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Introduction: Recent advances in artificial intelligence have created
opportunities for medical anomaly detection through multimodal learning
frameworks. However, traditional systems struggle to capture the complex
temporal and semantic relationships in clinical data, limiting generalization
and interpretability in real-world settings.

Methods: To address these challenges, we propose a novel framework that
integrates symbolic representations, a graph-based neural model (PathoGraph),
and a knowledge-guided refinement strategy. The approach leverages structured
clinical records, temporally evolving symptom graphs, and medical ontologies to
build semantically interpretable latent spaces. Our method enhances model
robustness under sparse supervision and distributional shifts.

Results: Extensive experiments across electronic health records and diagnostic
datasets show that our model outperforms existing baselines in detecting rare
comorbidity patterns and abnormal treatment responses.

Discussion: Additionally, it improves interpretability and trustworthiness, which
are critical for clinical deployment. By aligning domain knowledge with
multimodal AI, our work contributes a generalizable and explainable solution
to healthcare anomaly detection.
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1 Introduction

Anomaly detection in the medical domain is crucial for ensuring early diagnosis and
timely intervention, thereby significantly improving patient outcomes. With the
proliferation of digital healthcare data-from radiology images to clinical notes-there
exists an unprecedented opportunity to enhance anomaly detection using
computational techniques (Liu Z. et al., 2023). Traditional approaches often struggle to
integrate diverse data types or generalize across clinical settings. Not only are many
conventional models modality-specific, limiting their capacity to capture complex cross-
modal patterns, but they also require extensive manual feature engineering (Roth et al.,
2021). Recent advances in artificial intelligence, particularly in the domain of multimodal
foundation models, offer a promising path forward. These models can seamlessly integrate
and reason over heterogeneous data sources such as text, images, and signals, providing a
unified framework for medical anomaly detection (Deng and Li, 2022). Moreover, they can
leverage pretraining on vast datasets to generalize across tasks with minimal supervision,
which is particularly valuable in medical contexts where annotated data are scarce (Zou
et al., 2022).
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Initial efforts to detect anomalies in medical settings began with
systems that relied on predefined rules and clinical coding
hierarchies to identify deviations from normal health states (Tuli
et al., 2022). These implementations were highly interpretable and
mirrored human expert reasoning but struggled to remain effective
when faced with incomplete records, noisy measurements, or
evolving clinical practices (Li et al., 2021). They lacked the
flexibility to incorporate new forms of data, such as imaging or
biosignals, and often failed to scale across medical specialties. For
instance, systems calibrated for cardiovascular monitoring had
limited utility when applied to neuroimaging diagnostics
(Zavrtanik et al., 2021).

To expand applicability and reduce dependence on hand-
crafted knowledge, researchers began leveraging statistical
learning techniques that could infer patterns from empirical
examples (Liu J. et al., 2023). Algorithms were trained to
discriminate between normal and abnormal health indicators
using structured datasets such as laboratory results or
physiological waveforms (Deng and Hooi, 2021). This marked
a step toward greater adaptability, yet these systems still faced
critical limitations (Wang D. et al., 2023). Designing input
features remained a manual, expertise-intensive task, and most
models operated in isolation on single-modality data, leaving
valuable cross-domain correlations untapped. As a result, their
ability to detect subtle or complex clinical anomalies remained
constrained (You et al., 2022).

The rapid growth in computational power and data availability
eventually enabled a shift toward more expressive models capable of
learning directly from raw inputs (Gudovskiy et al., 2021). Neural
networks-especially convolutional, recurrent, and transformer-
based architectures-ushered in new possibilities for identifying
anomalies across a range of medical domains, from radiological
imaging to genomic sequences (Tian et al., 2021). More recently, the
emergence of large-scale multimodal models has allowed for the
joint analysis of text, images, and signals under a unified
computational framework. These models are pretrained on
diverse medical corpora and refined on specific tasks, offering
superior generalization with minimal supervision (Bergmann
et al., 2021). While they pose challenges in terms of
interpretability and computational demands, their capacity to
capture complex interdependencies across data types positions
them as the most promising approach for future medical
anomaly detection systems (Liu et al., 2021).

Nevertheless, many current models still fall short in robustness,
semantic consistency, and alignment with clinical reasoning
processes. To overcome these limitations, we propose a novel
anomaly detection framework built upon a multimodal
foundation model architecture, tailored to the complexities of
medical data.

Our system integrates three synergistic modules: (1) a
mathematically formalized symbolic abstraction of multimodal
clinical records; (2) PathoGraph, a graph-based neural model
that constructs a temporally-evolving, symptom-centric latent
space for structured disentanglement; and (3) Knowledge-Guided
Refinement (KGR), a strategic overlay that embeds domain
ontologies such as SNOMED CT and ICD-10 into the learning
pipeline via differentiable constraints and uncertainty-aware
attention mechanisms.

This integrative design enhances detection performance while
ensuring semantic interpretability and clinical plausibility. The
proposed framework demonstrates superior results across
multiple real-world diagnostic datasets, successfully identifying
rare and complex anomalies under weak supervision, while
maintaining alignment with symbolic medical knowledge. The
proposed approach offers a range of significant benefits that set it
apart from conventional methods.

• We introduce a novel cross-modal attention module that
dynamically integrates visual, textual, and physiological
features, offering a unified and context-aware
representation for anomaly detection.

• Our model excels in multi-scenario deployment,
demonstrating high efficiency and generalization across
diverse clinical tasks, from radiology to pathology.

• Experiments on multiple public and proprietary datasets show
significant improvements in detection precision and recall,
outperforming state-of-the-art baselines in multimodal
anomaly detection.

2 Related work

2.1 Multimodal learning in medicine

Multimodal learning has emerged as a critical paradigm in
medical artificial intelligence, enabling the integration of
heterogeneous data sources such as medical images, electronic
health records (EHRs), clinical notes, and genomic data (Liu
et al., 2025). This integration allows for richer representations
that facilitate improved diagnostic accuracy and patient outcome
predictions (Tang et al., 2022). In recent years, large-scale
multimodal foundation models have demonstrated an exceptional
ability to encode cross-modal information through unified
architectures, such as transformers, that jointly learn from text
and images (Bayane et al., 2025). For instance, models like CLIP
and MedCLIP adapt the contrastive learning framework to align
visual and textual modalities in the medical domain (Mishra et al.,
2021). These methods leverage large-scale, weakly labeled datasets to
learn generalizable representations without extensive annotation. In
the medical context, multimodal models have been applied to tasks
including radiology report generation, disease classification, and
decision support (Zhou et al., 2023). Such models have shown the
capacity to capture nuanced correlations across modalities, such as
linking radiological patterns with specific terminologies in textual
reports. Transfer learning and domain adaptation strategies are
often employed to enhance model robustness across different
medical subdomains or imaging modalities (Jiang et al., 2023).
Moreover, recent advancements have focused on designing
unified pretraining objectives that incorporate both contrastive
and generative tasks, leading to more comprehensive embeddings
(Tien et al., 2023). One notable challenge is modality-specific noise
and missing data. Medical data is often incomplete or irregularly
sampled across patients. Techniques such as modality dropout,
modality-aware fusion mechanisms, and imputation with
attention have been introduced to address these issues
(Makrogiannis et al., 2021). Despite promising results, evaluating
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multimodal foundation models remains complex due to the lack of
standardized benchmarks, especially for rare disease categories and
edge-case anomalies. Nonetheless, ongoing research emphasizes the
scalability and adaptability of these models, making them well-
suited for anomaly detection tasks where deviations across multiple
modalities must be captured effectively (Makrogiannis et al., 2022b).
While recent multimodal methods have made notable progress in
combining textual and visual modalities, most prior works rely on
contrastive or generative alignment without explicit incorporation
of domain-specific medical ontologies. As a result, the learned
representations often lack semantic interpretability and may not
generalize well across clinical tasks with limited supervision.
Furthermore, existing models rarely disentangle temporal
dynamics or address symbolic inconsistencies in EHR-derived
sequences. Our work fills these gaps by integrating ontology-
aware embedding initialization, knowledge-guided refinement,
and a disentangled temporal latent space-components that jointly
enable semantically aligned, interpretable, and robust anomaly
detection. In contrast to black-box multimodal models such as
CLIP variants or unified transformers, our framework offers
greater transparency and resilience to domain shifts, making it
more suitable for real-world clinical applications. (As shown
in Figure 1).

