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Rotator cuff tears (RCTs) are a prevalent cause of shoulder dysfunction, with
postoperative retearing remaining a significant challenge due to poor tendon-to-
bone healing. Mesenchymal stem cells (MSCs), owing to their multipotency,
immunomodulatory properties, and diverse tissue sources, have emerged as a
promising therapeutic strategy. Current approaches include direct MSC
implantation, MSC-laden scaffolds for structural support, and utilization of
MSC-derived conditioned medium (CM) or exosomes to enhance
regeneration. Clinical studies demonstrate reduced retear rates with MSC-
based therapies, yet animal models show inconsistent outcomes, influenced
by cell source, delivery methods, and dosage. MSC modifications (e.g., gene
editing) and scaffold-based strategies further improve biomechanical strength
and fibrocartilage regeneration. Emerging focus on MSC secretome, particularly
exosomes, highlights their potential inmodulating inflammation and tissue repair.
While preclinical results are encouraging, clinical translation requires
standardization of protocols, optimization of delivery systems, and long-term
safety evaluations.
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1 Introduction

Rotator cuff tear (RCT) is a common cause of shoulder pain and dysfunction. It can be
caused by acute trauma or chronic overuse, with clinical symptoms mainly including
shoulder pain, pain exacerbated by movement, limited range of motion, andmuscle atrophy
(Teunis et al., 2014; Yamamoto et al., 2010). As the population ages and the number of
people participating in sports increases, the incidence of RCT has also risen year by year
(Herr et al., 2014). Due to the limited self-healing capacity of rotator cuff tendons, surgery is
often required for patients who do not respond to conservative treatments (Dunn et al.,
2016; Shin and Lee, 2025; Zingg et al., 2007).

Currently, arthroscopic surgery is the mainstream method for repairing rotator cuff
tears. It involves suturing the torn tendon ends back to the bone surface to restore shoulder
function (Chen and Chen, 2013; Garcia et al., 2024; Yong, 2018). Despite continuous
improvements in surgical techniques and equipment, some patients still experience re-tears
after surgery, with the size of the RCT directly affecting the re-tear rate (Bishop et al., 2006;
Bjornsson et al., 2011; Sears et al., 2015; Tosyali et al., 2024; Lin et al., 2019). A key factor in
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this phenomenon is the poor tendon-to-bone healing capacity at the
site of the tear (Hernigou et al., 2014; Hernigou et al., 2015; Gupta
et al., 2013). Although surgery can reattach the torn rotator cuff to
the footprint area, the self-healing ability at the tendon-bone
interface is limited. As a result, only loose connective tissue is
formed postoperatively, and the sutured rotator cuff tissue
cannot regain its original mechanical strength (Weeks et al., 2014).

The native tendon-to-bone interface of the rotator cuff is
composed of four distinct layers: bone, mineralized fibrocartilage,
unmineralized fibrocartilage, and tendon (Genin and Thomopoulos,
2017; Rossetti et al., 2017). The mineralized and unmineralized
fibrocartilage forms a transitional zone that reduces the stiffness
gradient between different tissues (bone and tendon), thus buffering
mechanical stress and transferring it from the tendon to the bone
(Genin and Thomopoulos, 2017; Rossetti et al., 2017). However, this
structure does not regenerate after RCT repair, and is instead
replaced by fibrovascular scar tissue rich in type III collagen,
rather than fibrocartilage, leading to a substantial decrease in
biomechanical strength compared to the normal footprint
(Hernigou et al., 2014; Hernigou et al., 2015; Gupta et al., 2013).
Therefore, promoting the regeneration of the transitional structure
at the tendon-to-bone interface and restoring the normal structure
of the tendon-to-bone attachment are critical to preventing re-tear
after rotator cuff repair.

Mesenchymal stem cells (MSCs) are a class of stem cells with
strong proliferative ability and multipotent differentiation potential.
They can differentiate into myocytes, osteoblasts, adipocytes,
chondrocytes, and other cell types (Polymeri et al., 2016). MSCs
are easy to obtain, and can be extracted from bone marrow, tendons,
skin, adipose tissue, umbilical cord, blood, and amniotic tissue
(Robey, 2017). Their diverse functions include immune
modulation, anti-inflammatory effects, anti-apoptosis, and
promotion of angiogenesis, making them ideal candidates for
tissue engineering research (Cao et al., 2018; Qi et al., 2019;
Chen et al., 2023).

