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Background: To address the limitation in gait assessment for patients with knee
osteoarthritis (KOA) and after total knee arthroplasty (TKA), where it is difficult to
simultaneously quantify joint dynamic coordination and movement complexity, a
multidimensional gait feature fusion algorithm is proposed.

Methods: Spatial motion data were collected from 70 participants (21 healthy
controls, 24 KOA patients, and 25 post-TKA patients) using a 3D motion capture
system. Hip-knee cyclograms were constructed to extract morphological
features (centroid, range of motion, perimeter, and area) for quantifying
dynamic coordination, while sample entropy of hip, knee, and ankle joint
angles was calculated to quantify movement complexity. Features were
categorized into four input types: fused multidimensional features, cyclogram
morphological features, sample entropy features, and traditional spatiotemporal
parameters. Machine learning models including Random Forest (RF), Support
Vector Machine (SVM), Decision Tree (DT), and k- Nearest Neighbors (KNN) were
employed for gait classification and assessment.

Results: Multidimensional feature analysis revealed a characteristic pathological
compensation pattern of “decreased cyclogram features with increased sample
entropy” in the KOA group, while the TKA group demonstrated postoperative
improvements in both dimensions. The incorporation of multidimensional
features significantly enhanced the performance of all classification models:
under multidimensional feature input, RF, SVM, DT, and KNN achieved
accuracies of 96.93%, 92.44%, 90.29%, and 88.98%, respectively—all
significantly outperforming models using single-dimensional features.
Conclusion: The multidimensional gait feature fusion algorithm effectively
overcomes the limitation of assessing either coordination or complexity in
isolation, providing an interpretable quantitative tool for analyzing KOA
pathological mechanisms and dynamically monitoring post-TKA rehabilitation.

knee osteoarthritis (KOA), total knee arthroplasty (TKA), hip-knee cyclogram, sample
entropy, machine learning, gait assessment, multidimensional gait feature
fusion algorithm
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1 Introduction

Knee osteoarthritis (KOA) is one of the leading causes of disability
among the elderly (Ro et al, 2019), Its pathological characteristics
include not only joint pain and limited mobility but also significant
disruption of lower-limb joint dynamic coordination, leading to
distinctive gait abnormalities (Liao et al, 2025). Total knee
arthroplasty (TKA), an effective treatment for end-stage KOA, can
substantially alleviate pain and restore joint range of motion (RoM)
(Konnyu et al., 2023), However, postoperative gait coordination and
movement complexity in TKA patients remain significantly different
from those of healthy individuals. Studies indicate that coordinated
movement of the hip, knee, and ankle joints during the gait cycle is
crucial for stable walking, and their angular dynamics systematically
reflect lower-limb coordination (Zhang et al., 2021). Current clinical
assessments primarily rely on imaging examinations such as X-rays
(Moura et al., 2025), yet these methods are subject to interpretation
subjectivity and struggle to reveal functional changes during disease
progression, highlighting an urgent need to establish objective and
multidimensional gait assessment approaches.

In the field of quantitative gait analysis, traditional
spatiotemporal parameters can effectively distinguish pathological
gait but are limited by their discrete, single-point measurement
nature, failing to comprehensively capture the dynamic
coordination mechanisms of multi-joint synergistic movements
(Pau et al., 2022a). Existing research approaches mainly fall into
two categories: (1) phase-based coordination analysis using
cyclograms and (2) nonlinear dynamic assessments of movement
complexity. Cyclograms, which visually characterize inter-joint
coordination patterns, have been widely adopted since Grieve
first proposed the theory (Xu et al, 2023). Subsequent studies
expanded their applications: Xu et al. (2025) constructed hip-
knee coordination metrics using perimeter and area; Park et al.
(2021) quantified gait deviations in KOA patients via cyclogram
coefficient of variation; Zelik’s team (Zelik et al., 2015) advanced the
understanding of gait biomechanics through 6-degree-of-freedom
multi-joint analysis. For movement complexity, Sample Entropy
(SE), due to its sensitivity to nonlinear characteristics of time series,
was demonstrated by Shan et al. (2025) to effectively quantify
differences in trunk segment movement complexity between
individuals with spinal cord injuries and healthy controls under
various perturbation directions, revealing flexibility and adaptive
changes in motor control, thereby successfully identifying
alterations in movement complexity during challenging seated
perturbations in individuals with spinal cord injuries. However,
existing studies rarely combine it with cyclogram morphological
parameters for joint analysis.

With the penetration of machine learning technologies,
preliminary progress has been made in gait feature fusion
analysis (Lee et al., 2021). Li et al. (2019) achieved 94% accuracy
by combining dynamic time warping (DTW) with sample entropy;
Mekni et al. (2025) utilized linear discriminant analysis (LDA)
combined with principal component analysis (PCA) to achieve
97.14% accuracy in gait cycle phase classification, demonstrating
the effectiveness of combining single algorithms with data
preprocessing. Chen et al. (2022) achieved 94.9% classification
accuracy using support vector machines based on lower limb
joint angle features, confirming the validity of single kinematic
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parameters. However, existing methods predominantly focus on
lack
multidimensional information such as cyclogram morphology

single-modal features and systematic integration of

and joint movement complexity, limiting the analytical
dimensions for gait abnormalities in KOA/TKA populations.