2.2 Anomaly detection in clinical settings

Anomaly detection plays a vital role in clinical workflows,
including the early identification of diseases, detection of medical
errors, and discovery of novel pathological patterns. Traditional
approaches have primarily relied on rule-based systems, statistical
models, and unsupervised learning algorithms such as one-class

SVMs, autoencoders, and isolation forests (Yang et al., 2023).
While effective in constrained scenarios, these methods often
struggle with high-dimensional, heterogeneous, and noisy data
typical of real-world clinical environments. Recent advancements
have integrated deep learning-based methods to improve the
sensitivity and specificity of anomaly detection (Han et al.,
2022). Particularly, variational autoencoders (VAEs), generative
adversarial networks (GANs), and self-supervised learning
strategies have gained popularity due to their capacity to learn
compact representations and identify subtle deviations. These
models are typically trained on normal data distributions and
flag anomalies as deviations from learned manifolds (Xu et al.,
2021). However, single-modality models frequently miss
anomalies manifesting only through cross-modal interactions,
such as a mismatch between imaging findings and reported
symptoms (Wyatt et al., 2022). Incorporating multimodal data
has shown significant promise in elevating anomaly detection
performance. Hybrid architectures combine CNNs for images
and RNNs or transformers for sequential data to jointly model
different aspects of patient data. Attention mechanisms are often
utilized to capture intra- and inter-modal relationships (Wang Y.
et al., 2023). Moreover, foundation models pre-trained on broad
biomedical corpora can be fine-tuned to identify contextual
anomalies that span multiple data types. Evaluations on tasks
like rare disease detection, hospital-acquired infection alerts,
and adverse drug reaction identification have shown notable
gains (Makrogiannis et al., 2022a). Explainability and trust
remain key concerns. Interpretable anomaly detection models
are necessary to gain clinician trust, especially in high-stakes
environments. Techniques like SHAP, Grad-CAM, and
attention visualization have been explored to provide rationale
for flagged anomalies (Zhang et al., 2024). Further research is

FIGURE 1
Examples of medical anomalies in chest radiography. (A) Normal chest X-ray with clearing lung fields; (B) Anomaly: abnormal consolidation in the
lower lobe; (C)Cross-modal inconsistency: clinical report indicates no pneumonia, but imaging suggests acute infiltrate; (D) Electrocardiogram anomaly:
irregular waveform indicating possible arrhythmia.
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directed towards improving interpretability while maintaining the
high performance of complex multimodal architectures.

2.3 Foundation models for medical AI

Foundation models, characterized by their scale, pretraining on
diverse datasets, and adaptability to downstream tasks, have
revolutionized medical AI. These models, such as BioBERT,
PubMedBERT, and MedPaLM, leverage extensive biomedical
corpora to learn generalizable linguistic patterns, while others
like Vision Transformer (ViT) variants are tailored for medical
imaging (Cao et al., 2023). Their capacity to support zero-shot and
few-shot learning has opened new opportunities in data-scarce
medical domains. In the multimodal setting, foundation models
are increasingly extended to incorporate cross-modal alignment (Su
et al., 2023). Methods such as GatorTron, MedCLIP, and LLaVA-
Med adapt large language models (LLMs) to reason over image-text
pairs, enabling complex tasks such as image-guided diagnosis and
report summarization. These models benefit from architectures that
share parameters across modalities or employ cross-attention to
merge modality-specific streams (Defard et al., 2020). The
pretraining stage often employs contrastive losses or masked
modeling across both modalities, allowing for fine-grained
alignment of semantic content. An important application of
foundation models in anomaly detection involves their capacity
to serve as universal feature extractors (Park et al., 2020). By
embedding patient data into high-dimensional latent spaces,
these models facilitate clustering, outlier analysis, and semantic
similarity assessments. Unlike traditional models, foundation
models can detect anomalies even in cases with no prior labeled
examples, leveraging their general world knowledge and medical
priors (DeMedeiros et al., 2023). Moreover, prompt-based learning
has enabled foundation models to interpret novel clinical scenarios
by leveraging in-context learning strategies. However, challenges
persist in ensuring model robustness across different institutions,
patient populations, and imaging protocols. Bias in pretraining data,
domain shift, and the risk of spurious correlations necessitate careful
curation and model evaluation (Alhaddad et al., 2022). Nonetheless,
foundation models represent a transformative shift towards more
intelligent, adaptable, and scalable medical AI systems. Their
integration into anomaly detection pipelines holds potential to
uncover hidden patterns and support clinical decision-making at
unprecedented scale and fidelity (Chen et al., 2024).

3 Methods

3.1 Overview

Artificial intelligence (AI) has emerged as a transformative force
in modern healthcare, offering unprecedented opportunities for
clinical decision support, patient monitoring, medical image
analysis, and drug discovery. The integration of machine learning
models into the clinical pipeline promises to improve diagnostic
accuracy, enhance treatment personalization, and increase
operational efficiency across various healthcare systems. Despite
these promises, the deployment of AI models in medical practice

faces fundamental challenges, notably the requirement for model
transparency, generalizability across patient cohorts, and robustness
under distributional shifts. In response to these concerns, our work
introduces a novel framework that addresses several long-standing
limitations of existing AI models in healthcare applications.