In recent years, many researchers have employed various
methods to promote tendon-to-bone healing, reduce re-tears, and
enhance the biomechanical strength of the new tendon-to-bone
attachment, including platelet-rich plasma (Bissell et al., 2015;
Spindler et al., 2009; Yang et al., 2017; Gupta et al., 2013),
growth factors (Anderson et al., 2001; Huang et al., 2020), gene
transfection technologies (Majewski et al., 2008; Zhu et al., 2014),
and cell therapy (Huang et al., 2020; Yuan et al., 2025; Sekiya et al.,
2015; Valencia et al., 2015; Xiao et al., 2024; Kawai et al., 2015).
Among these, MSC-based therapies have shown increasing clinical
potential. This article reviews the current research on the application
of MSCs in promoting rotator cuff tendon-to-bone healing.

2 Application of MSCs and related
therapies in rotator cuff tendon-to-
bone healing

MSCs can be sourced from several tissues. Bone marrow-derived
mesenchymal stem cells (BMSCs) are the most commonly used stem
cells and can differentiate into musculoskeletal system cells such as
tendon, cartilage, and ligaments under appropriate conditions
(Caplan, 1994; Cai et al., 2023). However, bone marrow

extraction is painful and may lead to complications (Hjortholm
et al., 2013). Another commonly used source is adipose tissue-
derived mesenchymal stem cells (ADSCs), which have strong
proliferative and differentiation abilities, and their extraction
involves less surgical invasiveness compared to BMSCs (Park
et al., 2013; Valenzuela et al., 2013). Additionally, synovium-
derived mesenchymal stem cells (SDSCs) have recently been
discovered (De Bari et al., 2001) and shown to promote cartilage
regeneration (Sekiya et al., 2015).

The application of MSCs and related therapies in rotator cuff
tendon-to-bone healing involves multiple therapeutic strategies. As
illustrated in Figure 1, the normal tendon-bone interface consists of
four distinct layers: tendon, non-mineralized fibrocartilage,
mineralized fibrocartilage, and bone tissue. Following injury,
various MSC-based therapeutic approaches can be employed,
including direct MSC implantation, MSC-scaffold combination,
and MSC-related therapies such as conditioned medium and
exosomes. These strategies ultimately converge to promote
tendon-bone healing, resulting in the formation of new
fibrocartilage and restoration of the tendon-bone interface structure.

2.1 Direct implantation of MSCs

Several clinical studies have reported thatMSCs can significantly
promote tendon-to-bone healing. Kim et al. explored the effects of
ADSCs on recovery in patients after rotator cuff repair. The
researchers injected ADSCs, mixed with fibrin glue, into the
tendon-to-bone interface and followed up for 28 months. They
found that, compared to the control group, although ADSC
implantation did not significantly improve shoulder function
scores, the re-tear rate in the ADSC group was 14.3%,
significantly lower than the control group’s 28.5% (Kim et al.,
2017). Hernigou et al. (2014) conducted a 10-year follow-up
case-control study and found that in the BMSC treatment group,
39 out of 45 patients (87%) did not experience a re-tear of the rotator
cuff, while only 20 out of 45 patients (44%) in the control group-
maintained rotator cuff integrity. Furthermore, they divided the
patients in the BMSC group into two subgroups based on whether
re-tears occurred, and found that the surgical cell implantation dose
in the re-tear subgroup was significantly lower than in the non-re-
tear subgroup. Thus, they concluded that BMSCs can promote
tendon-to-bone healing in the rotator cuff, and this ability is
related to the cell implantation dose.

However, the efficacy of MSCs in animal experiments has been
inconsistent. Gulotta et al. implanted 10̂6 BMSCs into rat rotator
cuff repair sites, but found that the implantedMSCs did not improve
the histological morphology or biomechanical strength of the
tendon-to-bone interface (Gulotta et al., 2009). Degen et al. also
found that while ADSC implantation resulted in more organized
collagen and better biomechanical strength at the tendon-to-bone
interface after 2 weeks, the effects diminished by the fourth week
(Degen et al., 2016). The results of various clinical trials and animal
experiments mentioned above suggest that although MSCs have the
potential to promote tendon-to-bone healing in the rotator cuff, this
ability is influenced by several factors, such as the source of the cells,
the implantation quantity, and the choice of animal models.
Therefore, the treatment protocols still need further exploration.
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In addition to directly implanting MSCs into the tendon-bone
interface, some researchers have also conducted targeted gene
editing of MSCs and injected them into the tendon-bone
interface, achieving partial success in animal experiments. Scx is
a crucial transcription factor in tendon formation. Gulotta et al.
utilized adenovirus-mediated Scx gene delivery into BMSCs and
implanted them at the rat rotator cuff tendon-bone interface.
Histological and biomechanical analysis revealed that this stem
cell approach significantly increased the biomechanical strength
of the rotator cuff tendon-bone junction, promoted cartilage
formation at the tendon-bone interface, and restored the native
fibrocartilage structure (Gulotta et al., 2011).

