following
talar fractures, including operating duration, intraoperative blood
loss, BMI, fracture classification, surgical approach, medial
malleolus osteotomy, fixation removal, concomitant ipsilateral
foot and ankle fractures, smoke, surgical strategy, quality of
fracture reduction, and fracture type. Multivariable logistic

FIGURE 3
Waterfall chart and confusion matrix of XGBoost model. (A) Waterfall chart of the training set. (B) Waterfall chart of the testing set. (C) Confusion
matrix of the training set. (D) Confusion matrix of the testing set.
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regression further confirmed six independent risk factors: BMI,
fracture classification, concomitant ipsilateral foot and ankle
fractures, smoking, quality of fracture reduction, and fracture
type (Table 3).

3.3 Model building and performance
evaluation

Using the six independent risk factors identified bymultivariable
logistic regression, we constructed six machine learning models in
the training set. Predictive performance was evaluated using five-
fold cross-validation and assessed with metrics including AUC,
calibration curves, and DCA. The results of AUC demonstrated

that all models exhibited outstanding predictive performance, with
XGBoost achieving the highest diagnostic accuracy in both the
training and testing sets (Figures 1A,B). Additionally, XGBoost
showed the best performance in terms of calibration curves and
DCA curves, indicating superior calibration and clinical
applicability (Figures 1C–F). To comprehensively evaluate model
performance, we calculated additional metrics, including accuracy,
sensitivity, specificity, PPV, NPV, precision, recall, and F1 score for
all six machine learning models in both the training and testing sets
(Figures 2A,B). Based on the combined evaluation of all metrics,
XGBoost was the most accurate and reliable for predicting AVN
following talar fractures.

Waterfall charts demonstrated that XGBoost model exhibited
strong predictive performance in both the training and testing sets,

FIGURE 4
Interpretation of XGBoost model using the SHAP. (A) Importance ranking of features displayed by the SHAP. (B) Characterization attributes in the
SHAP. (C) Examples of explicable outcomes of a patient suffering from AVN following talar fractures. (D) The SHAP values of a patient suffering from AVN
following talar fractures.
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as shown in Figures 3A,B. Additionally, confusion matrices were
constructed to evaluate the model’s performance and transparency
in predicting AVN (Figures 3C,D). The results revealed that
XGBoost model achieved excellent predictive accuracy, with high
sensitivity and specificity in both datasets.

3.4 Model explanation

To enhance clinical interpretability, we utilized the SHAP
method to explain the final XGBoost model. This approach
provided two types of explanations: global explanations of the
model at the feature level and local explanations at the individual
level. Global explanations, illustrated in the SHAP summary plot,
ranked the features based on their contribution to the model using
the SHAP mean values. Smoking, BMI, and concomitant ipsilateral
foot and ankle fractures were identified as the three most important
predictors of AVN (Figure 4A). In addition, the SHAP dependence
plot illustrated the influence of individual features on model
predictions, with red representing high risk values and blue
representing low risk values (Figure 4B). In SHAP analysis,
positive SHAP values for features such as smoking and BMI
indicate an elevated risk of AVN, whereas negative values suggest
a protective effect. For instance, higher BMI values are associated
with increased AVN risk, attributable to greater mechanical stress
and metabolic disturbances. Conversely, certain fracture
classifications with negative SHAP values correlate with reduced
AVN risk, likely reflecting lesser fracture displacement and
diminished vascular compromise.

For local explanations, we analyzed specific patients to
understand how their individual characteristics contributed to the
prediction of AVN. Figures 4C,D illustrated the SHAP force plot for
a patient who developed AVN. Red features indicated a facilitating
effect on the occurrence of AVN. On the contrary, blue features
represented an inhibitory effect, and the length of the arrow
represents the magnitude of the feature’s contribution.

4 Discussion

This study successfully developed and validated a prediction
model for AVN following talar fractures by applying machine
learning. We identified BMI, fracture classification, concomitant
ipsilateral foot and ankle fractures, smoke, quality of fracture
reduction, and fracture type as key risk factors for AVN. The
XGBoost model demonstrated robust discriminatory and
calibration capabilities, providing valuable clinical guidance and
highlighting the potential of machine learning for predicting
orthopedic postoperative complications.