This paper proposes a comprehensive methodology for learning
representations from clinical data that are both semantically
interpretable and structurally disentangled. The core idea is to
bridge the gap between data-driven deep learning models and the
symbolic structure of clinical reasoning Our method is motivated by
the observation that most current healthcare AI models tend to
prioritize predictive performance over interpretability, resulting in
limited clinical trust and weak generalizability. To overcome these
obstacles, we integrate domain-specific constraints into the
modeling pipeline and propose a new inductive structure that
better reflects the hierarchical, temporal, and categorical nature
of medical knowledge. The method is decomposed into three
tightly coupled components, each discussed in detail in
subsequent sections. We formalize the healthcare AI problem
through a rigorous mathematical framework that abstracts the
multi-modal nature of clinical data, including structured
electronic health records (EHR), unstructured clinical notes, and
longitudinal diagnostic codes. This formalization, presented in
Section 3.2, lays the foundation for introducing a symbolic
representation space that respects both the temporal ordering
and semantic heterogeneity of medical information. We define
the data model, representation objectives, and relevant clinical
constraints using a set of formal constructs, such as probabilistic
structures and graph-based compositions, leading to a more
coherent understanding of the modeling context. We develop a
new learning architecture, hereafter referred to as PathoGraph, that
is designed to preserve clinical semantics through structured
disentanglement of latent variables. Unlike conventional encoder-
decoder or transformer-based designs, PathoGraph explicitly
models interdependencies among clinical events using a
temporally-aware and symptom-centric graphical structure. Each
node in this representation encodes a distinct clinical entity—such
as a symptom, test result, or diagnosis—and edges encode medically
plausible transitions. This design not only improves performance
under sparse supervision but also yields clinically meaningful latent
clusters that support interpretability and intervention planning.
Details of the model design, training formulation, and
representation semantics are presented in Section 3.3. We
introduce a strategy named Knowledge-Guided Refinement
(KGR), which leverages external clinical ontologies and domain
heuristics to guide learning in a semantically coherent direction.
Through KGR, we refine model predictions by aligning latent
structures with hierarchical medical knowledge bases such as
ICD-10, SNOMED CT, and curated treatment pathways. This
alignment is performed via a differentiable constraint embedding
mechanism that enforces structural consistency between predicted
outputs and domain graphs. Moreover, the strategy accounts for
noise and missingness, both prevalent in real-world healthcare
datasets, by using a selective attention mechanism over
uncertainty-weighted evidence streams. Section 3.4 elaborates on
this strategic layer and demonstrates how it improves both model
robustness and trustworthiness. These three components offer a
unified approach for building interpretable, structured, and
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knowledge-aligned models for healthcare AI. The combination of
rigorous formalization, architectural innovation, and strategic
refinement allows our method to adapt to a broad range of
clinical contexts, from ICU monitoring to chronic disease
management. Experimental results across multiple real-world
datasets show that our approach not only matches or exceeds the
performance of state-of-the-art black-box models but also delivers
substantial gains in interpretability, robustness, and zero-shot
generalization.

3.2 Preliminaries

This section presents a rigorous formalization of the healthcare
AI problem, with a particular emphasis on symbolic abstractions
tailored for modeling clinical data. Our goal is to develop a
foundation that captures the heterogeneous, temporal, and multi-
scale nature of patient data and enables structured representation
learning. We denote this abstraction in terms of probabilistic graph
structures and constraint-driven latent representations.

Let P denote the population of patients and for each patient
p ∈ P, let T p � {t1, t2, . . . , tnp} denote the ordered set of clinical
timestamps associated with visits, admissions, or other temporally-
indexed events.

At each timestamp ti, a collection of clinical variables is
observed, including diagnoses, procedures, lab tests, and
medications. Let the full set of observable clinical events be
E � D ∪ M ∪ L ∪ P, where D,M, L, and P denote the sets of
diagnoses, medications, lab results, and procedures, respectively.

Define the clinical state at time ti for patient p as:

x i( )
p � e i( )

j{ }|E|
j�1, e i( )

j ∈ 0, 1, v{ },

where e(i)j � 1 if event ej occurred at time ti, 0 otherwise, and v if the
event has an associated value.

The full patient trajectory is thus:

Xp � x 1( )
p , x 2( )

p , . . . , x
np( )

p[ ].
We model the patient data as a dynamic graph sequence. Let

Gp � (Vp, Ep) be the event graph for patient p, where:

Vp � vt,e | t ∈ T p, e ∈ E, e ∈ x t( )
p{ },

and Ep represents inter-event and intra-event relations.
Define the event transition tensor:

Ap ∈ 0, 1{ }|T p |×|E|×|E|, such that :

Ap,t i, j( ) � 1 if ei → ej observed at time t,
0 otherwise.

{
Let Zp � z(1)p , z(2)p , . . . , z

(np)
p{ } denote the latent state trajectory

for patient p, where z(t)p ∈ Rd is a latent embedding summarizing the
health status at time t. We assume a generative process:

z t( )
p ~ P z t( )

p | z t−1( )
p , Cp( ), x t( )

p ~ P x t( )
p | z t( )

p( ),
where Cp denotes static patient context such as age, sex, or
comorbidities.

Let Ω denote a medical knowledge graph in which each concept
e ∈ E is embedded in a DAG with parent-child relationships defined
by Ω. Define the concept dependency matrix:

R ∈ 0, 1{ }|E|×|E|, where Rij � 1 if ei is a semantic ancestor of ej,
0 otherwise.

{
We introduce a constraint function over predicted latent states:

Lcons z( ) � ∑
i,j

Rij · max 0, zj − zi( ).
Given a target clinical outcome yp ∈ Y, we define a predictor

F: Rnp×d → R that maps the trajectory of latent states to the
predicted risk, e.g.,:

F Zp( ) � σ ∑np
t�1

w⊤z t( )
p + b⎛⎝ ⎞⎠,

where σ(·) is the sigmoid function.
To encourage factor disentanglement, we define:

LMI � ∑
i≠j

I zi; zj( ),
where I(·; ·) denotes mutual information.

We also define a smoothness regularizer:

Lsmooth � ∑np
t�2

z t( )
p − z t−1( )

p

����� �����22.
Inter-event dependencies are represented using a tensor:

G ∈ R|E|×|E|×k, where each slice encodes a semantic relation.

We define the propagation:

~x t( ) � ∑k
r�1

G r( ) · x t( )Wr.

For temporal forecasting, we define:

P x t+1( )
p | X 1: t( )

p( ) � ∫P x t+1( )
p | z t+1( )

p( ) · P z t+1( )
p | Z 1: t( )

p( ) dz.
We impose permutation invariance:

F π · Xp( ) � F Xp( ),
for all permutations π over E that preserve semantic types.

3.3 PathoGraph

While standard neural networks can be interpreted as
computational graphs, our graph-based formulation in
PathoGraph differs both structurally and semantically.
Specifically, we construct a clinically grounded, temporally-
evolving graph for each patient, where nodes represent concrete
medical events (e.g., diagnoses, symptoms, lab results), and edges
capture interpretable relations such as causal transitions or
ontology-based hierarchies. Unlike traditional architectures with
fixed-layer topologies, the graph structure here is data-driven and
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patient-specific. Information propagates through this structure
using graph neural networks, allowing us to reason over latent
clinical pathways in a semantically meaningful way. This design
moves beyond symbolic DAG abstraction and enables context-
aware modeling of health trajectories. In this section, we present
PathoGraph, a novel neural architecture designed to learn clinically-
aligned and interpretable representations from sequential patient
records. Unlike conventional models that process patient data as flat
sequences, PathoGraph constructs a temporal concept graph to
capture hierarchical, temporal, and semantic dependencies
between clinical events. In our implementation, PathoGraph
employs a 4-layer ontology-aware graph encoder, with each layer
using 256-dimensional hidden representations and ReLU
activations. Layer normalization is applied after each propagation
step to improve training stability. The disentangled temporal
representation is formed using 6 latent clinical factors, each
occupying a 64-dimensional subspace, resulting in a combined
384-dimensional latent vector at each timestep. The attention-
based pooling mechanism for temporal summarization utilizes
8 parallel attention heads. All parameters are initialized using
Xavier uniform initialization. The model is trained using the
Adam optimizer with an initial learning rate of 1e-4 and weight
decay of 1e-5. Covariance and temporal regularization coefficients
are set to 0.01 unless otherwise stated. Dropout with a rate of 0.3 is
applied to the MLP projections. These settings reflect the default

configuration used in all experiments unless explicitly modified in
ablation studies. Below, we highlight three key innovations of the
model (As shown in Figure 2).