To address the aforementioned limitations in gait assessment
methods, this study proposes a multidimensional gait feature fusion
algorithm. By integrating joint range of motion (RoM), centroid
(CoM), perimeter, and area derived from cyclograms with sample
entropy features of joint angles, a multidimensional evaluation
framework encompassing “dynamic coordination-movement
complexity” was constructed. Joint angle data were normalized
using cubic spline interpolation and combined with hip-knee
cyclograms to achieve full-chain analysis of three-joint synergistic
mechanisms, thereby addressing the existing research gap in
accounting for ankle joint contributions. Wrapper-based feature
selection was employed to optimize inputs for Random Forest (RF),
Support Vector Machine (SVM), Decision Tree (DT), and k-Nearest
Neighbors (KNN) algorithms, enabling comparative validation of
the synergistic enhancement effects of multidimensional features for
KOA and TKA rehabilitation assessment. This approach provides
an interpretable quantitative tool for elucidating KOA pathology

and evaluating post-TKA rehabilitation.

2 Materials and methods
2.1 Participants

This study was approved by the Ethics Committee of Ningxia
Hui Autonomous Region People’s Hospital (Approval No.: 2024-
KJCG-001). A total of 70 participants were recruited, including
21 healthy volunteers (Healthy group), 24 knee osteoarthritis
patients (KOA group) treated at the hospital, and 25 total knee
arthroplasty patients (TKA group) who underwent surgery at the
hospital, as shown in Table 1. Among them, five patients in the TKA
group received bilateral knee arthroplasty, while the remaining
20 underwent unilateral knee arthroplasty (11 left and 9 right).
All KOA patients met the diagnostic criteria of the 2021 edition of
the “Chinese Medical Orthopedics  Branch
Osteoarthritis Diagnosis and Treatment with
Kellgren-Lawrence grades of 3-4. A total of 14 cases had bilateral

Association
Guidelines”

involvement, while the remaining 10 cases were unilateral, with
seven affecting the left side and three affecting the right side. TKA
patients were all end-stage knee disease patients who failed
conservative treatment, with postoperative time within 3 months
(Ma et al,, 2022). All patients were excluded for systemic diseases
such as diabetes and rheumatoid arthritis, and signed informed
consent forms. This study was strictly conducted in accordance with
the ethical guidelines of the Declaration of Helsinki.

2.2 Equipment and measurement method

The experimental setup is shown in Figure 1. This study
employed a Qualisys motion capture system (Model: Oqus 700)
with six high-speed cameras, as illustrated in Figure 1a. The cameras
were arranged in a circumferential layout surrounding a 6.5 m x
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TABLE 1 Participant anthropometry.

Height (cm) Weight (kg) K-L (3-4) Postoperative time
Healthy 21 56.6 + 13.8 162.5 + 8.5 66.7 + 11.0 25.1 429 - -
KOA 24 589 + 11.4 160.2 + 8.8 71.6 + 7.8 260 + 0.3 14/10 -
TKA 25 65.2 + 10.1 161.2 £ 9.0 714 + 152 272 %35 - 25+08
Experimental Scenario
i% ’ (a)
Qualisys camera L
(c)
<
attach reflective
markers
(b) The walkway measures 6.5 m x 3.5 m
FIGURE 1

Experimental setup depicting a walkway (b) measuring six and a half meters by three and a half meters with a blue humanoid figure surrounded by
cameras on tripods. The inset (a) shows a Qualisys camera, and inset (c) highlights a leg with attached reflective markers.

3.5 m testing area, as shown in Figure 1b. Three-dimensional spatial
calibration was first performed using a calibration wand to ensure
capture accuracy. Reflective markers were attached to key
anatomical landmarks on subjects, including the pelvis (iliac
crest, greater trochanter) and lower limbs (femoral epicondyles,
medial and lateral malleoli), as demonstrated in Figure 1c. Prior to
formal testing, subjects underwent 5-10 min of adaptive walking
training to familiarize themselves with the markers and eliminate
potential gait disturbances caused by nervousness. During actual
testing, redundant markers were removed, retaining only essential
dynamic tracking points while subjects walked naturally on the
walkway. The system randomly selected 3-5 complete gait cycles for
data collection to ensure natural and representative data. During
kinematic reconstruction using TrackManager software, the
system’s built-in real-time trajectory optimization algorithm
automatically corrected marker drift caused by soft tissue
artifacts. By digitally reconstructing lower body anatomical
structures, angular changes in the hip, knee, and ankle joints
were calculated. The system ultimately exported spatiotemporal
parameters and kinematic characteristic data of gait.