According to current evidence, transforming growth factor-β
(TGF-β) and platelet-derived growth factor-BB (PDGF-BB) are
important cytokines that promote tendon-bone healing
(Tokunaga et al., 2015; Kovacevic et al., 2015; Yoon et al., 2018;
Rieber et al., 2025; Wang et al., 2023). Among these, TGF-β
intracellular signaling activity can be inhibited by TGIF1 (Zhang
et al., 2013). Therefore, Li et al. used siRNA to knockdown TGIF1 in
BMSCs and implanted them into a rat rotator cuff model. The
results showed that the biomechanical strength of the newly formed
rotator cuff tendon-bone junction in this group was significantly
higher than that of the conventional BMSC group or Non-implanted
cell group, and the junction morphology was more regular with
enhanced cartilage formation (Li et al., 2015). Wang et al. directly
upregulated PDGF-BB expression in BMSCs and found that
implantation of these modified BMSCs resulted in a significant

increase in the maximum tensile strength of the newly formed rat
rotator cuff tissue compared to the simple BMSC group or the non-
cell-implanted group (Wang LL. et al., 2018). Other studies have also
enhanced osteogenic potential and proliferative activity of BMSCs
by knocking out the TOB1 gene, further promoting tendon-bone
healing in rat rotator cuff models.

2.2 MSCs combined with tissue engineering
approaches

In the aforementioned studies, MSCs are typically dissolved in a gel
matrix and injected into the local area of the rotator cuff. Although this
method has shown some efficacy, it cannot guarantee the retention of
cells at the local site after injection, as the cells are prone to diffuse into
the tissue gaps, which not only affects the therapeutic effect butmay also
cause side effects (Hernigou et al., 2014; Chen et al., 2022; Hutmacher,
2000). Given that the tendon-bone interface of the rotator cuff is not a
closed environment, the cell injection technique alone cannot fully meet
the requirements for rotator cuff tendon-bone insertion reconstruction.

On the other hand, for more complex RCTs, Neviaser et al.
proposed the use of grafts as scaffolds to fill the defects (Neviaser
et al., 1978). Since then, various types of grafts (such as autografts,
allografts, synthetic grafts, and xenografts) have been gradually
applied to treat large, irreparable RCTs, achieving some success
(Wang LL. et al., 2018; Han et al., 2019; Gupta et al., 2013). On the
other hand, artificial synthetic materials may cause significant

FIGURE 1
Schematic diagram of MSCs and related therapies for rotator cuff tendon-to-bone healing.
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immune reactions post-surgery, whereas biological materials,
despite having a smaller risk of rejection and being degradable,
may not fully meet the mechanical properties required for rotator
cuff function (Shang et al., 2014; Ye and Bao, 2015). Lin et al. found
through a systematic review that the re-tear rate after repair with
graft patches for massive rotator cuff tears can still reach 4.5%–55%
(Lin et al., 2019).

Given that grafts can provide an adhesive environment for local
cells and stem cells have strong regenerative potential, an increasing
number of researchers are using scaffolds loaded with MSCs to treat
tendon-bone healing after rotator cuff tears. Scaffolds ensure the
uniform delivery of cells to the target area, enhancing the retention
and survival rates of stem cells while providing three-dimensional
support for tissue regeneration (Hutmacher, 2000).

Kim et al. (2013) applied Polylactic Acid Scaffold loaded with
BMSCs in a rabbit model acute rotator cuff repair. Over the following
6 weeks, a large number of BMSCs were observed to survive, and the
collagen I-positive areas in the BMSC-loaded scaffolds were
significantly higher than in the plain scaffold. Yokoya et al. used
polycaprolactone (PCL) scaffolds loaded with BMSCs to treat large
rotator cuff tears in rabbits acute. They found that, compared to
scaffolds without MSCs, the tendon-bone insertion site in the
BMSC-loaded group showed newly formed fibrocartilage at 8 weeks,
significantly improving the biomechanical strength of the regenerated
tissue (Yokoya et al., 2012). Thangarajah et al. created a decalcified
cortical bone scaffold, which, when combined with BMSCs, successfully
promoted tendon-bone healing in a rat rotator cuffmodel (Thangarajah
et al., 2018). Furthermore, some researchers used transgenic BMSCs
combined with 3D-printed poly-lactic-co-glycolic acid (PLGA)
scaffolds to promote tendon-bone healing in a rabbit rotator cuff
model. They found that this approach improved collagen alignment
in the Freshman tissue and increased the amount of fibrocartilage
formation (Chen P. et al., 2019). In terms of longer-term outcomes, Dai
et al. developed dual cross-linked COL1/HAp bionic gradient scaffolds
loaded with human amniotic mesenchymal stem cells (hAMSCs) and
evaluated their effects in a rat rotator cuff model. Their results at
12 weeks post-operation demonstrated that the hAMSC-loaded
scaffolds significantly enhanced tendon-bone interface healing with
excellent collagen fiber continuity and orientation, increased
fibrocartilage and bone formation, and markedly improved
biomechanical properties compared to the control group, providing
valuable insights into the long-term efficacy of MSC-scaffold
combinations for rotator cuff repair (Dai et al., 2024).