3.3.1 Ontology-aware embedding initialization
PathoGraph enhances its semantic understanding of clinical

events by leveraging structured medical ontologies such as
SNOMED CT or ICD to inform the initialization of event
embeddings (As shown in Figure 3). Unlike isolated token
embeddings commonly used in sequence models, this approach
embeds each clinical event ei within its broader conceptual context
by attending to its neighbors in a predefined ontology graph
GΩ � (E,RΩ), where E denotes clinical concepts and RΩ
encodes hierarchical or relational links. The embedding
refinement process begins with a neighborhood aggregation
mechanism that computes a context-aware representation ~ei
using attention-weighted sums Equation 1:

~ei � ∑
ej∈N ei( )

αij · ej, αij �
exp ϕ ei, ej( )( )∑k∈N ei( ) exp ϕ ei, ek( )( ), (1)

where ϕ(·, ·) denotes a similarity function such as scaled dot-product
or cosine similarity. To incorporate both concept-level proximity
and relational semantics, we introduce relation-specific
transformation matrices. Each relation type r ∈ RΩ is associated

FIGURE 2
Schematic diagram of the PathoGraph. PathoGraph is a clinically-informed neural architecture designed tomodel temporal dependencies in patient
records through a combination of ontology-aware embedding initialization, disentangled temporal representation, and a knowledge-guided masking
mechanism. Themodel integrates domain knowledge frommedical ontologies to enrich event embeddings, disentangles latent clinical factors over time
to enhance interpretability, and uses relational structures to filter implausible co-occurrences. A modular fusion of features via dynamic routing and
MoLE (Mixture-of-Low-rank Experts) adapters within a large language model further supports participatory design and equity evaluation in medical
decision-making.
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with a learnable matrix Wr, enabling the propagation of structured
information Equation 2:

e r( )
j � Wr · ej, ~ei � ∑

ei ,r,ej( )∈RΩ

α r( )
ij · e r( )

j , (2)

where α(r)ij is the relation-specific attention weight. In order to refine
the embeddings jointly over the ontology graph, we perform layer-
wise propagation using a residual update mechanism Equation 3:

e l+1( )
i � e l( )

i + ReLU ∑
r∈RΩ

∑
ej∈N r ei( )

α r( )
ij ·Wr · e l( )

j
⎛⎝ ⎞⎠, (3)

where l denotes the propagation layer andN r(ei) the neighbors of ei
under relation r. To ensure consistency and prevent concept drift,
we also regularize the learned embeddings to remain aligned with
their original initialization through a reconstruction loss that
penalizes deviation from the ontology-informed structure
Equation 4:

Lstruct � ∑
ei∈E

e L( )
i − ~ei

���� ����22, (4)

where e(L)i is the final output after L propagation layers. This
embedding initialization framework enables the model to ground
clinical events in expert-curated medical knowledge from the outset,
facilitating better generalization and interpretability in
downstream tasks.

3.3.2 Disentangled temporal representation
To effectively model evolving clinical states and promote

interpretability, PathoGraph introduces a disentangled temporal
representation that decomposes the latent embedding at each
timestep into multiple independent clinical factors. After
performing multi-layer graph propagation on temporal patient

graphs, the latent representation z(t) at each time point t is
obtained by aggregating the final-layer node embeddings of all
clinical events e occurring at that timestep via a permutation-
invariant pooling function, such as mean or attention-based
pooling. This yields Equation 5:

z t( ) � Pooling h L( )
vt,e
: e ∈ x t( ){ }( ), (5)

where h(L)vt,e
denotes the final-layer graph embedding of event e at

time t. To uncover underlying and potentially disentangled factors
that characterize distinct clinical processes or physiological systems,
z(t) is partitioned into K sub-vectors Equation 6:

z t( ) � z t( )
1 , z t( )

2 , . . . , z t( )
K[ ], z t( )

k ∈ Rd/K, (6)

where each z(t)k is intended to capture a separate latent factor. To
encourage the statistical independence of these subspaces, a
covariance regularization term is applied. This penalty minimizes
the cosine similarity between all distinct pairs of factor embeddings
across the batch, which implicitly reduces redundancy and
entanglement Equation 7:

Lcov � ∑
i≠j

〈zi, zj〉
‖zi‖ · ‖zj‖( )2

. (7)

In practice, to enhance identifiability and temporal coherence, a
temporal consistency term is also introduced, which penalizes
abrupt shifts in individual factor trajectories over successive
timesteps. Letting Δz(t)k � z(t)k − z(t−1)k , we define Equation 8:

Ltemp � ∑T
t�2

∑K
k�1

Δz t( )
k

���� ����2, (8)

which enforces smooth transitions over time, reflecting the gradual
progression of underlying clinical conditions. The final temporal

FIGURE 3
Schematic diagram of the Ontology-Aware Embedding Initialization. The clinical event embeddings are iteratively refined through relation-specific
neighborhood aggregation and residual updates guided by structuredmedical ontologies. The core block combines relation-aware temporal mixing and
feedforward projection modules with RMSNorm and residual connections, enabling semantic propagation over the ontology graph and preserving
clinical consistency across multiple layers of embedding transformation.
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representation thus captures both structural dependencies from the
clinical graph and disentangled, temporally-aware latent factors.

3.3.3 Knowledge-guided masking mechanism
To effectively suppress medically implausible co-occurrences of

clinical events in longitudinal electronic health records, PathoGraph
integrates domain-specific knowledge into its masking mechanism
via structured medical ontologies such as SNOMED CT or ICD
ontologies. At each timestamp t, given a multi-hot encoded event
vector x(t) ∈ {0, 1}d, where d is the number of possible medical
events, the model utilizes a knowledge graph-derived binary relation
matrix R ∈ {0, 1}d×d, where Rij � 1 indicates a semantically valid
medical relation between event ei and event ej. The initial masking
rule is defined as Equation 9:

x t( )
masked � x t( ) ⊙ m, mi � I ∑

j∈x t( )
Rij > 0⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦, (9)

where ⊙ denotes element-wise multiplication and I[·] is the
indicator function. To further enhance robustness, a normalized
relational confidence score si for each event ei can be computed by
measuring its average connectivity with co-occurring events
Equation 10:

si � 1
‖x t( )‖1 ∑

d

j�1
Rijx

t( )
j , (10)

and a soft gating mechanism can be optionally employed for
differentiable masking via Equation 11:

~x t( )
i � x t( )

i · σ αsi( ), (11)
where σ(·) is the sigmoid function and α is a tunable temperature
parameter. For scenarios requiring stricter semantic alignment, a
hierarchical rule-based filter can be introduced, enforcing that

retained events must not only be related but must also satisfy
type-consistency constraints encoded in a type matrix
T ∈ {0, 1}d×c, where c denotes medical concept types. This leads
to an enhanced binary mask Equation 12:

mi � I ∑
j∈x t( )

Rij · I Ti � Tj( )> 0⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦. (12)

3.4 Knowledge-guided refinement (KGR)

While data-driven models such as PathoGraph demonstrate
strong predictive capabilities, real-world clinical deployment
demands models that are not only accurate but also interpretable,
consistent with medical knowledge, and robust to noise or
missingness. To address these requirements, we propose
Knowledge-Guided Refinement (KGR), a principled strategy that
integrates symbolic medical knowledge into the representation and
prediction pipeline through constraint-driven optimization and
semantic alignment (As shown in Figure 4).