2.3 Multidimensional gait feature
fusion algorithm

The multidimensional gait feature fusion algorithm is
illustrated in Figure 2. First, gait data from the Healthy
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group, KOA group, and TKA group were obtained using the
Qualisys 3D motion capture system, with joint angle signals
normalized to standard gait cycles through cubic spline
interpolation. Second, precise gait cycle segmentation was
achieved based on extreme value detection of ankle joint
angles, identifying heel strike and toe-off events, which were
then used to construct hip-knee cyclograms. Morphological
features including range of motion (RoM), center of mass
(CoM),
cyclograms. Simultaneously, sample entropy of hip, knee, and

perimeter, and area were extracted from these
ankle joint angle sequences was calculated to quantify movement
complexity. Finally, four machine learning models (RF, SVM,
etc.) combined with wrapper-based feature selection methods
were employed to evaluate the classification performance of
multidimensional gait features, establishing a comprehensive
evaluation system that integrates dynamic coordination and
movement complexity. This system provides an interpretable
quantitative tool for clinical gait assessment.

2.3.1 Multidimensional gait feature extraction
based on cyclogram and sample entropy

After acquiring gait data, considering individual differences in
subjects’ height, weight, and gait characteristics that lead to
inconsistent numbers of collected data points, the cubic spline
interpolation method was employed. Through constructing
piecewise cubic polynomials in each subinterval [x;,x1],
Equation 1 was obtained:
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FIGURE 2

Multidimensional gait feature fusion algorithm.

(1)

s(x) = a; +bi (x = x;) + ¢ (x = x)" +di (x - x;)°

where, x; < x < x;,1 and a; are the function values x; at node, b; is the
first derivative value, ¢; and d; are coefficients related to the second
and third derivatives, respectively. By ensuring continuity of
function values and their first and second derivatives, smooth
resampling of non-uniformly sampled data was achieved.

To resolve the difficulty in accurately determining gait events
from hip-knee joint angle curves, ankle joint angle changes were
utilized as the primary marker: the heel strike moment
corresponds to the initiation point of ankle joint angle change,
which also represents the starting point of the stance phase, while
the toe-off moment corresponds to the maximum plantar flexion
angle of the ankle joint, namely, the starting point of the swing
phase. The stance phase constitutes approximately 60% of the
entire gait cycle, after which the ankle joint rapidly returns to
dorsiflexion entering the swing phase that accounts for about
40%. On this basis, sagittal plane hip-knee cyclograms were
constructed by plotting the angle change curves of the hip
joint (X-axis) versus the knee joint (Y-axis) in a clockwise
direction (Saegner et al., 2024).

Since the cyclogram consists of a series of continuous data
points, its perimeter is obtained by calculating the linear distance
between every two adjacent data points and accumulating them,
where the last term is calculated by the distance between the first and
last data points to ensure the cyclogram is closed, but this alone
cannot guarantee the symmetry of the cyclogram. Specifically, as
shown Equation 2:

n-1
pP= Z \/(ahiﬂ = 0)’ + (Oxirt — Oi)” + \/(Gm = )’ + (Br1 = Okn)’
i=1
)

In the equation, n is the number of data points, 8;; and 6y; are the
hip joint angle and knee joint angle of the i-th data point
respectively; 0,1 and Oy, are the angles of the (i+1)-th data
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point; Op;, Ok are the angles of the first point; 0y, Ok, are the
angles of the last point; the last term calculates the cross product of
vectors from the last data point back to the first data point. The
inclusion of this term ensures the sequence of data points forms a
closed loop, thereby creating a closed shape, though this alone does
not guarantee symmetry of the cyclogram. The cyclogram area A can
be calculated using Equation 3:

1 n-1

A= 3 ;(Ghiekiﬂ = 0kiOhist) + (01Ot — OnOi1) (3)

In Equations 4, 5, for each gait cycle 7, the mean hip joint angle
cycleCoMx; and mean knee joint angle c ycleCoM y; are calculated:

1 n
cycleCoMx; = ;Zhi pAngles; (4)
=
leCoM liK Angl (5)
cycleCoM y; = — ) KneeAngles;
y y n& gles;

where n is the number of angle values in each gait cycle, and j
represents the jth angle value in the current gait cycle n. In Equations
6,7, hip joint RoM and knee joint RoM are calculated by subtracting
the minimum angle from the maximum angle for each joint,

respectively:
hipRoM = max (hipAngles) — min (hipAngles) (6)
kneeRoM = max (knee Angles) — min (knee Angles) (7)

Sample entropy is a method for quantifying time series
complexity and regularity (Shan et al., 2025), useful for assessing
joint movement variability. By calculating sample entropy of hip,
knee, and ankle joint angle changes, a more comprehensive
understanding of these joints’ coordination and stability can be
obtained. The specific implementation is shown in Equation 8,
where m is the embedding dimension (vector length), r is the
similarity tolerance threshold, N is the total length of the time
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FIGURE 3

Machine learning evaluation method.

series, ¢ (1) represents the average similarity probability between
all vectors of length m under given tolerance r, and the sample
entropy is SampEn(m,r, N).

¢ (r)
SampEn(m,r,N) ln< () ) (8)

An embedding dimension of m = 2 effectively captures short-
term dynamic patterns in joint angle time series while avoiding
template sparsity issues caused by higher dimensions. The
similarity tolerance of r = 0.1, adapted to the dynamic range
of the data, balances sensitivity and specificity, preventing both
noise interference from small tolerances and pattern
generalization from large tolerances. The parameter selection
followed standard criteria for biomechanical signal analysis and
was validated through parameter sensitivity analysis,
demonstrating stable ranking of joint entropy values within
reasonable fluctuation ranges.

