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Cell therapies represent a transformative approach for treating diseases resistant
to conventional therapies, yet their development and manufacturing face
significant hurdles within the biopharmaceutical sector. A critical parameter in
the production of these therapies is cell confluency, which serves as both an
indicator of biomass in adherent cultures and a determinant of product quality.
However, existing methods for measuring confluency are often inadequate for
the large-scale cultivation systems used in industry, and current software
solutions lack comprehensive automation capabilities necessary for a
manufacturing environment. This article introduces a novel image-based
software application designed for accurate cell confluency estimation,
integrated with a high-throughput microscopy system. Utilizing a machine-
learning model for pixel classification, the application facilitates efficient image
and metadata processing in a cloud environment, delivering results through an
interactive web interface. By incorporating methods from process analytical
technologies, manufacturing data digitalization, and data science, this platform
enables automated image acquisition, storage, analysis, and reporting in near-
real time. The proposed solution aims to streamline themanufacturing process of
cell therapeutics, ultimately enhancing the reliability and speed of delivering these
innovative treatments to patients.
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1 Introduction

Cell therapies (CTs) represent a transformative approach to treating diseases that
are resistant to traditional therapies (Hoang et al., 2022; O’Brien and Barry, 2009;
Yamanaka, 2020). Despite their immense potential, the biopharmaceutical industry
faces significant challenges in the development and commercial manufacturing of these
therapies, primarily due to the complexities of using living cells as therapeutic agents.
One critical aspect of cell therapy manufacturing is cell confluency (the extent of cell
coverage in a culture dish), which serves as a proxy for biomass in adherent cultivation
vessels and is essential for ensuring the quality of intermediate cell products. Accurate
measurement of cell confluency is vital to avoid growth inhibition, minimize lag phases
in subsequent cultivations, and facilitate timely harvesting through data-
driven decisions.
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However, current methods for estimating confluency are often
unsuitable for the large, stacked cultivation vessels commonly
employed in industrial production. Existing software solutions
frequently lack the necessary end-to-end automation for data
collection, modeling, analysis, and display, particularly in
regulated environments adhering to Good Manufacturing
Practices (GMP). Furthermore, traditional manufacturing
methods struggle to monitor critical biological parameters
effectively, as equipment and analytics are often retrofitted rather
than specifically designed for cell therapies (Bashor et al., 2022;
Lipsitz et al., 2016).

To address these challenges, the development of new Process
Analytical Technologies (PAT) is essential. These technologies can
enhance real-time process understanding during both development
and commercial production, thereby reducing variability and the
risk of batch failure (U.S. Food and Drug Administration, 2004;
Abraham et al., 2018; Wang et al., 2021). However, integrating in-
line or on-line PAT sensors remains problematic due to the variety
of cellular products and cultivation vessels, which can hinder sensor
access and increase sensitivity to analytical perturbations.
Conventional bulk analytical methods often fall short in
providing insights into non-homogeneous cell populations.

Recent advancements in imaging technologies and machine
learning (ML) present promising solutions to these analytical
challenges. These tools offer versatility, minimal biological
interference, and the capability for single-cell or aggregate
resolution (Berg et al., 2019; Kan, 2017). As mentioned above,
one significant gap in current analytics is the readout for biomass
production in adherent cultivation vessels, where cell confluency is
widely used as a proxy. The CM incubation monitoring device from
Evident (formerly Olympus) (Mizunaka, 2020) has been identified
as a suitable imaging solution for monitoring cell confluency in
large, stacked vessels without relying on contrast-
enhancing methods.

To meet the pharmaceutical industry’s requirements for routine
confluency estimation, an automated solution that integrates image
acquisition, storage, pre-processing, analysis, and reporting in near-
real time is necessary. While several software packages, such as Cell
Profiler (Carpenter et al., 2006) and ImageJ (Schneider et al., 2012),
facilitate automated image analysis workflows in laboratory settings
(Jaccard et al., 2014; Logan et al., 2016), they often fall short of the
comprehensive data engineering and analysis systems required for
regulated industrial environments. These existing tools provide
valuable functionalities for laboratory applications; however,
industrial-level applications demand additional components such
as cloud infrastructure, extensive automation and integration of
multiple systems and process, and their rigorous validation to ensure
compliance and scalability.

In this article, an image-based software application for cell
confluency estimation, integrated with a high-throughput
microscopy system is discussed. This industry-level platform was
developed through the integration of PAT, digitalization, data
engineering and data science technologies. The application
employs a machine learning model for pixel classification,
enabling efficient data processing and analysis. The authors
believe that such platform technologies can significantly
streamline the development and commercial manufacturing of
cell therapeutics, thereby addressing the current challenges and

positively contributing to faster and consistent delivery of
promising CT treatments to patients.