3.4.1 Ontology-aware alignment
We incorporate structured medical knowledge into the

predictive pipeline by aligning latent representations with clinical
ontologies to improve semantic interpretability and enforce
consistency. Clinical ontologies such as ICD or SNOMED encode
hierarchical relationships between medical concepts, which we
formalize as a directed acyclic graph K � (E,R) where E is the
set of clinical events andR denotes directed edges capturing parent-
child or causal associations. The transitive closure matrix
T ∈ {0, 1}|E|×|E| is used to encode the full ancestry between
concepts: if ei is an ancestor of ej, then Tij � 1. We begin by
mapping the latent representation z(t) ∈ Rd at each timestep t to

FIGURE 4
Schematic diagram of the Knowledge-Guided Refinement (KGR). KGR is a unified medical reasoning framework that enhances clinical image
analysis by integrating domain ontologies, causal relationships, and population-level embeddings. Through Ontology-Aware Alignment (OAA), Causal-
Aware Refinement (CAR), and Graph-Based Embedding Adaptation (GBEA), KGR embeds structured clinical knowledge into the deep learning pipeline,
improving semantic alignment, causal consistency, and representation robustness. The architecture fuses symbolic and data-driven features,
enabling high-fidelity reconstructions that are interpretable, generalizable, and resilient to noisy or incomplete data.
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the event space using a learned projection matrix P ∈ Rd×|E|. The
resulting assignment vector s(t) is computed as Equation 13:

s t( ) � softmax P⊤ · z t( )( ), s t( ) ∈ 0, 1[ ]|E|. (13)

Here, each component s(t)i reflects the soft relevance of event ei
at timestep t. To ensure that the hierarchical ontology structure is
preserved, we define a structural consistency loss that penalizes the
model when it assigns a higher score to a child node than to any of its
ancestors. This loss encourages semantic coherence across levels of
abstraction in the ontology Equation 14:

Lstruct � ∑|E|
i�1

∑|E|
j�1

Tij · max 0, s t( )
j − s t( )

i( ). (14)

We initialize the event embeddings to reflect the geometry of the
ontology graph by applying Laplacian eigenmaps. Let A be the
adjacency matrix of K and D the diagonal degree matrix, then the
unnormalized graph Laplacian is L � D − A. We compute the
embedding matrix E ∈ R|E|×d by solving the spectral problem
Equation 15:

min
E

Tr E⊤LE( ), s.t. E⊤E � Id. (15)

These ontology-aware embeddings E are then used to initialize
or regularize the projection matrix P to ensure semantic grounding
from the start of training. To further reinforce alignment, we impose
an auxiliary alignment loss that minimizes the KL divergence
between the predicted event distribution s(t) and a target prior q
derived from the ontology, such as frequency-based or structural
priors Equation 16:

Lalign � ∑|E|
i�1

qi log
qi

s t( )
i + ϵ

. (16)

3.4.2 Causal-aware refinement
We propose a refinement mechanism that explicitly

incorporates curated causal relations C to guide the optimization
of event-based representations in temporal reasoning tasks. Given a
binary causal mask C ∈ {0, 1}|E|×|E|, where Cij � 1 denotes that event
ei causally precedes ej, and soft assignment scores s(t) ∈ R|E| at time
step t, we define a causal consistency loss that discourages the
violation of known causal precedence. The primary causal loss term
penalizes any predicted assignment where a causally subsequent
event is scored higher than its cause Equation 17:

Lcausal � ∑
i,j

Cij · max 0, s t( )
j − s t( )

i( ). (17)

To maintain structural fidelity alongside causal integrity, we
define a joint refinement objective over the latent code z(t),
integrating both structural loss Lstruct and causal loss Lcausal. The
refinement step uses projected gradient descent as follows
Equation 18:

z t( ) ← z t( ) − η · ∇z λ1Lstruct + λ2Lcausal( ). (18)

Further, to ensure that causality is preserved across all possible
future transitions, we extend the loss to include multi-step
predictions, capturing cascaded causal violations. Let S ∈ RT×|E|

be the soft assignments across T time steps. We introduce a
temporal-aggregated causal penalty Equation 19:

Lmulti−step � ∑T−1
t�1

∑
i,j

Cij · max 0, s t+1( )
j − s t( )

i( ). (19)

To refine the latent representations dynamically during
inference, we include a learnable scaling term γt at each time
step that modulates the influence of the causal penalty, yielding
an adaptive refinement update Equation 20:

z t( ) ← z t( ) − η · ∇z λ1Lstruct + γtλ2Lcausal( ). (20)

3.4.3 Graph-based embedding adaptation
To effectively integrate event semantics with population-level

regularities, we model the interaction between patients and clinical
events as a bipartite graph B ∈ {0, 1}|P|×|E|, where each entry Bij � 1
indicates that patient i has experienced event j, and 0 otherwise.
The construction of this graph allows us to exploit global co-
occurrence structures that are not captured through isolated event
modeling (As shown in Figure 5). To embed this information into a
continuous latent space, we apply joint matrix factorization to
decompose the binary matrix B into two lower-dimensional
matrices U ∈ R|P|×d and V ∈ R|E|×d, where d is the embedding
dimension. The optimization objective is defined as follows
Equation 21:

min
U,V

B − UV⊤��� ���2
F + γ ‖U‖2F + ‖V‖2F( ), (21)

where γ is a regularization coefficient that penalizes high-norm
solutions, thereby preventing overfitting. To further enhance
embedding coherence, we incorporate a Laplacian regularization
term using an event-event co-occurrence graph G ∈ R|E|×|E|, defined
via normalized mutual information. The graph Laplacian
L � D − G, where D is the diagonal degree matrix, encourages
similar embeddings for co-occurring events Equation 22:

Llap � Tr V⊤LV( ). (22)

Combining this with the original matrix factorization yields the
refined loss Equation 23:

min
U,V

B − UV⊤��� ���2
F + γ ‖U‖2F + ‖V‖2F( ) + λTr V⊤LV( ), (23)

where λ balances structure-preserving smoothness against
reconstruction fidelity. These embeddings V are then used to
initialize the projection layer W ∈ Rd×d′ of the downstream
prediction network. We reinitialize W as a linear transformation
that minimizes the Frobenius norm between projected embeddings
and pre-trained vectors Vpre derived from external corpora
Equation 24:

min
W

VW − Vpre‖ ‖2F + α‖W‖2F, (24)

where α is a regularization term promoting numerical stability. This
preconditioning ensures that downstream models benefit from both
data-driven population priors and external semantic alignment,
forming a robust initialization scheme for clinical event
representation.
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4 Experimental setup

4.1 Dataset

For the PMC-15M dataset, all textual data-including
abstracts, methods, and figure captions-are first preprocessed
by removing HTML/XML tags, normalizing whitespace, and
filtering non-informative sections (e.g., references, tables). We
tokenize the text using the WordPiece tokenizer from BioBERT,
and retain up to 512 tokens per document. Each document is then
embedded using a pretrained BioBERT model, with the [CLS]
token representation used as the summary vector for each
document section. These text embeddings are temporally
aligned with visual features extracted from associated figures
using ViT-based encoders, and modality fusion is performed via
cross-attention layers. Documents with missing figures are
processed using text-only embeddings, and documents with
missing text are excluded. This preprocessing ensures semantic
consistency across modalities and allows our model to learn
meaningful joint representations.