When performing statistical analysis on sample entropy and
cyclogram features, the Shapiro-Wilk test was first used to assess
data normality. Since the results did not follow a normal
the Kruskal-Wallis

comparisons of continuous variables between groups, while

distribution, test was employed for
Fisher’s exact test was used for categorical variables. For
variables showing significant differences, pairwise comparisons
were further conducted using the Mann-Whitney U test with
Bonferroni correction (adjusted p < 0.017). To control for the
effects of confounding factors such as age, sex, and BMI, as well as
population heterogeneity arising from the affected side in KOA
and the surgical side in TKA, analysis of covariance (ANCOVA)
was subsequently applied to evaluate intergroup differences after
adjusting for the aforementioned variables. For significant main
effects identified in ANCOVA, Tukey’s HSD post hoc test was
performed. Unilateral and bilateral involvement in the KOA
group were treated as independent categories; similarly, for
the surgical side in the TKA group, unilateral and bilateral
surgeries were distinguished, and these detailed side-specific
classifications were included as categorical covariates in the
ANCOVA model to statistically adjust for their effects on gait
features. All analyses were performed using SPSS 27 and the
Python statsmodels library.
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2.3.2 Machine learning modeling

To systematically evaluate the classification efficacy of different
gait feature combinations, four machine learning models—RF,
SVM, DT, and KNN were constructed (Dibbern et al., 2025),
with the complete evaluation process illustrated in Figure 3. To
comprehensively validate the superiority of the multidimensional
feature fusion algorithm, the input features for the models were
categorized into four types for comparative analysis: the first
category combined multidimensional features integrating
cyclogram morphology and sample entropy, the second category
included only cyclogram morphological features, the third category
consisted solely of sample entropy features, and the fourth category
comprised traditional spatiotemporal parameters.

Prior to modeling, the dynamic gait data of each subject were
transformed into a static feature vector, collectively forming an input
matrix with subjects as samples and corresponding gait metrics as
features. The preprocessing phase followed a systematic pipeline:
first, missing values were handled using median imputation, and
Z-score standardization was applied to eliminate scale differences.
Then, dimensionality reduction was performed by selecting the top
10 features with the highest F-statistics based on ANOVA (Nam
Nguyen et al., 2020). A nested stratified cross-validation framework
was employed to ensure evaluation robustness: the outer layer used
5-fold stratified cross-validation with 80% training set and 20% test
set in each fold, while the inner layer utilized 3-fold cross-validation
optimization. The model

for  hyperparameter parameter

configurations were systematically optimized as shown in
Table 2, with hyperparameter tuning applied to identify the
optimal  parameter combinations and maximize model
generalization performance. RF employed random search to
optimize the number of trees and maximum depth; SVM
optimized the penalty coefficient C and kernel function through
cross-validation; DT applied pruning strategies to adjust maximum
depth and splitting criterion; KNN optimized the number of
neighbors and weighting function based on distance weighting
(Simon et al., 2023). To address the mild class imbalance among
the Healthy, KOA, and TKA groups, a dual strategy was
implemented: 1. Stratified sampling ensured that each cross-
validation fold maintained the original distribution; 2. A class

weighting mechanism adjusted decision boundaries, with SVM
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TABLE 2 Configuration parameters of machine learning models.

m Key parameters Optimal parameters Optimization method

10.3389/fbioe.2025.1645162

Number of trees/Max depth 50-100/3-5 80/4 Grid search
SVM C-value/Kernel function 0.1-10/rbf 5/rbf Cross-validation
DT Max depth/Splitting criterion 3-5/gini 3/gini Pruning optimization
KNN Number of neighbors/Weight 3-7/distance 5/distance Distance weighting
80 80 80 80
© Health
= KOA
i~ 60F TKA = 60 - ....o' = 60 - " = 60 -
g g .- g P k|
= 40 F % 40 F K s = 40 F o s = 40} o
g g o ° g o ] g o
Z E o H £ H £ H
g 20f s20r L/\' g 20t H 5 20t
] g : g g
2 ol 2 4l 2 ol 2 4l
20 . . . 20 . . . 20 . . . 20 . .
-15 0 15 30 4: -15 0 15 30 -15 0 15 30 45 0 30
Hip joint angle (deg) Hip joint angle (deg) Hip joint angle (deg) Hip joint angle (deg)
a Three Groups ¢ KOA d TKA

b Healthy

e CT and CT-based 3D reconstructions of KOA patients

FIGURE 4

f CT-based 3D reconstructions of patients after TKA surgery

The average hip-knee angle cyclograms for the Healthy, KOA, and TKA groups (a), Average hip—knee cyclogram of the Healthy group (b), Average
hip—knee cyclogram of the KOA group (c), Average hip—knee cyclogram of the TKA group (d), CT and 3D-reconstruction images of a KOA patient (e), CT

and 3D reconstruction images of a post-TKA patient (f).

employing customized penalty weights. Final performance

evaluation used weighted precision, recall, and Fl-score to

eliminate class bias and ensure robust results.