Our findings underscore the critical role of smoking as the most
influential predictor in the model, attributable to its detrimental
effects on vascular endothelial function and local blood supply (Patel
et al., 2013). Smoking induces vasospasm, thrombosis, and
microcirculatory disturbances, reducing blood supply and
increasing the risk of AVN following talar fractures (Kondo
et al., 2019). The result was consistent with previous studies and
emphasized the critical importance of preoperative smoking
cessation, especially for talar fracture patients.

Patients with high BMI often exhibit obesity-related metabolic
dysregulation and chronic inflammation, potentially disrupting the
microenvironment necessary for fracture healing. Fang et al.
reported that the incidence of hyperlipidemia is significantly
higher in high BMI patients, and hyperlipidaemia increases the
risk of AVN by forming fat plugs that hinder neovascularisation (Pei
et al., 2020). In addition, elevated BMI may increase local
mechanical stress on the talus, potentially raising the risk of
fracture displacement (Collins et al., 2018). Our finding
highlighted the need for comprehensive preoperative assessment
and targeted weight management strategies in high BMI patients to
optimize outcomes and minimize the risk of AVN.

Concomitant ipsilateral foot and ankle fractures, typically
indicative of higher-energy trauma, further compromise the
talus’s blood supply and surrounding soft tissues (Srinath et al.,
2024). In addition, ipsilateral foot and ankle fractures may limit
postoperative rehabilitation activities, indirectly impairing blood
circulation. Zhang et al. reported that inflammatory markers and
osteoclast activity were elevated in multiple fractures compared with
single fractures (Zhang et al., 2021). Furthermore, Zheng et al.
suggested that the chronic inflammatory microenvironment
regulated by bone immune abnormalities may contribute
significantly to AVN pathogenesis (Zheng et al., 2022). Our
findings emphasized the importance of recognizing and
managing comorbid injuries in patients with talar fractures, as
they necessitate tailored surgical and rehabilitation protocols to
mitigate the risk of AVN.

Fracture type and classification reflect injury severity and
anatomical disruption (Jordan et al., 2017). Our results
demonstrate a higher incidence of AVN in patients with talar
neck combined with body fracture, potentially enhancing the
prognostic utility of the Hawkins and Sneppen classification
system (Vallier et al., 2014; Mechas et al., 2023). Additionally,
the quality of fracture reduction emerged as a significant
predictor of AVN, as anatomical reduction maximizes the
restoration of blood circulation around the talus. We defined
poor reduction as >2 mm displacement or >5° neck angulation,
consistent with the research of Biz (Biz et al., 2019). This
underscores the critical importance of meticulous surgical
technique and appropriate fixation to achieve and maintain
optimal reduction, thereby reducing the risk of AVN.

The application of machine learning in this study demonstrates
its tremendous capabilities in orthopaedics. By leveraging
multidimensional clinical data, machine learning models can
automatically identify complex data patterns and provide
personalized predictions, offering advantages over traditional
statistical methods in handling nonlinear relationships and high-
dimensional data. Despite promising results, this study has certain
limitations. As a retrospective study, the reliance on medical records
may introduce limitations in data quality and reduce the credibility
of the evidence. Additionally, the performance of machine learning
models is contingent on the diversity and representativeness of the
training data, and our single-center study design may limit model
generalizability. Performance may vary across institutions due to
surgical technique heterogeneity or demographic differences.
Therefore, future multicenter prospective studies with larger
samples are warranted to enhance generalizability and clinical
applicability. Furthermore, self-reported factors like smoking and
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alcohol use are susceptible to reporting bias. BMI and smoking may
proxy unmeasured confounders such as hyperlipidemia or sedentary
behavior. Although SHAP quantifies feature contributions, residual
confounding could bias interpretations. Hence, incorporating
serological markers such as lipid profiles and objective lifestyle
measures with rigorous follow-up protocols would further
validate the reliability of the model.

5 Conclusion

In conclusion, our study developed a novel predictive
framework for AVN following talar fractures, leveraging machine
learning to identify key risk factors and assess their contributions to
the development of this complication. The findings advance our
understanding of the pathophysiology of AVN and offer practical
insights for clinicians to optimize surgical planning and
postoperative management. However, due to the lack of external
validation of the present study, future multicenter validation and
refinement are warranted to ensure broader clinical applicability and
effectiveness.
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