2 Materials and methods

2.1 Software application overview

To streamline the development and commercial production of
cell therapeutics, the image-based software application for cell
confluency estimation comprises several key functional
components. These include image data acquisition, automated
data transfer and storage, data modeling and analysis, and
result reporting.

As depicted in Figure 1A, the image data acquisition stands as
the initial unit within the integrated application framework.
Specifically, a high-throughput image capturing device
(CM20 incubation monitoring system (Mizunaka, 2020)) is
employed to automatically capture images of cells growing within
the cell culture vessel.

Subsequently, as part of the automated data transfer and storage
pipeline, images and metadata are extracted from the on-premises
device associated with the image capturing instrument and then
transferred to a cloud-based Simple Storage Service (S3) (Amazon
S3, 2017) solution from Amazon Web Services (AWS) (Amazon
Web Services, 2011) for storage.

For data processing and analysis, the acquired image and
metadata undergo preprocessing. Following this, a machine
learning model, trained to estimate cell confluency through
image pixel classification, is utilized to analyze the processed
image data and predict cell confluency and store the analysis
results into a relational database for subsequent display.

Finally, the predicted cell confluency results, along with other
relevant quality metrics, are presented through an interactive web-
based interface, implemented using Dash (Parmer et al. 2024) for
Python (2002). The specific details of the aforementioned functional
components are further discussed in subsequent sections.

2.2 Cell cultivation and monitoring

Human induced pluripotent stem cells (hiPSCs, episomal) from
Gibco™ (A18945) were grown in Essential 8™ medium (Gibco™,
A1517001) in TC-treated either CellSTACK® (CS) culture vessels
with 1-5 chamber layers (Corning®, 3,268), Nunc™ Cell Factory™
(CF) culture vessels with 1-4 chamber layers (Thermo Scientific,
140004), or T-225 flasks (Corning®, 431082) all coated with human
recombinant laminin 521 (BioLamina, LN521). Cultures were
incubated at 37 °C in a humidified atmosphere of 5% CO2 and
passaged weekly with TrypLE™ Express (Gibco™, 12604013) for
dissociation and ROCK inhibitor Y-27632 (Sigma-Aldrich,
SCM075) to prevent apoptosis within the first 24 h after seeding.
Medium was exchanged every second day, starting 1 day after
seeding. The number of passages was kept below 30.

Automated microscopy systems from Evident/Olympus (Provi
CM20) (Mizunaka, 2020) inside the incubator were used for
constant monitoring. Each CM20 monitoring platform
(hereinafter referred to as head) was connected to a compact PC
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(Lenovo, M920 Tiny) and controlled via the CM20H API (version
1.1.1). An image acquisition protocol (API-script) was created to
acquire images of 2048x1536 pixel from 35 positions as an equally
spaced 5x7 grid within the observation window of the CM20 heads.
The autofocus function was used to find the optimal focus plane for
each position. LEDs for sample illumination were switched when
necessary (reaching boundaries of the observation window), default
exposure times were used.

Cultivation vessels were placed onto the CM20 heads in a way to
ensure representative monitoring of the growth area as well as a
leveled surface to avoid inhomogeneous cell or medium distribution.
A cycle of the API-script was performed with an interval of 4 h,
starting within an hour after seeding until end of cultivation.

2.3 Image acquisition and data
processing pipeline

The image acquisition process, shown in Figure 1B comprises
two main components: the containerized backend and the frontend.
The backend system is orchestrated through an on-premises
computer that interfaces with the imaging instrument via a USB
connection. This on-premises computer hosts an API-server
software that facilitates communication through the
Representational State Transfer (REST) protocol. In tandem, a
SCADA system, specifically Ignition, orchestrates the data flow
between the instrument, the backend API-server, and the AWS

cloud Relational Database Service (RDS) (Amazon Relational
Database Service, 2014) and S3 buckets.

Operators are granted the capability to select and initiate
protocols, assigning specific names, and setting parameters such
as interval frequency and overall duration. Cell culture imaging
typically occurs at 4-h intervals over the course of a week. Operators
also have the flexibility to pause and resume runs, e.g., to perform
tasks such as media exchange.