3 Results

3.1 Dynamic coordination differences based
on cyclogram analysis

Hip-knee cyclogram analysis revealed significant movement
coordination differences among the three groups, as shown in
Figure 4. The average hip-knee angle cyclograms for the Healthy,
KOA, and TKA groups are presented in (a); the Healthy group (b)
exhibited typical elliptical trajectories, while the KOA group (c)

Frontiers in Bioengineering and Biotechnology

showed trajectory compression and irregular morphology. Although
the cyclograms of the TKA group (d) remained smaller than those of
the Healthy group, their trajectory errors were significantly reduced
compared to the KOA group, with a slight increase in area,
suggesting partial restoration of joint movement coordination
post-operation. This visual difference was further validated in the
CT and 3D reconstruction images of KOA patients (e), which
displayed evident knee varus deformity and joint space
narrowing. In contrast, the CT and 3D reconstruction images of
post-TKA patients (f) demonstrated proper alignment of the
prosthetic joints and significant improvement in lower limb
mechanical alignment.

Table 3 quantifies the differences in hip-knee cyclogram
characteristics. The knee joint RoM of the Healthy group was

61.45° + 1.63", significantly higher than that of the KOA group
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TABLE 3 Cyclogram characteristics.

Features Healthy Multiple comparison
HvsT KvsT

RoM(deg)

Hip 37.30 + 1.05 33.55 + 1.25 33.77 + 1.34 0.067

Knee 61.45 + 1.63 50.59 + 2.61 44.63 + 2.46 <0.001° 0.002* <0.001° 0.089

CoM(deg)

Hip 15.92 + 2.49 19.27 + 1.99 18.95 + 229 0.615

Knee 2213 £ 141 2385+ 1.74 2494 + 1.46 0.503

Perimeter (deg)

Stance phase 138.32 + 3.15 125.55 + 5.39 114.09 + 4.40 <0.001° 0.127 <0.001° 0.075

Swing phase 34.40 + 2.65 21.08 + 2.32 23.45 + 2.40 0.002° 0.001° 0.006" 0.447

Total 172.73 + 4.75 146.63 + 7.24 136.58 + 5.80 0.001° 0.009" <0.001° 0.246

Area (deg?)

Stance phase 550.93 + 28.23 402.76 + 38.40 398.02 + 28.24 0.002° 0.006" <0.001° 0.764

Swing phase 930.89 + 44.86 593.51 + 56.18 629.79 + 51.59 <0.001°* <0.001° <0.001° 0.603

Total 1481.91 + 63.39 996.28 + 88.71 1023.51 + 75.90 <0.001° <0.001° <0.001° 0.873

Values presented as mean + standard deviation. Bold values indicate statistically significant differences (p < 0.05).

“indicates statistically significant differences.

50.59° + 2.61° and the TKA group 44.63° + 2.46°, indicating
significant limitations in joint range of motion in both the KOA
pathological state and the early postoperative period. The swing
phase perimeter and area of the KOA group decreased by 38.7% and
36.3%, respectively, compared to the Healthy group, with
significantly greater reductions than those observed in the stance
phase perimeter and area, suggesting that impaired active movement
ability is more severe than the decline in stability during the weight-
bearing phase. The total perimeter and swing phase perimeter of the
TKA group remained significantly lower than those of the Healthy
group and showed no statistical difference compared to the KOA
group, indicating that joint coordination had not fully recovered
postoperatively. The stance phase perimeter and area of the TKA
group were significantly reduced by 17.5% and 27.7%, respectively,
compared to the Healthy group, demonstrating limited
compensatory muscle co-contraction. The total area of the KOA
group was significantly reduced by 32.8% compared to the Healthy
group, confirming that KOA causes impairment in spatiotemporal
coordination ability across multiple lower limb joints. Although the
total area of the TKA group showed a slight increase compared to
the KOA group, it remained significantly reduced by 30.9%
compared to the Healthy group, indicating that the surgery only

partially improved compensatory patterns.

3.2 Movement complexity differences based
on sample entropy

The sample entropy analysis revealed significant differences
in joint movement complexity among the three groups, as shown
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in Table 4. The hip joint sample entropy of the KOA group 0.30 +
0.01 increased significantly by 25.0% compared to the Healthy
group 0.24 + 0.01, while the postoperative hip joint sample
entropy of the TKA group 0.21 + 0.01 decreased significantly
by 30.0% compared to the KOA group, recovering to a level lower
than that of the Healthy group. The ankle joint sample entropy of
the KOA group 0.38 + 0.07 increased by 35.7% compared to the
Healthy group, while the TKA group showed a 21.1% decrease
compared to the KOA group. The knee joint sample entropy
changes exhibited a unique pattern: the KOA group showed a
20.0% increase compared to the Healthy group, but the TKA
significantly than the KOA group

group was lower

postoperatively.

3.3 Comparative analysis of
multidimensional features

To control for the influence of confounding factors such as age,
sex, and BMI, ANCOVA was employed to compare gait features
between groups. The results showed that, after adjusting for
covariates, multiple key features still exhibited significant
intergroup differences, as presented in Table 5. The hip joint
sample entropy demonstrated the largest effect size for
intergroup differences, followed by total area and swing phase
area, indicating that these metrics play important roles in
distinguishing between groups. Knee joint RoM and ankle joint
sample entropy also showed strong discriminative capabilities. In
contrast, hip and knee joint CoM and hip joint RoM did not exhibit
significant differences.
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TABLE 4 Comparison of lower limb joint movement complexity among the three groups.