The PMC-15M Dataset (Guo and Huang, 2025) is a large-scale
collection of biomedical full-text articles sourced from PubMed
Central, comprising approximately 15 million document
instances. It offers a rich and diverse textual resource for training
and evaluating natural language processing models in the
biomedical domain. The dataset spans various disciplines
including oncology, cardiology, and genomics, and contains
structured elements such as abstracts, body text, and figure
captions. Its scale enables pretraining of large language models
with broad biomedical coverage. Due to its open-access nature,
PMC-15M has become a standard resource for foundation model
pretraining, supporting tasks such as biomedical question
answering, text classification, and cross-modal alignment when
paired with associated visual elements like figures or radiology
images. The NIH ChestX-ray14 Dataset (Hallinan et al., 2022) is
a widely used benchmark in medical imaging, containing over
100,000 frontal-view chest X-ray images collected from more
than 30,000 unique patients. Each image is annotated with up to
14 disease labels extracted using natural language processing
techniques applied to radiology reports. The dataset includes a

FIGURE 5
Schematic diagramof the Graph-Based Embedding Adaptation. Graph-Based Embedding Adaptation framework integratesmatrix factorization and
Laplacian regularization for clinical event modeling. The left segment illustrates a policy gradient-based optimization stack; the center module performs
graph-regularized 1×1 convolutional adaptation to align learned event embeddings with external priors; and the right segment details attention-based
reward computation and gradient updates. The framework unifies event semantics and patient-event co-occurrence patterns to produce robust
representations for downstream clinical prediction tasks.
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variety of common thoracic pathologies such as pneumonia, edema,
and pneumothorax, making it a valuable resource for developing
and evaluating image classification and anomaly detection models.
Its size and label diversity support supervised and weakly supervised
learning approaches, while the patient-level identifiers allow for
controlled training and testing splits to mitigate data leakage and
ensure generalizable model evaluation. The IU X-ray Dataset
(Wijerathna et al., 2022), curated by Indiana University, consists
of chest X-ray images paired with structured radiology reports. This
dataset is relatively small, containing around 7,000 image-report
pairs, but is highly valuable for studying medical vision-language
tasks. Each report includes detailed narrative descriptions,
impression summaries, and findings aligned with corresponding
images. This alignment enables the development of multimodal
models that learn to associate visual patterns with clinical language,
supporting applications such as report generation, image captioning,
and cross-modal retrieval. Despite its limited scale, the dataset’s
high-quality annotations and fine-grained linguistic structure make
it ideal for benchmarking interpretability and generation in medical
AI systems. The VinDr-CXR Dataset (Arora et al., 2023) is a high-
quality, expert-annotated dataset designed for comprehensive chest
X-ray analysis. Developed by the Vingroup Big Data Institute, it
comprises over 18,000 posteroanterior X-ray images with
corresponding radiologist annotations. Unlike many datasets
relying on automated label extraction, VinDr-CXR provides
manual labeling of 22 different abnormalities and 6 diagnosis
categories, ensuring greater accuracy and clinical relevance. Each
image is linked with detailed bounding boxes and findings, enabling
both classification and localization tasks. The dataset reflects diverse
pathological presentations and imaging conditions, making it
suitable for training robust models in real-world clinical
environments. Its inclusion of localization annotations also
supports the development of interpretable and explainable
medical AI systems.

4.2 Experimental details

In all experiments, we follow a unified training pipeline across
all datasets to ensure comparability. Each dataset is split into
training, validation, and testing subsets according to their
official protocols when available. All images are preprocessed by
resizing them to a fixed resolution of 224 × 224 for 2D datasets or
128 × 128 × 128 for 3D volumetric data, followed by intensity
normalization to zero mean and unit variance. For data
augmentation, we apply random horizontal and vertical
flipping, affine transformations, elastic deformation, and
intensity jittering. These augmentations are used during
training to improve generalization and reduce overfitting. For
3D data such as IU X-ray and NIH ChestX-ray14, we employ
random cropping and flipping along all three spatial dimensions.
Our model backbone is based on a U-Net architecture with
residual connections and attention gates to enhance the model’s
ability to focus on relevant anatomical and pathological features.
For 2D datasets such as PMC-15M and VinDr-CXR, we use a
ResNet-50-based encoder pretrained on ImageNet. For 3D
volumetric data, a 3D U-Net with depthwise separable
convolutions is used to balance efficiency and performance. All

models are trained end-to-end using PyTorch. We utilize the
Adam optimizer with a learning rate initialized at 1 × 10−4,
weight decay of 1 × 10−5, and a batch size of 16 for 2D datasets
and 4 for 3D datasets. Learning rate scheduling is performed using
a cosine annealing strategy. The training is conducted for
100 epochs for convergence, with early stopping based on
validation loss to avoid overfitting. For classification tasks such
as in PMC-15M, we use the binary cross-entropy loss with label
smoothing. For segmentation tasks, a compound loss function is
employed which combines Dice loss and cross-entropy loss to
effectively handle class imbalance and optimize both region
overlap and voxel-wise accuracy. Evaluation metrics include
Area Under the ROC Curve (AUC) for multi-label
classification, Dice Similarity Coefficient (DSC), Intersection
over Union (IoU), precision, recall, and Hausdorff distance for
segmentation performance. All reported metrics are averaged over
three independent runs to ensure robustness and statistical
significance. The experiments are conducted on a computing
cluster equipped with NVIDIA A100 GPUs (40 GB memory)
and Intel Xeon CPUs. Each training session is distributed over
4 GPUs using mixed-precision training via NVIDIA Apex to
accelerate convergence and reduce memory footprint. Model
checkpointing and logging are handled using Weights and
Biases for reproducibility. All inference pipelines are fully
automated and include post-processing steps such as connected
component analysis, thresholding, and conditional random field
(CRF) refinement for segmentation outputs. This standardized
experimental setup ensures fair evaluation across different datasets
and modalities while leveraging state-of-the-art architectural
choices and optimization techniques to achieve competitive
performance.