Within the backend, an Ignition script engine is employed to
load predefined procedures, execute the corresponding commands,
and relay them to the imaging instrument via the REST API. Post-
image capture, the files are first stored locally, along with associated
metadata in a local RDS. These metadata encompass details such as
the sample date, AWS S3 storage location, filename, information
about the procedure protocol, capture positions, and specific
instrument data. Subsequently the data is transferred for storage
to AWS cloud RDS and S3.

2.4 Data analysis and integration

A scheduled task continuously monitors the RDS for new images
awaiting analysis. These images, fetched from their AWS S3 buckets,
are subjected to analysis using the confluency estimation model,
details of which are elaborated in subsequent sections of this
manuscript. The model’s output, including confluency metrics
and other relevant statistics, is then recorded back into the RDS.

FIGURE 1
(A) Schematic overview of confluency estimation software application. The application comprises image data acquisition, automated data pipeline,
datamodeling and analysis and results reporting. (B)Network data pipeline from instrument to cloud application. The first layer features a USB-connected
instrument linked to an on-premises computer running containerized applications (Ignition, RDS, API-server). The second layer includes the SCADA
front-end (Ignition) that commands the instrument via an API and transfers image files and metadata to AWS RDS and S3, respectively. Processed
images and metadata are displayed in an AWS-hosted cloud application.
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This integration allows for real-time visualization through a
dedicated dashboard.

2.5 Labeling approach

Image pixels were labeled as either “foreground” or
“background” based on criteria determined in concert with
subject matter experts. The “background” represents the empty
portion of the visual field, whereas the “foreground” represents
cells and other cell-like particles. Ambiguous regions (not
identifiably “foreground” or “background”) were intentionally
not labeled.

2.6 Training data

To provide high-quality training data for model training, one
image was selected from each of 23 timepoints from a 90 h culture of
hiPSCs in a CS culture vessel, for a total of 23 images. This allowed
for the model to capture a diversity in cell morphology from the time
of seeding out to nearly 100% confluency. At each timepoint, an
image at a random position (from a total of 35) was selected to
capture additional variability. The intention of this strategy is to
provide the model with a training data set that is richly informed by
the potential variability in the images, possibly due to factors such as
changes in illumination, condensation or defects on the plate, and
other difficult-to-control factors. In total, only 143k pixels were
labeled for training, less than 0.20% of the pixels in the 23 selected
images. In the results, we will demonstrate that the model can
achieve high accuracy with relatively little training data.

2.7 Test data

To assess model generalizability, a set of test labels was
annotated for a separate hiPSC cultivation run across three
different cell cultivation vessels (T-225, CellFactory (CF)1, and
CF4) and over three nominal confluency ranges (low, med, and
high, or 0%–33%, 34%–66%, and 67%–100%). In total, 16.8M pixels
from 93 images were labeled for testing, comprising 11.7M
foreground and 5.1M background pixels. Subtotals are provided
in the Supplementary Table 1.

2.8 Image preprocessing

Prior to classification, every image is subjected to a bank of
predefined filters. As with other techniques (Berg et al., 2019;
Arganda-Carreras et al., 2017) the filters capture a diversity of
features assessed across multiple scales. Broadly speaking, these
filters extract features such as intensity (simple Gaussian blur),
gradient (gradient magnitude of the Gaussian), edge/peak
strength (Hessian eigenvalues and the Laplacian of the Gaussian),
and texture (structure tensor eigenvalues). The stack of filter outputs
is transformed into a matrix in which each row corresponds to a
pixel coordinate in a particular image, and each column corresponds
to a filter applied at some scale (a blur radius of 0.5, 1, 2, 4, or eight

pixels). See Supplementary Material, Section 3.1 for
additional details.

2.9 Modeling approach

Confluency estimation is based on image segmentation to
determine the “foreground” and “background” parts of each
image. Traditional image segmentation methods, such as Otsu
thresholding (Otsu, 1979), exhibit significant limitations in the
context of complex images like brightfield microscopy of cell
colonies. These methods primarily depend on pixel intensity
without consideration to the spatial relationships between
pixels, an aspect that is essential for achieving accurate
segmentation in images featuring complex structures.
Additionally, it operates under the assumption of a clear,
bimodal histogram to differentiate between foreground and
background. However, this assumption often fails in real-
world scenarios where low contrast, uneven lighting, and
overlapping structures are prevalent. Otsu’s method is also
inherently sensitive to noise and artifacts, which can lead to
inaccurate and unreliable segmentation outcomes. In contrast, an
approach that utilizes traditional image filters (e.g., Laplacian) to
generate features in conjunction with a traditional machine
learning model offers a substantial advantage. By extracting
these features and employing a traditional machine learning
algorithm for pixel classification, this method captures
complex patterns and relationships that traditional
segmentation methods overlook. This capability allows for a
more robust framework for semantic segmentation, resulting
in significantly enhanced accuracy.