Features Healthy Multiple comparison
HvsT KvsT
SEnip 024 £ 0.01 030 = 0.01 021 £ 0.01 <0.001° <0.001° 0.019 <0.001°
SExnee 020 + 0.01 0.24 = 0.01 0.15 % 0.01 0.003* 0.275 0.059 <0.001°
SEqnide 028 + 0.06 038 £ 0.07 030 % 0.07 <0.001° <0.001° 0537 0.007*

Values presented as mean + standard deviation. Bold values indicate statistically significant differences (p < 0.05).

“indicates statistically significant differences.

TABLE 5 ANCOVA results for gait features after adjusting for age, sex,
and BMI.

TABLE 6 ANCOVA results for gait features after controlling for side
differences.

Features F-value P-value Partial n? Features F-value P-value Partial n?
Total Area 14.433 <0.001* 0.329 Total Area 7.340 0.002* 0.284
Swing Phase Area 14.427 <0.001° 0.328 Swing Phase Area 4.741 0.014° 0.204
Stance Phase Area 8.103 <0.001* 0.216 Stance Phase Area 9.353 <0.001°* 0.335
Total Perimeter 7.513 0.001°* 0.203 Total Perimeter 45.385 <0.001° 0.710
Swing Phase Perimeter 6.670 0.002° 0.184 Swing Phase Perimeter 0.801 0.456 0.041
Stance Phase Perimeter 5.345 0.007* 0.153 Stance Phase Perimeter 73.066 <0.001° 0.798
Hip CoM 0.009 0.991 0.000 Hip CoM 8.255 0.001* 0.300
Knee CoM 0.370 0.692 0.012 Knee CoM 21.344 <0.001* 0.535
Hip RoM 2414 0.098 0.076 Hip RoM 59.305 <0.001* 0.762
Knee RoM 12914 <0.001* 0.305 Knee RoM 34.240 <0.001* 0.649
SE Hip 26.267 <0.001* 0.471 SE Hip 148.995 <0.001* 0.889
SE Knee 3.489 0.037¢ 0.106 SE Knee 16.121 <0.001* 0.465
SE Ankle 11.952 <0.001* 0.288 SE Ankle 49915 <0.001* 0.729

“indicates statistically significant differences Bold values indicate statistically significant
differences (p < 0.05).

To control for the effects of population heterogeneity such as
the affected side in KOA and the surgical side in TKA, ANCOVA
was employed to compare gait features between groups. Multiple
key features still exhibited significant intergroup differences, as
shown in Table 6. The hip joint sample entropy demonstrated the
largest effect size for intergroup differences, followed by stance
phase perimeter and ankle joint sample entropy. Hip joint RoM,
knee joint RoM, and total perimeter also showed strong
discriminative capabilities, with effect sizes of 0.762, 0.649,
and 0.710, respectively. Although knee joint CoM, hip joint
CoM, and swing phase area also presented significant
differences, their effect sizes were relatively small, while swing
phase perimeter did not show significant differences.

The comparative analysis of multidimensional gait features is
shown in Figure 5, revealing the significant advantages of the
multidimensional  evaluation  system traditional
spatiotemporal parameters. Cyclogram analysis demonstrated
that the hip joint (a) and knee joint (b) RoM in the Healthy

group were significantly greater than those in the KOA and TKA

over

groups. The swing phase perimeter (d) and area (g), stance phase
perimeter (c) and area (f), as well as total perimeter (e) and area
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“indicates statistically significant differences. Bold values indicate statistically significant
differences (p < 0.05).

(h) in the Healthy group were significantly larger than those in
the KOA and TKA groups. In terms of stance phase area, the TKA
group also showed significant improvement compared to the
KOA group. The complexity of hip (i), knee (j), and ankle (k)
joint angle variations in the KOA group was significantly higher
than that in both the Healthy and TKA groups. Among the
spatiotemporal parameters across the three groups, stride length
(m), left step length (o), right step length (p), and gait speed (1) in
the Healthy group were significantly higher than those in the
KOA and TKA groups, while step width (n) showed no
significant  differences the Healthy, KOA, and
TKA groups.

To further directly validate the superiority of multidimensional
feature fusion compared to traditional spatiotemporal parameters,

among

linear discriminant analysis (LDA) was employed to evaluate the
overall discriminative ability of the two feature sets, with the average
accuracy calculated using 5-fold cross-validation, as shown in
Figure 6. The LDA results demonstrated that the classification
accuracy based on traditional spatiotemporal parameters was
55.7%, while the
multidimensional feature fusion reached 71.4%.

classification ~ accuracy  based on
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Comparative analysis of multidimensional gait features. (a) Hip RoM. (b) Knee RoM. (c) Stance phase perimeter. (d) Swing phase perimeter. (e) Total
perimeter. (f) Stance phase area. (g) Swing phase area. (h) Total area. (i) SE of hip joint angle. (j) SE of knee joint angle. (k) SE of ankle joint angle. () Speed
(m) Sride length. (n) Stride wifth. (o) Step length left. (p) Step length right.