It can be said that current research on stem cells combined with
scaffolds to promote tendon-bone healing of the rotator cuff has
yielded promising results in animal models. In the future, it is
necessary to investigate whether this strategy has the same efficacy in
humans and to identify suitable scaffolds and corresponding loading
strategies to enhance the effectiveness of stem cell-based repair for
rotator cuff tears.

2.3 MSCs-related therapies

In recent years, studies have found that although bone marrow
mesenchymal stem cells (BMSCs) may not differentiate into the
corresponding cells of target organs in vivo, they can still exert
therapeutic functions. Further research has shown that these effects

aremediated by their secretome (Xiaoli et al., 2018; Liu et al., 2020). The
secretome contains various nutritional factors secreted bymesenchymal
stem cells (such as chemokines, cytokines, growth factors, hormones,
and lipid mediators) as well as vesicular substances, and these
components can affect neighboring cells (Xiao et al., 2024; Kawai
et al., 2015; Wang et al., 2024; El Moshy et al., 2020). Based on this,
the application of the secretome in sports medicine has gradually
attracted attention, and some studies have applied it to promote
tendon-bone healing. However, the clinical application of
mesenchymal stem cells (MSCs) is somewhat limited due to their
potential tumorigenicity and ethical concerns. The primary issue is
tumorigenicity, because mesenchymal stem cells have self-renewal
capacity and may undergo malignant transformation under certain
conditions (Motaln et al., 2010). Although MSCs themselves are
generally considered non-tumorigenic, their long-term fate after
implantation and potential genetic instability remain areas of active
investigation by researchers. Studies have shown that MSCs can
promote tumor growth through paracrine effects, angiogenesis
stimulation, and immune modulation, especially in the presence of
pre-existing malignancies. Ethical issues surrounding the sources of
stem cells also require careful consideration, including issues related to
tissue commercialization, informed consent, and donor site morbidity.

2.4 MSCs conditioned medium

Conditioned medium (CM) refers to the culture medium that
contains various substances released by the cell population in the
culture dish after a period of in vitro cultivation (Bogatcheva and
Coleman, 2019; Pawitan, 2014). It is easy to collect, convenient for
storage and transportation, has no immunogenicity, and can be
frozen and dried. These advantages provide a foundation for its
clinical application (Bogatcheva and Coleman, 2019).

MSCs-derived CM has various promoting effects. It has been
found to promote stem cell proliferation and enhance their
osteogenic capacity (Xiao et al., 2024; Kawai et al., 2015; Wang
et al., 2024; An et al., 2013), induce pluripotent stem cells to
differentiate toward chondrogenesis (Lee et al., 2014), and work
synergistically with TGF-β to improve the collagen secretion ability
of fibroblasts (Lee et al., 2014). Based on this, researchers have
applied MSCs-derived CM to promote tendon-bone healing and
have made some progress.

Sun et al. collected BMSCs-derived CM and injected it into the joint
cavity of a rat model after anterior cruciate ligament reconstruction.
They found that, compared to rats injected with DMEM culture
medium or those that received no injection, the CM group showed
less fibrous scar tissue between the graft and bone tunnel at 4 and
8 weeks. Additionally, more Sharpey’s fibers were generated, and the
mechanical strength of the graft in the joint cavity segment was also
enhanced, with a more organized collagen arrangement (Sun et al.,
2019). Chen et al. created an arthritis model in rats by inducing cruciate
ligament rupture and subsequently found that intra-articular injection
of CM could protect articular cartilage and delay the progression of
arthritis (Chen W. et al., 2019). Sevivas et al. discovered that BMSCs-
derived CM could enhance tendon cell proliferation, and when the
stimulated cells were implanted into a rat rotator cuff repair model, they
significantly increased the biomechanical strength of the newly formed
tendon-bone junction, indirectly confirming the function of CM
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(Sevivas et al., 2018). Regarding long-term follow-up, Dai et al. also
confirmed that dual cross-linked gradient COL1/HAp scaffolds loaded
with human amniotic mesenchymal stem cells facilitated rotator cuff
healing in rats model at 12 weeks post-operatively, demonstrating
excellent continuity and orientation of collagen fibers, increased
fibrocartilage formation, and significantly improved biomechanical
properties at the tendon-bone interface (Dai et al., 2024).