In this context, the confluency estimation task can be
formulated as a binary classification problem in which each
pixel is classified as either “foreground” or “background”. A
machine learning model for classification was employed for
this task. Specifically, a random forest classifier (RFC) was
used to predict the label of each class from the features
extracted for each pixel coordinate using image filters (as
explained in previous section). The default settings for scikit-
learn’s implementation were used, except for the maximum tree
depth, which was restricted to 20 based on a preliminary
evaluation of the trade-off between tree depth and accuracy.
After training, the model was serialized (via Python’s pickle
module) and uploaded to an S3 bucket for later retrieval
during evaluation. See Supplementary Table 1, Section 3 for
additional details.

2.10 Additional calculations

Following evaluation of the classifier, the confluency for a given
image is calculated as the fraction of pixels classified as foreground.
We further define the uncertainty for a given predicted pixel label as
the entropy of the classification “probabilities”, i.e., the fraction of
decision trees in the forest that assigns a pixel to a given class. For
two classes, the base-2 entropy gives us uncertainty values ranging
from zero (total agreement across all decision tree classifiers in the
random forest ensemble) to one (even split between foreground and
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background predictions). The uncertainty for an image is then
defined as the average uncertainty across all pixels.

2.11 Application testing

Documented user requirements were used to identify desired
dashboard behaviors, which in turn were tested by simulating
user interactions in an isolated environment with controlled
data. Testing was automated via Pytest (2012). Separate (Docker,
2022) containers were utilized for serving the Dash (Parmer
et al., 2024, Python, 2002) application and simulating dashboard
interactions via Selenium, (2005) (facilitated by the Dash testing
extensions). Additional containers were used to create controlled
testing image sets using LocalStack, (2001) AND Amazon S3,
(2017) and metadata using a containerized PostgreSQL
(PostgreSQL, 2016) database. Graphical outputs of tests,
captured using Selenium, were validated against references
using the Pytest-Regressions extension (Pytest-Regressions,
2015). Testing of the confluency estimation model also
utilized Pytest and extensions.

3 Results

To enable consistent cell therapy manufacturing, a data science
application comprising an image analysis model and a dashboard

was developed to assess confluency throughout the course of cell
expansion in adherent cell culture.

3.1 Modeling results

Figure 2A depicts a 250x300 pixel subregion of an image
captured from a culture at approximately 50% confluency.
Segmentation by thresholding is insufficient, as depicted in
Figure 2B using Otsu’s method. This is due to the overlapping
intensity ranges of the cells with the flat, gray background,
consequent of the CM20’s epi-oblique illumination of the sample.
The same image, segmented by the described pixel classification
approach, is depicted in Figure 2C.

The generalizability of the pixel classification model was
evaluated using 93 images from a different experimental run,
cultured across three vessels (T-225, CF1, and CF4). On an
annotated test set of 16.8 million pixels, the model achieved an
overall classification accuracy of 99.4%. The confusion matrix,
receiver-operator characteristic (ROC) curve, and precision-recall
curve are depicted in Figures 2D–F. General accuracy (accuracy
amongst all classes) was 99% or greater across all evaluated vessels
and confluency ranges; for exact numbers and additional statistics,
see Supplementary Table 1. The worst overall individual class
accuracy was 97.5% for the ‘background’ pixels, as annotated for
images captured in the T-225 flask within the ‘medium’ (34%–66%)
confluency range.

FIGURE 2
(A) A 250x300 pixel image subregion of a culture at approximately 50% confluency. (B) Image segmentation by Otsu thresholding. (C) Image
segmentation using the described pixel classification approach. (D) Confusion matrix for the classification model evaluated on the test set, in number of
pixels classified. (E,F) Receiver-operator characteristic (ROC) and precision-recall curves for the classification model evaluated on the test set, with
decision thresholds from 0% to 100% at 1% intervals.
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3.2 Model predictions

Figure 3 illustrates model predictions on select images.
Figure 3A shows the predicted foreground overlaid on the
original image for an early timepoint, shortly after seeding. At
this timepoint, cells are characteristically “round” and have yet to
form sizable colonies. The same position after 46 h can be seen in
Figure 3B. Here, cells, have begun to flatten out and formmoderately
sized colonies. After 91 h (Figure 3C), the cells have grown to cover
most of the field. Despite the differences in confluency (16%–83%)
and morphology, these images all have relatively low uncertainty
(12%–18%).