3.4 Classification performance of 1.0
feature fusion

The classification performance of the four machine learning 0.8
models in gait analysis is shown in Table 7, where the o 0.714
multidimensional feature combination demonstrated the best g
performance across all models. Among them, RF achieved the §0'6 0.557
most outstanding performance with an accuracy of 96.93%, k5
significantly superior to its performance with single-feature § -
inputs. DT achieved an accuracy of 92.44% under % '
multidimensional features, representing an improvement of e
6.43-19.28 percentage points compared to single-feature inputs, 0.2
further validating the importance of multiparameter evaluation.
SVM and KNN also achieved accuracies of 90.29% and 88.98%,
respectively, after feature fusion, indicating the universal advantages 0.0

L. . . Spatitotemporal Parameters Cyclogram Features+Sample Entropy

of the multidimensional feature analysis strategy.

A comparison of the top five feature importances across FIGURE 6

. . . . . Comparison of LDA classification accuracy.
multiple models is shown in Figure 7. Under spatiotemporal : Y
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TABLE 7 Comparison of classification performance of four machine learning.

10.3389/fbioe.2025.1645162

Model Feature selection Acc Pre Recall F1 score
RF Cyclogram Features + Sample Entropy 96.93% 97.17% 97.52% 97.32%
Cyclogram Features 89.73% 86.01% 87.66% 87.51%
Sample Entropy 75.66% 76.51% 75.50% 74.95%
Spatiotemporal Parameters 83.00% 83.50% 82.50% 83.00%
DT Cyclogram Features + Sample Entropy 92.44% 92.63% 93.37% 93.54%
Cyclogram Features 86.01% 87.66% 87.51% 86.54%
Sample Entropy 73.16% 73.40% 73.31% 73.40%
Spatiotemporal Parameters 82.00% 82.50% 81.50% 82.00%
SVM Cyclogram Features + Sample Entropy 90.29% 92.63% 93.37% 93.54%
Cyclogram Features 78.38% 78.91% 78.31% 79.80%
Sample Entropy 78.66% 77.06% 77.21% 78.77%
Spatiotemporal Parameters 81.00% 81.50% 80.50% 81.00%
KNN Cyclogram Features + Sample Entropy 88.98% 88.66% 88.74% 88.94%
Cyclogram Features 74.00% 73.63% 72.45% 72.28%
Sample Entropy 66.28% 66.54% 66.65% 66.31%
Spatiotemporal Parameters 75.90% 76.31% 74.35% 76.05%
Bold denotes the highest score.
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parameter input: in the SVM model (b), left step length ranked as
the most important feature, followed by gait speed; in the RF

model (a), gait speed was the core feature. Under sample entropy
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input: in the SVM model, ankle joint sample entropy ranked first,
with hip joint sample entropy second; in the RF model, hip joint
sample entropy ranked first. Under cyclogram morphological
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ROC curves of RF/SVM/DT/KNN models.

feature input: in the SVM model, knee joint CoM and swing
phase area ranked first and second, respectively, with total area
ranking fourth; in the RF model, total area and swing phase area
occupied the top two positions. Under multidimensional feature
fusion input: in the SVM model, knee joint RoM and swing phase
area dominated discrimination; in the RF model, total area and
swing phase area maintained their core positions.

The Bootstrap method was used to compare the AUC
differences among the four types of models, as shown in
Figure 8. Compared to single spatiotemporal parameter input,
the performance of all models showed systematic improvement
after integrating multidimensional features, a trend particularly
evident in the area under the ROC curve metric. The RF model
achieved a macro-average AUC of 0.9678 under fused features,
representing a significant improvement over single-feature inputs;
the SVM macro-average AUC reached 0.9670, DT reached 0.9669,
and KNN reached 0.9679, indicating that feature fusion effectively
enhanced the models™ ability to capture complex patterns and
significantly optimized classification boundary determination
accuracy (Ren et al,, 2023).
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4 Discussion

This study achieved synchronous quantitative assessment of gait
dynamic coordination and movement complexity in patients with
KOA and post-TKA by
morphological

integrating hip-knee cyclogram

features and joint angle sample entropy.
Multidimensional feature analysis revealed a multidimensional
dissociation phenomenon characterized by “decreased cyclogram
features with increased sample entropy” in the KOA group. The
Healthy group exhibited high cyclogram features and low sample
entropy characteristics, which aligns with van den Noort et al. (2022)
reporting that muscle atrophy in KOA patients primarily involves
the vastus medialis, whose atrophy leads to weakened knee
extension strength, and Yamauchi et al. (2020) observing that
muscle atrophy in KOA patients mainly affects the quadriceps
and Dbiceps femoris, potentially caused by joint pain,
inflammatory responses, impaired neural activation, and reduced
activity. Such muscular atrophy results in decreased hip and knee
extension/flexion strength, consequently affecting gait complexity

and coordination. In contrast, the TKA group displayed unique

frontiersin.org


mailto:Image of FBIOE_fbioe-2025-1645162_wc_f8|tif
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1645162

Tan et al.

postoperative characteristics of improved stance phase area and low
sample entropy, indicating that TKA improves knee function
through precise prosthetic alignment and size adjustment. To
control for the influence of confounding factors such as age, sex,
and BMI, as well as population heterogeneity arising from the
affected side in KOA and the surgical side in TKA, ANCOVA
was employed. The results demonstrated that these factors did not
significantly affect the feature patterns.