In summary, CM derived fromMSCs indeed holds the potential
to promote rotator cuff tendon-bone healing. Future research needs
to clarify whether the functions of CM derived from different MSCs
sources vary, how to optimize the composition of CM to enhance its
ability to promote tendon-bone healing, and to identify suitable
carriers for CM, while also evaluating the safety of this therapy.

2.5 MSCs exosomes

Exosomes are small secretory vesicles with a diameter of
30–150 nm and serve as one of the mediators of intercellular
communication. They can transfer bioactive lipids, nucleic acids,
and proteins between cells, thereby mediating various biological
functions of recipient cells (Bruno et al., 2017). Exosomes derived
from MSCs have the ability to promote tissue regeneration, regulate
the local immune environment, and have been shown to exert
therapeutic effects in animal models of myocardial infarction,
stroke, limb ischemia, perinatal hypoxic-ischemic brain injury,
kidney injury, and osteochondral injury (Pawitan, 2014; Bruno
et al., 2017; Liu, 2019; Miao et al., 2019; Zhu et al., 2018).

Currently, there are no reports on the application of exosomes in
tendon-bone healing, but there is considerable evidence indicating
that MSCs-derived exosomes can be used in the treatment of
musculoskeletal diseases.

For example, MSCs-derived exosomes can significantly
enhance bone mineral density in osteoporotic rats (Qi et al.,
2016; Zhang et al., 2020). When MSCs are induced to undergo
osteogenic differentiation, the exosomes they produce also
exhibit osteogenic effects (Wang X. et al., 2018). Furthermore,
MSCs-derived exosomes have been shown to promote cartilage
regeneration. Cosenza et al. reported that MSC-derived
exosomes, while inhibiting catabolic and inflammatory
markers, reinduce the expression of cartilage matrix,
protecting articular cartilage (Cosenza et al., 2017). Moreover,
exosomes play a beneficial role in tendon injury and repair. Shen
et al. found that MSCs-derived exosomes can modulate
macrophage polarization, thereby altering the local
inflammatory environment and promoting tendon
regeneration (Shen et al., 2020). Yu et al. also discovered that
MSCs-derived exosomes can promote the proliferation and
migration of tendon stem cells and mediate their
differentiation into tendon cells (Yu et al., 2020).

Due to the carrier properties of exosomes, current research also
explores the use of different interventions to MSCs to obtain
exosomes with distinct contents, thereby exerting various
biological functions. For example, overexpression of miR-140-5p
inside MSCs can result in exosomes enriched with miR-140-5p, and
these exosomes enhance the proliferative capacity of chondrocytes,
thereby protecting cartilage (Tao et al., 2017). Mao et al. used the
same method to obtain MSC-derived exosomes enriched with miR-

92a-3p, finding that these exosomes have chondrogenic effects (Mao
et al., 2018). Li Chaofu et al. applied hypoxic stimulation to MSCs to
obtain exosomes with high expression of miR-214, and found that
these exosomes exert cardioprotective effects (Chaofu et al., 2019).

Based on the above studies, it is evident that MSC-derived
exosomes possess the ability to promote osteogenesis,
chondrogenesis, and tendonogenesis, indicating their potential to
facilitate tendon-bone healing. Future research can focus on areas
such as the effective concentration of exosomes, the key components
of their contents, and how to regulate the exosomal contents to
enhance their regenerative functions.

3 Conclusion and future directions

While the therapeutic potential of MSCs in rotator cuff tendon-
to-bone healing is promising, it is crucial to address the safety
concerns associated with their clinical application. The issues of
tumorigenicity, immunogenicity, and ethical considerations must be
carefully evaluated and managed through strict quality control
measures, appropriate cell source selection, and adherence to
established regulatory guidelines. Future research should focus on
developing safer delivery methods, optimizing cell dosages, and
establishing long-term safety monitoring protocols to ensure the
successful clinical translation of MSC-based therapies.

Reducing the occurrence of re-tear after rotator cuff repair has
been a research focus in both the field of sports medicine and
regenerative medicine. The implantation of MSCs and related
therapeutic strategies (such as using scaffolds, or collecting their
CM or exosomes) have provided various approaches for rotator cuff
tendon-bone healing. In the future, MSC-related treatment plans
can be optimized, or untested methods can be validated.
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