Model outputs for images with various defects are shown in
Figures 3D–F. Figure 3D appears to be slightly out of focus.
Consequently, the indistinct colony boundaries and
uncharacteristic textures lead to a poor, “cloudy” segmentation.
Figure 3E demonstrates a more severe focus issue. In this instance,
there is a visible “doubling” effect, where the prominent cell bodies
(seen here as dark blobs) appear a second time as a less intense
“shadow” above their original positions. Figure 3F shows a different
defect; while much of the segmentation is acceptable, many areas are
poorly segmented due to the “streaks” visible on the original image.
The original image also appears to be poorly illuminated. Although
all three of these images segmented poorly, they were readily
identifiable by their relatively high uncertainty (31%–59%).

3.3 Dashboard

Confluency estimation results are relayed to users via an
interactive, web-based interface deployed in a cloud environment

(Figure 4). Timeseries trends are depicted by a pair of graphs
(Figure 4, upper left). When a user clicks a point on the trend
graphs, the dashboard will display the corresponding image
overlaid with the model predictions (Figure 4, upper right) for
inspection. Additionally, selecting an image will also display a
positional heatmap of confluency and uncertainty for each
parameter (estimated confluency, prediction uncertainty)
(Figure 4, upper middle) for users to inspect for visual trends
across the analyzed plate. Various visualization options for the
graphs, heatmaps, and images can be configured
(Figure 4, bottom).

4 Discussion

The development of the image-based cell confluency application
serves as a notable example of platform technology that streamlines
the development and manufacturing of cell therapies. Central to this
process was the regular interaction among a cross-functional team of
process experts—including production scientists and engineers, data
scientists, and cloud-technology engineers—who adopted an agile
development methodology. This approach facilitated routine
engagement among subject matter experts (SMEs) and allowed
for the rapid prototyping of a robust application based on solid
user requirements. Key stakeholders in biologics manufacturing
provided critical feedback that drove iterative cycles of
development, leading to enhancements that addressed evolving
user needs.

The application was built on AWS cloud using open-source
tools such as Python, leveraging three key components: high-
throughput microscopy-based image generation of cells,

FIGURE 3
Selected model predictions for “foreground”, masked in yellow. The right side of each image is unmasked for illustration purposes. Estimated
confluency (“C”) and segmentation uncertainty (“U”) are reported as percentages in the bottom-left of each panel. (A–C) Early (immediately after seeding),
middling (46 h after seeding), and late (91 h after seeding) timepoints for a single position (D–F) Defective images identified by their high segmentation
uncertainty. (D) A blurry, somewhat out-of-focus image. (E) A more severely out-of-focus image, exhibiting a vertical “doubling” defect. (F) A
somewhat dim image with visible “streaking” across most of the field.
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automation of image data acquisition and storage, and data science
software for image analysis and reporting. The results demonstrated
that cell confluency could be effectively estimated from the image-
based model, even with a limited amount of training data, by
utilizing traditional computer vision machine learning algorithms
for image segmentation. Additionally, a novel uncertainty metric
was implemented to identify potential low-quality images, and
testing with unseen images confirmed the model’s ability to
generalize effectively.

A noteworthy feature of the application, driven by close
collaboration with SMEs, was the integration of heatmaps for
selected timepoints, enabling users to identify spatially correlated
issues such as uneven iPSC seeding and damaged plates. These
insights are crucial, as unobserved problems could lead to costly
data and product quality issues. Minor features like point
jittering, log-scaling, and enhanced visualization options were
also implemented, significantly improving data interpretability.
As discussed in previous work (Wei et al., 2023), development of
the custom dashboard was facilitated by the Dash (Python)
framework for defining and serving web applications. This
allowed for highly customizable interfaces while requiring
developers to create little to no custom HTML, CSS, or
JavaScript.

The model validation and dashboard testing strategies employed
for this application will support the verification activities for use in a
GMP environment, furthered by adherence to software engineering
best practices, including version control, modular design, object-

oriented programming, and automated testing. Additional work is
needed to facilitate GMP implementation, which involves
addressing several key components of standard computer system
validation for the entire platform (data acquisition workflows, cloud
storage, model training and inference, and dashboard). This
includes establishing a User Requirements Specification (URS)
and a Functional Requirements Specification (FRS) to clearly
define and document system functionalities. A comprehensive
risk assessment should be conducted to identify potential impacts
on product quality and patient safety. Furthermore, a validation plan
must be developed that encompasses Installation Qualification (IQ),
Operational Qualification (OQ), and Performance Qualification
(PQ). Ensuring thorough documentation and traceability of all
validation activities is crucial, as is implementing a robust change
control process for managing modifications. Adequate training and
demonstrated competency among production personnel are
essential, along with conducting periodic reviews and revalidation
to maintain compliance. Additionally, there is a need for industry
and regulatory standards to adapt to the methods and tools
employed in agile software development and application
deployment, fostering collaboration between regulatory bodies
and software developers to create guidelines that accommodate
rapid iteration while ensuring product quality and compliance
are upheld.