Comparison with traditional spatiotemporal parameters
validated the superiority of multidimensional features. Although
spatiotemporal parameters can distinguish between the healthy
group and the KOA group (Kosesoy, 2023), they fail to
effectively differentiate between the KOA group and the TKA
group. In contrast, through multidimensional gait feature
comparative analysis, the differences between the TKA group and
the KOA group become clearly apparent. Feature importance
analysis provides interpretable evidence for the conclusions. The
RF model revealed that total cyclogram area and swing phase area
are core discriminative features, confirming the indicative role of
joint dynamic coordination in pathological gait. This finding aligns
with the method employed by Pau et al. (2022b) in their study on
multiple sclerosis patients, which used hip-knee cyclograms to
quantify coordination; their research similarly demonstrated high
sensitivity of cyclogram area and perimeter to disability levels. The
synergistic contribution of ankle joint sample entropy and knee joint
RoM highlights the value of assessing multi-joint movement
complexity, consistent with the view proposed by Zanin et al.
(2022) that “entropy increase reflects diminished motor control.”
In the SVM model, the combination of knee joint RoM and swing
phase area dominated classification decisions, further illustrating
that the interaction between coordination impairment and
complexity compensation is key to distinguishing the three groups.

Although compared to the information set-based decision tree
(IFS-DT) method proposed by Balakrishnan et al. (2024), this study
not only achieved high-precision classification but also integrated
cyclogram morphological features and sample entropy in a
multidimensional manner, enabling a more comprehensive

capture of joint movement coordination and complexity
characteristics, thereby providing richer quantitative indicators
for gait assessment; compared to the stroke assessment method
based on multidimensional gait parameters by Wang et al. (2025),
although its spatiotemporal parameters were effective for stroke
grading, its recognition accuracy for mild cases was only 58.33%-
66.67%, still limited by the unidimensional nature of the features.
This study further integrated the clinical translation pathway into
the supplementary materials, constructing an intelligent assessment
closed loop encompassing data acquisition, feature extraction,
model inference, and clinical interpretation, laying the technical
foundation for translation into real-world clinical scenarios. This
framework not only provides dynamic, quantitative, and
interpretable assessment metrics for post-TKA rehabilitation but
also holds the potential to reshape decision-making patterns in
orthopedic rehabilitation. By continuously monitoring the recovery
trajectory of coordination metrics and the normalization process of
complexity parameters, it offers evidence-based support for
rehabilitation ~ phase  determination, individualized plan
adjustment, and prognosis judgment, thereby promoting a shift

in rehabilitation medicine from an experience-oriented to a data-
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driven paradigm. Future work will enhance model generalization
through multicenter clinical validation and explore integration with
wearable sensing, IoT, and digital twin technologies to build an
intelligent rehabilitation management ecosystem covering hospital-
community-home settings, ultimately achieving the widespread
application of precision rehabilitation medicine.

5 Limitations

Although the multidimensional gait feature fusion algorithm
proposed in this study demonstrates strong discriminative ability in
distinguishing healthy individuals, KOA patients, and post-TKA
populations, and offers a novel analytical perspective, several
noteworthy limitations remain. This study adopted a cross-
sectional design and did not include preoperative baseline data or
longitudinal follow-up at multiple postoperative time points for
TKA patients, making it difficult to determine to what extent the
observed gait changes can be attributed to surgical recovery effects,
adaptive compensatory strategies, or residual preoperative patterns,
thereby limiting causal inferences regarding intervention
effectiveness. Additionally, the sample size was relatively limited,
particularly in subgroup analyses such as different surgical types or
rehabilitation stages, where imbalanced distributions may affect the
robustness and generalization ability of the machine learning
models. Although statistical control was applied for variables
such as age, sex, and BMI using analysis of covariance, and
heterogeneity due to affected side and surgical side was
considered, other unmeasured confounding factors—such as
muscle strength levels, pain perception, and joint stability—may
still have potential influences on the results. Finally, as all
participants were recruited from a single center and were not
stratified by key rehabilitation windows, the generalizability of
the conclusions requires further validation through larger-scale,
multicenter, prospective longitudinal studies.

6 Conclusion

This study established a multidimensional gait feature fusion
algorithm that integrates hip-knee cyclogram morphological
features and joint angle sample entropy, effectively distinguishing
gait differences among healthy individuals, KOA patients, and post-
TKA patients. It reveals the movement compensation mechanisms
in KOA patients and the partial recovery of motor function after
TKA, validated by machine learning models, with classification
performance superior to traditional single-dimensional methods.
The feature extraction approach based on cyclogram morphology
and sample entropy captures subtle movement control differences
that cannot be reflected by traditional spatiotemporal parameters,
providing an interpretable quantitative tool for analyzing KOA
pathological mechanisms and assessing post-TKA rehabilitation.
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