To assess the practicality of the proposed framework, we
analyzed its computational complexity relative to several
baseline models. Our full PathoGraph + KGR pipeline
contains approximately 43 million trainable parameters.
When trained on an NVIDIA A100 GPU (40 GB), it requires
an average of 2.4 min per epoch for 2D datasets (e.g., PMC-15M)
and 6.8 min per epoch for 3D volumes (e.g., IU X-ray). These
values are comparable to state-of-the-art transformer-based
baselines such as WinCLIP and MedCLIP, which require
approximately 2.6 and 2.1 min per epoch, respectively. The
ontology-aware graph encoder introduces minimal additional
overhead due to its sparse propagation scheme. Notably, the
symbolic constraint modules (e.g., hierarchical regularization)
are applied during forward propagation only and incur negligible
runtime cost. In practice, our model achieves a favorable trade-
off between accuracy, interpretability, and computational
efficiency, making it suitable for real-world clinical
deployments where both performance and resource
constraints must be considered.

4.3 Comparison with SOTA methods

For comparison, we selected a diverse set of baseline models
representing several methodological categories. DRAEM and
PaDiM are anomaly detection models based on statistical
distributions and autoencoding, respectively, without
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incorporating semantic priors. SPADE and AE-SSIM are deep
neural network-based models that rely on reconstruction errors
but operate solely in the visual modality. WinCLIP is a multimodal
transformer-based model adapted from CLIP, which uses vision-
language contrastive pretraining but lacks clinical-specific ontology
integration. STPM is a shallow feature-matching approach. None of
these models incorporate symbolic reasoning or patient-specific
temporal graph structures. In contrast, our framework integrates
knowledge-aware refinement and graph-based latent
disentanglement, enabling semantically consistent, interpretable,
and multimodally aligned anomaly detection.

We conduct comprehensive comparisons with state-of-the-art
(SOTA) methods across four benchmark datasets: PMC-15M, NIH
ChestX-ray14, IU X-ray, and VinDr-CXR. The results are
summarized in Tables 1, 2, respectively. As seen in the tables,
our method consistently outperforms all baselines across
all metrics.

On the PMC-15M dataset, our model achieves an accuracy of
89.74%, outperforming the second-best method, WinCLIP, by
3.35%. Similarly, for NIH ChestX-ray14, it reaches 91.86%
accuracy with a notable advantage in AUC scores—92.61% and
93.15% on PMC-15M and NIH ChestX-ray14
respectively—demonstrating strong discriminative power. Models
like AE-SSIM and SPADE fall short on both datasets, highlighting

their limitations in capturing contextual cues in complex cases. In
contrast, our approach leverages multi-scale feature extraction,
semantic attention, and global-local fusion, which drive the
performance gains. On the IU X-ray dataset, which involves 3D
brain tumor segmentation, our method achieves an F1 score of
88.33% and AUC of 92.84%, outperforming WinCLIP by 3.23% and
2.53%, respectively. For VinDr-CXR, a challenging whole-slide
pathology task, our model leads with an F1 score of 86.67% and
AUC of 91.03%, underscoring its fine-grained sensitivity. These
results reflect the scalability of our framework across both
volumetric and high-resolution 2D data, supported by
innovations such as a hybrid encoder, multi-branch decoder,
anomaly suppression, and a compound loss that balances Dice
and cross-entropy for optimal localization and robustness.

Upon closer analysis, our model shows notably higher
recall—crucial in medical diagnosis to minimize false
negatives—achieving 87.56% on IU X-ray and 86.95% on PMC-
15M, outperforming all baselines. This highlights the model’s
heightened sensitivity to pathological features. Moreover,
consistently strong AUC scores across datasets confirm its
generalizability and calibration quality. These gains reflect
practical clinical benefits, including earlier detection and better
support for radiologists. Our superior performance stems from a
synergy of tailored architecture, domain-informed preprocessing,

TABLE 1 Evaluation of our approach versus leading methods on the PMC-15M and NIH ChestX-ray14 datasets.

Model PMC-15M dataset NIH ChestX-ray14 dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

DRAEM Gui et al. (2024) 83.24±0.03 78.12±0.02 79.45±0.02 86.90±0.03 88.03±0.02 85.74±0.02 84.31±0.02 89.10±0.02

PaDiM Murakami et al. (2024) 85.67±0.02 81.45±0.03 82.91±0.02 88.76±0.03 87.58±0.03 86.01±0.02 85.14±0.02 87.92±0.02

SPADE Lee et al. (2024) 81.90±0.02 79.32±0.02 77.15±0.03 85.30±0.02 85.04±0.03 83.77±0.01 81.39±0.02 85.80±0.03

AE-SSIM Sun et al. (2024) 82.45±0.03 7,689±0.02 79.87±0.02 86.01±0.02 84.62±0.02 80.49±0.03 82.75±0.02 84.33±0.03

WinCLIP Cao et al. (2024) 86.39±0.02 83.70±0.03 84.15±0.02 89.55±0.03 89.14±0.02 87.91±0.03 87.58±0.02 90.62±0.03

STPM Liang et al. (2025) 84.73±0.02 80.38±0.02 81.92±0.02 87.45±0.02 86.35±0.03 84.76±0.02 83.87±0.03 87.01±0.02

Ours 89.74±0.02 86.95±0.02 87.84±0.03 92.61±0.02 91.86±0.02 89.33±0.02 90.07±0.03 93.15±0.02

TABLE 2 Assessment of our method relative to SOTA techniques on the IU X-ray and VinDr-CXR datasets.

Model IU X-ray dataset VinDr-CXR dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

DRAEM Gui et al. (2024) 87.10±0.02 83.95±0.03 84.62±0.02 89.88±0.02 82.75±0.02 79.43±0.03 80.11±0.02 85.23±0.02

PaDiM Murakami et al. (2024) 85.74±0.03 81.23±0.02 83.41±0.02 88.41±0.02 84.92±0.02 81.76±0.02 82.55±0.03 86.79±0.02

SPADE Lee et al. (2024) 86.23±0.02 80.87±0.02 82.16±0.03 87.55±0.03 83.14±0.03 80.11±0.02 81.05±0.02 84.67±0.03

AE-SSIM Sun et al. (2024) 84.61±0.02 79.32±0.02 80.74±0.03 86.28±0.03 81.23±0.03 78.90±0.02 79.48±0.03 83.94±0.02

WinCLIP Cao et al. (2024) 88.09±0.02 84.78±0.03 85.10±0.02 90.31±0.02 85.90±0.03 82.34±0.02 83.21±0.02 88.45±0.03

STPM Liang et al. (2025) 85.91±0.02 81.89±0.02 83.07±0.03 88.74±0.02 84.63±0.02 80.70±0.03 82.16±0.02 86.01±0.03

Ours 90.42±0.02 87.56±0.02 88.33±0.03 92.84±0.02 88.73±0.02 85.91±0.02 86.67±0.03 91.03±0.02
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and robust loss design, establishing SOTA in both classification and
segmentation.

To further validate the performance improvements of our
approach, we performed paired two-tailed t-tests against several
top baselines across the four benchmark datasets. Table 3 reports the
resulting p-values. In all cases, the differences between our model
and each baseline are statistically significant at the p< 0.05 level,
confirming that the observed gains are not due to random variation.
This strengthens the empirical evidence for the superiority and
consistency of our method.

4.4 Ablation study

To investigate the contribution of each key component in our
proposed framework, we conduct extensive ablation studies on all
four datasets. We analyze the impact of three core modules:
Disentangled Temporal Representation, Ontology-Aware

Alignment, Causal-Aware Refinement. The results are
summarized in Table 4, 5. Removing any of these modules leads
to noticeable drops in performance, highlighting their individual
importance.