While the current work has some limitations, these also
highlight important opportunities for future exploration and
enhancement. First, the model has been developed specifically

FIGURE 4
The interactive, web-based dashboard for confluency estimation results. Interactive plots of confluency and uncertainty (upper left) trends enable
users to visualize per-timepoint heatmaps (upper middle) of confluency/uncertainty as well as individual images (upper right) masked by predicted pixel
classes (i.e., “foreground” or “background”). Users can toggle various configuration options (bottom) to adjust the display to their needs.
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for human iPSCs, representing a significant initial step in the
manufacturing process for somatic cell therapies. Future efforts
may require retraining or adapting the model for
morphologically distinct cell types encountered in later stages,
thereby enhancing its applicability across various contexts.
Second, the system currently relies on the CM20 microscope’s
epi-oblique illumination technique, which presents an
opportunity to explore the transferability of the methods to
other imaging platforms, thereby increasing the versatility of
the current approach. Additionally, it is recognized that image
quality plays a crucial role in analysis performance; the presented
uncertainty metric enables the identification of low-quality
images, however, an increase in baseline uncertainty with
cultivation time has been noted. This is linked to the
proliferation of cell colony edges where pixel classification
becomes more challenging, even for subject matter experts.
This limitation could be addressed by developing more
advanced image quality assessment models. Lastly, while the
binary pixel classification approach effectively distinguishes
foreground from background, future advancements could
include the ability to identify and differentiate critical features
such as debris, dead cells, contaminants, and cell clumps,
ensuring that all relevant aspects receive appropriate attention.

The cell confluency estimation application is versatile,
applicable to various cell types and processes, such as cell
expansion and differentiation, by training new models with
different image sets while reusing existing components and
cloud pipelines. This work provides an industry-level example
of a fully automated solution for quantifying cell confluency, a
critical step in the development and manufacturing of cell
therapeutics. It illustrates how the integration of PAT, digital,
and data science technologies can enable consistent and faster
cell evaluations, which are essential for scalable and cost-efficient
processes that yield safe and efficacious cell therapies.

Data availability statement

The datasets presented in this article are not readily available
because presented data and models are to be used for commercial
manufacturing. Requests to access the datasets should be directed to
John Mason, john.mason@bayer.com.

Ethics statement

Ethical approval was not required for the studies on humans in
accordance with the local legislation and institutional requirements
because only commercially available established cell lines were used.
Ethical approval was not required for the studies on animals in
accordance with the local legislation and institutional requirements
because only commercially available established cell lines were used.

Author contributions

JM: Writing – review and editing, Writing – original draft,
Software, Visualization, Data curation, Conceptualization,
Methodology. MK: Methodology, Writing – review and editing,
Data curation, Writing – original draft, Investigation,
Conceptualization. JH: Visualization, Software, Writing – review
and editing, Methodology, Writing – original draft. HW:
Visualization, Project administration, Methodology,
Writing – review and editing, Conceptualization,
Writing – original draft. KS: Supervision, Project administration,
Conceptualization, Writing – review and editing, Methodology,
Writing – original draft, Resources.

Funding

The author(s) declare that no financial support was received for
the research and/or publication of this article.

Conflict of interest

Authors JM, HW, KS, JH, and MK were employed by Bayer.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this
article has been generated by Frontiers with the support of artificial
intelligence and reasonable efforts have been made to ensure
accuracy, including review by the authors wherever possible. If
you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fbioe.2025.1651144/
full#supplementary-material

References

Abraham, E., Ahmadian, B. B., Holderness, K., Levinson, Y., and McAfee, E. (2018).
Platforms for manufacturing allogeneic, Autologous and iPSC cell therapy products: an

industry Perspective. Adv. Biochem. Eng. Biotechnol. 165, 323–350. doi:10.1007/10_
2017_14

Frontiers in Bioengineering and Biotechnology frontiersin.org08

Mason et al. 10.3389/fbioe.2025.1651144

mailto:john.mason@bayer.com
https://www.frontiersin.org/articles/10.3389/fbioe.2025.1651144/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fbioe.2025.1651144/full#supplementary-material
https://doi.org/10.1007/10_2017_14
https://doi.org/10.1007/10_2017_14
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1651144


Amazon Relational Database Service (2014). Available online at: https://aws.amazon.
com/rds/. (Accessed September 12, 2025)

Amazon S3 (2017). Available online at: https://aws.amazon.com/s3/. (Accessed
September 12, 2025)

Amazon Web Services (2011). Available online at: https://aws.amazon.com.
(Accessed September 12, 2025)

Arganda-Carreras, I., Kaynig, V., Rueden, C., Eliceiri, K. W., Schindelin, J., Cardona, A.,
et al. (2017). Trainable Weka Segmentation: a machine learning tool for microscopy pixel
classification. Bioinformatics 33 (15), 2424–2426. doi:10.1093/bioinformatics/btx180

Bashor, C. J., Hilton, I. B., Bandukwala, H., Smith, D. M., and Veiseh, O. (2022).
Engineering the next generation of cell-based therapeutics. Nat. Rev. Drug Discov. 21
(9), 655–675. doi:10.1038/s41573-022-00476-6

Berg, S., Kutra, D., Kroeger, T., Straehle, C. N., Kausler, B. X., Haubold, C., et al.
(2019). ilastik: interactive machine learning for (bio)image analysis. Nat. Methods 16
(12), 1226–1232. doi:10.1038/s41592-019-0582-9

Carpenter, A. E., Jones, T. R., Lamprecht, M. R., Clarke, C., Kang, I. H., Friman, O.,
et al. (2006). CellProfiler: image analysis software for identifying and quantifying cell
phenotypes. Genome Biol. 7 (10), R100. doi:10.1186/gb-2006-7-10-r100

Docker (2022). Available online at: https://www.docker.com. (Accessed September
12, 2025)

Hoang, D. M., Pham, P. T., Bach, T. Q., Ngo, A. T. L., Nguyen, Q. T., Phan, T. T. K.,
et al. (2022). Stem cell-based therapy for human diseases. Signal Transduct. Target Ther.
7 (1), 272. doi:10.1038/s41392-022-01134-4

Jaccard, N., Griffin, L. D., Keser, A., Macown, R. J., Super, A., Veraitch, F. S., et al.
(2014). Automated method for the rapid and precise estimation of adherent cell culture
characteristics from phase contrast microscopy images. Biotechnol. Bioeng. 111 (3),
504–517. doi:10.1002/bit.25115

Kan, A. (2017). Machine learning applications in cell image analysis. Immunol. Cell
Biol. 95 (6), 525–530. doi:10.1038/icb.2017.16

Lipsitz, Y. Y., Timmins, N. E., and Zandstra, P. W. (2016). Quality cell therapy
manufacturing by design. Nat. Biotechnol. 34 (4), 393–400. doi:10.1038/nbt.3525

LocalStack (2001). Available online at: https://www.localstack.cloud. (Accessed
September 12, 2025)

Logan, D. J., Shan, J., Bhatia, S. N., and Carpenter, A. E. (2016). Quantifying co-
cultured cell phenotypes in high-throughput using pixel-based classification. Methods
96, 6–11. doi:10.1016/j.ymeth.2015.12.002

Mizunaka, M. (2020). Innovative cell observation technology which enabled CM20’s
compact design.

O’Brien, T., and Barry, F. P. (2009). Stem cell therapy and regenerative medicine.
Mayo Clin. Proc. 84 (10), 859–861. doi:10.4065/84.10.859

Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE
Trans. Syst. Man, Cybern. 9 (1), 62–66. doi:10.1109/tsmc.1979.4310076

Parmer, C., Duval, P., and Johnson, A. (2024). A data and analytics web app
framework for Python, no JavaScript required. Available online at: https://github.
com/plotly/dash.

PostgreSQL (2016). Available online at: https://www.postgresql.org. (Accessed
September 12, 2025)

Pytest (2012). Available online at: https://docs.pytest.org/en/stable/. (Accessed
September 12, 2025)

Pytest-Regressions (2015). Available online at: https://pytest-regressions.readthedocs.
io/en/latest/overview.html. (Accessed September 12, 2025)

Python (2002). Available online at: https://www.python.org. (Accessed September 12, 2025)

Schneider, C. A., Rasband, W. S., and Eliceiri, K. W. (2012). NIH Image to ImageJ:
25 years of image analysis. Nat. Methods 9 (7), 671–675. doi:10.1038/nmeth.2089

Selenium (2005). Available online at: https://www.selenium.dev. (Accessed
September 12, 2025)

U.S. Food and Drug Administration (2004). A framework for innovative
pharmaceutical development, manufacturing, and quality assurance. Available online
at: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/pat-
framework-innovative-pharmaceutical-development-manufacturing-and-quality-
assurance. ( Accessed September 9, 2025).