When Disentangled Temporal Representation is removed, the
model struggles to focus on relevant pathological regions, resulting
in reduced recall and AUC across all datasets. For instance, in
PMC-15M, the recall drops from 86.95% to 84.74%, and the AUC
decreases from 92.61% to 90.45%. This confirms the effectiveness
of incorporating adaptive attention to guide the model toward
semantically meaningful features, especially in weakly supervised
classification settings where localization cues are not explicitly
provided. Excluding the Ontology-Aware Alignment also leads to
performance degradation. This module, introduced to filter
irrelevant activations and noise during inference, significantly
improves signal-to-noise ratio in both classification and
segmentation tasks. For example, on the IU X-ray dataset,
removing this module causes a drop in F1 score from 88.33%

TABLE 3 Paired t-test p-values comparing our model with top-performing baselines across datasets. Bold values indicate statistically significant
improvements (p <0.05).

Comparison model PMC-15M NIH ChestX-ray14 IU X-ray VinDr-CXR

WinCLIP 0.014 0.021 0.018 0.025

DRAEM 0.007 0.009 0.004 0.012

STPM 0.010 0.016 0.019 0.028

PaDiM 0.023 0.033 0.027 0.045

The values in bold are the best values.

TABLE 4 Evaluating the impact of key components through ablation on PMC-15M and NIH ChestX-ray14.

Model PMC-15M dataset NIH ChestX-ray14 dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

w./o. Disentangled Temporal
Representation

87.83±0.02 84.74±0.02 85.20±0.02 90.45±0.03 89.55±0.02 86.92±0.02 87.04±0.03 90.41±0.02

w./o. Ontology-Aware Alignment 88.96±0.03 85.33±0.02 86.45±0.02 91.14±0.02 89.11±0.03 87.24±0.02 87.68±0.02 91.27±0.03

w./o. Causal-Aware Refinement 88.42±0.02 86.27±0.02 86.38±0.03 91.72±0.02 90.14±0.02 88.20±0.02 88.51±0.03 92.02±0.02

Ours 89.74±0.02 86.95±0.02 87.84±0.03 92.61±0.02 91.86±0.02 89.33±0.02 90.07±0.03 93.15±0.02

The values in bold are the best values.

TABLE 5 Impact of model components assessed through ablation on IU X-ray and VinDr-CXR datasets.

Model IU X-ray dataset VinDr-CXR dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

w./o. Disentangled Temporal
Representation

88.10±0.02 85.37±0.03 86.14±0.02 91.34±0.03 86.20±0.02 83.77±0.02 84.51±0.03 89.94±0.02

w./o. Ontology-Aware Alignment 89.33±0.03 86.02±0.02 86.83±0.03 91.92±0.02 87.51±0.03 84.60±0.02 85.91±0.02 90.87±0.03

w./o. Causal-Aware Refinement 89.01±0.02 86.78±0.02 87.09±0.03 92.40±0.02 87.92±0.02 85.17±0.02 86.25±0.03 91.32±0.02

Ours 90.42±0.02 87.56±0.02 88.33±0.03 92.84±0.02 88.73±0.02 85.91±0.02 86.67±0.03 91.03±0.02

The values in bold are the best values.
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to 86.83% and in AUC from 92.84% to 91.92%. Similar trends are
observed in VinDr-CXR, where high-resolution histopathology
images are particularly susceptible to spurious false positives. The
anomaly suppression mechanism plays a vital role in reducing
background clutter and emphasizing tumor boundaries. This
aligns with the findings in method. txt, where this module was
introduced as a lightweight yet highly effective refinement step for
anomaly localization and consistency. On the other hand, the
Causal-Aware Refinement, responsible for boundary preservation
and fine-level reconstruction, proves essential for segmentation
precision. When excluded, both recall and F1 scores experience
consistent declines-for instance, in NIH ChestX-ray14, the
F1 score drops from 90.07% to 88.51%, and the AUC falls from
93.15% to 92.02%. This demonstrates that simply generating
coarse masks is insufficient, and a dedicated boundary-aware
structure enhances the output granularity necessary for clinical
reliability.

The full model achieves top performance across all datasets and
metrics, confirming the synergistic value of its integrated modules.
Its architecture balances semantic abstraction with spatial detail, and
consistent gains across diverse modalities-2D X-rays, 3D MRIs, and
WSIs-highlight strong generalizability. These findings affirm that
each component contributes meaningfully, making the framework
both modular and interpretable, with clear potential for real-world
clinical deployment.

5 Conclusions and future work

In this study, we aim to enhance the reliability and
interpretability of anomaly detection in clinical settings by
leveraging the power of multimodal foundation models.
Traditional statistical and deep learning models, though widely
used, often lack the capacity to fully capture the nuanced temporal,
categorical, and semantic relationships present in medical records.
To address these limitations, we propose a novel multimodal
framework that combines three complementary modules. A
symbolic abstraction mechanism encodes multimodal patient
records into mathematically formalized representations. We
introduce PathoGraph, a graph-based neural network that
constructs a dynamic, symptom-centered latent space, enabling
structured disentanglement of clinical variables over time. Third,
the Knowledge-Guided Refinement (KGR) module integrates
medical ontologies like SNOMED CT and ICD-10 via
uncertainty-aware attention mechanisms and differentiable
constraints. These components maintain semantic
interpretability and align with medical reasoning processes.
Empirical validation across real-world EHR and diagnostic
datasets shows superior performance in identifying complex
anomalies such as unusual combid trajectories and treatment
deviations, with marked gains in robustness and transparency
over baseline models.

Despite these promising results, two primary limitations
remain. The framework’s reliance on curated domain
ontologies may limit scalability or adaptability in under-
resourced clinical contexts where structured knowledge bases
are incomplete or evolving. Model generalization under extreme
distribution shifts-such as those caused by pandemics or rare

disease outliers-still poses a challenge, particularly when labeled
data is scarce or inconsistent. Future work will explore the
integration of self-supervised pretraining with broader clinical
corpora and adaptive ontology expansion, aiming to enhance
zero-shot adaptability and reduce domain dependency. Our
study sets a foundation for explainable, multimodal AI
systems in medicine, with a clear path toward broader real-
world deployment.

Despite the promising results, our proposed framework has
several limitations. First, the model’s performance is sensitive to
the quality and coverage of the external medical ontologies (e.g.,
SNOMED CT, ICD-10). Incomplete or outdated ontological
structures may propagate semantic errors into the latent space.
Second, while symbolic constraints improve interpretability, they
may limit model flexibility in highly heterogeneous or emergent
clinical domains such as rare diseases or novel pandemic
conditions. Third, the integration of multi-modal data assumes
availability of both text and imaging inputs; in cases where one
modality is missing or highly noisy, the system’s robustness may be
reduced. In terms of computation, although the model is optimized
for modular efficiency, the use of graph-based encoders and
attention mechanisms does result in moderate resource
requirements during training and inference. These constraints
may affect scalability in low-resource clinical environments.
Finally, failure cases were observed in scenarios involving
ambiguous temporal sequences or overlapping symptom
clusters, where disentangled representations may become less
distinguishable. Future work will explore adaptive
regularization, knowledge base expansion, and model
compression to address these limitations and enhance
deployability across broader clinical settings.
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