Wang, B. B.-W. A., Yeago, C., and Roy, K. (2021). Process analytical technologies in
cell therapy manufacturing: State-of-the-art and future directions. J. Adv. Manuf.
Process 4 (1), e10106. doi:10.1002/amp2.10106

Wei, H., Mason, J., and Spetsieris, K. (2023). Continued process verification: a
Multivariate, data-driven modeling application for monitoring Raw materials used
in biopharmaceutical manufacturing. Available online at: https://www.bioprocessintl.
com/biochemicals-raw-materials/continued-process-verification-a-multivariate-data-
dr iven-mode l ing-app l i ca t ion- for-moni tor ing-raw-mater ia l s -used- in-
biopharmaceutical-manufacturing.

Yamanaka, S. (2020). Pluripotent stem cell-based cell therapy-Promise and
challenges. Cell Stem Cell 27 (4), 523–531. doi:10.1016/j.stem.2020.09.014

Frontiers in Bioengineering and Biotechnology frontiersin.org09

Mason et al. 10.3389/fbioe.2025.1651144

https://aws.amazon.com/rds/
https://aws.amazon.com/rds/
https://aws.amazon.com/s3/
https://aws.amazon.com
https://doi.org/10.1093/bioinformatics/btx180
https://doi.org/10.1038/s41573-022-00476-6
https://doi.org/10.1038/s41592-019-0582-9
https://doi.org/10.1186/gb-2006-7-10-r100
https://www.docker.com
https://doi.org/10.1038/s41392-022-01134-4
https://doi.org/10.1002/bit.25115
https://doi.org/10.1038/icb.2017.16
https://doi.org/10.1038/nbt.3525
https://www.localstack.cloud
https://doi.org/10.1016/j.ymeth.2015.12.002
https://doi.org/10.4065/84.10.859
https://doi.org/10.1109/tsmc.1979.4310076
https://github.com/plotly/dash
https://github.com/plotly/dash
https://www.postgresql.org
https://docs.pytest.org/en/stable/
https://pytest-regressions.readthedocs.io/en/latest/overview.html
https://pytest-regressions.readthedocs.io/en/latest/overview.html
https://www.python.org
https://doi.org/10.1038/nmeth.2089
https://www.selenium.dev
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/pat-framework-innovative-pharmaceutical-development-manufacturing-and-quality-assurance
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/pat-framework-innovative-pharmaceutical-development-manufacturing-and-quality-assurance
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/pat-framework-innovative-pharmaceutical-development-manufacturing-and-quality-assurance
https://doi.org/10.1002/amp2.10106
https://www.bioprocessintl.com/biochemicals-raw-materials/continued-process-verification-a-multivariate-data-driven-modeling-application-for-monitoring-raw-materials-used-in-biopharmaceutical-manufacturing
https://www.bioprocessintl.com/biochemicals-raw-materials/continued-process-verification-a-multivariate-data-driven-modeling-application-for-monitoring-raw-materials-used-in-biopharmaceutical-manufacturing
https://www.bioprocessintl.com/biochemicals-raw-materials/continued-process-verification-a-multivariate-data-driven-modeling-application-for-monitoring-raw-materials-used-in-biopharmaceutical-manufacturing
https://www.bioprocessintl.com/biochemicals-raw-materials/continued-process-verification-a-multivariate-data-driven-modeling-application-for-monitoring-raw-materials-used-in-biopharmaceutical-manufacturing
https://doi.org/10.1016/j.stem.2020.09.014
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1651144

	Advancing cell therapy manufacturing: an image-based solution for accurate confluency estimation
	1 Introduction
	2 Materials and methods
	2.1 Software application overview
	2.2 Cell cultivation and monitoring
	2.3 Image acquisition and data processing pipeline
	2.4 Data analysis and integration
	2.5 Labeling approach
	2.6 Training data
	2.7 Test data
	2.8 Image preprocessing
	2.9 Modeling approach
	2.10 Additional calculations
	2.11 Application testing

	3 Results
	3.1 Modeling results
	3.2 Model predictions
	3.3 Dashboard

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


