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Background: chronic kidney disease (CKD) remains a global health challenge
with limitations in current diagnostic methods, including the invasiveness of
biopsies and variability of estimated glomerular filtration rate (eGFR). This
study aimed to develop a noninvasive diagnostic model integrating ultrasound
viscoelasticity parameters to address these gaps.
Methods: A prospective cohort of 228 participants underwent standardized renal
ultrasound with viscoelastic imaging (Mindray Resona A20) to assess viscoelastic
parameters and structural metrics. Key predictors were selected through LASSO
regression, and a logistic regression diagnostic model was constructed. Model
performance was comprehensively evaluated by analyzing discriminative ability
(AUC, sensitivity/specificity), calibration (Brier score, calibration curves), and
clinical utility (nomogram development, risk stratification and stage-specific
decision curve analysis). Multiclass analysis was implemented to evaluate
stage-specific performance (Class 1: normal; Class 2: G1-3; Class 3: G4-5)
using one-vs-rest ROC methodology. All statistical analyses incorporated
1000 bootstrap iterations for robust variance estimation.
Results: The diagnostic model demonstrated superior accuracy with an AUC of
0.932 (95% CI 0.908-0.956) in validation sets. Pathological analysis revealed that
viscosity values were significantly elevated in CKD patients compared to controls
(1.99 vs. 1.64 Pa·s, P < 0.001), while elasticity and shear wave velocity showed
increases of 12.7%-13.2% and 5.3% respectively (P < 0.001). For clinical
implementation, the model incorporated a visual nomogram that converted
scores ranging from 0 to 160 points into CKD probability estimates between
0.1 and 0.9, with an optimal cutoff value of 0.383 providing balanced sensitivity of
88.4% and specificity of 87.8%. Decision curve analysis confirmed clinical utility
across probability thresholds of 20%-80%, with peak net benefit at 40% threshold
probability. Multiclass analysis revealed stage-dependent performance: Class
3 showed the highest discrimination (AUC = 0.918), followed by Class 1
(AUC = 0.884) and Class 2 (AUC = 0.774), with significant inter-stage
differences (DeLong’s test P < 0.001).
Conclusion: This study establishes a novel “function-structure” integrated
diagnostic paradigm for CKD, combining the accuracy of ultrasound
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parameters with unique structural insights. The model’s noninvasive nature and
stability under physiological variability make it particularly valuable for early
detection and longitudinal monitoring.

KEYWORDS

chronic kidney disease, sound touch viscosity, diagnostic model, nomogram,
machine learning

1 Introduction

Chronic kidney disease (CKD) currently ranks among the top
ten leading causes of death worldwide (Webster et al., 2017).
Epidemiological projections indicate that by 2040, this disease
will rise to become the fifth leading global cause of mortality
(Foreman et al., 2018). Thus, the development of novel
monitoring and diagnostic approaches has become increasingly
critical (Ruiz-Ortega et al., 2020; Thomas et al., 2017).

In clinical practice, early diagnosis and intervention are
crucial for improving patient outcomes. However, current
assessment methods present significant limitations: renal
biopsy is invasive, unsuitable for repeated monitoring, and
may lead to various complications including hemorrhage
(Whittier and Korbet, 2004); while the commonly used
estimated glomerular filtration rate (eGFR) does not
consistently correlate with fibrosis severity and lacks
sensitivity for subclinical injury (Ruiz-Ortega et al., 2020). The
2024 KDIGO (Madero et al., 2025) guidelines reinforce albumin-
to-creatinine ratio (ACR) as a cornerstone for CKD risk
stratification, yet ACR exhibits limited sensitivity in early-
stage CKD. Consequently, noninvasive approaches are
essential for active CKD monitoring as alternatives to repeated
biopsies and to complement the diagnostic gaps of eGFR and
ACR in early disease detection. Renal ultrasonography has been
widely adopted in clinical evaluation due to its safety profile,
primarily through measurements of kidney size and cortical
thickness to assess renal function (Tuma, 2013; Yamashita
et al., 2015). Nevertheless, this modality suffers from two
major limitations: operator-dependent variability in results,
and the frequent manifestation of abnormal findings only in
advanced disease stages. Studies have demonstrated the restricted
value of conventional ultrasonography in early CKD diagnosis
(Sicari et al., 2013; Diabetic et al., 2005; Initiative, 2007).

Meanwhile, noninvasive quantitative assessment of tissue
mechanical properties represents a critical advancement in
medical imaging. As an innovative ultrasound technique, shear
wave elastography (SWE) enables in vivo quantification of tissue
stiffness and has emerged as a research focus in medical imaging
over the past decade. This modality has been recommended by the
World Federation for Ultrasound in Medicine and Biology
(WFUMB) and European Federation of Societies for Ultrasound
in Medicine and Biology (EFSUMB) guidelines, while receiving
approval from the U.S. Food and Drug Administration (FDA).
Currently, SWE has been extensively applied in disease diagnosis
across multiple organs including liver and breast tissues (Ferraioli
et al., 2015; Barr et al., 2015; Ferra et al., 2018).

Notably, the mechanical properties of biological tissues
encompass not only elasticity but also viscosity. Tissue
viscosity not only influences the measurement accuracy of

elastic parameters but also serves as an independent
biomechanical marker with significant clinical value. Emerging
evidence demonstrates a strong correlation between tissue
viscoelastic parameters and inflammatory activity, a finding
that has shown promising applications across multiple
domains including liver fibrosis assessment and differential
diagnosis of breast tumors (Ferraioli et al., 2015; Barr et al.,
2015; Ferra et al., 2018). As an essential complement to
conventional elastography, viscoelasticity measurement
technology is emerging as a novel research direction in tissue
biomechanics and has garnered substantial attention from the
international academic community.

The sound touch viscosity (STVi) can be calculated based on
shear wave elastography by extracting shear waves at different
frequencies to obtain frequency-dependent shear wave velocities,
followed by applying a viscoelastic fitting model to derive viscosity
coefficients and dispersion coefficients, thereby enabling
noninvasive assessment of tissue viscoelasticity. In recent years,
quantitative tissue viscoelasticity techniques have demonstrated
significant value in evaluating diseases across multiple organ
systems. Clinical applications in liver fibrosis staging (Yin et al.,
2007; Ziol et al., 2005) and differential diagnosis of breast/thyroid
nodules (Jia et al., 2024; Lee et al., 2019; Kim et al., 2024; Stoian et al.,
2023) have confirmed that ultrasound viscoelastic imaging can
effectively distinguish mechanical property differences between
pathological and normal tissues. Particularly, the STVi technique
based on shear wave dispersion analysis quantifies the frequency
dependence of shear wave propagation velocity to simultaneously
obtain tissue elastic modulus and dynamic viscosity parameters,
with its reliability validated in multicenter studies (Jia et al., 2024;
Mao et al., 2025). However, two critical gaps remain in applying this
technology to chronic kidney disease (CKD): First, systematic
studies are lacking on the correlation between viscoelastic
parameters and the degree of renal dysfunction; Second, no
diagnostic criteria for CKD staging have been established based
on viscoelastic characteristics.

Building upon this foundation, the present study proposes an
innovative multimodal assessment strategy: by integrating
conventional renal ultrasound parameters with ultrasound
viscoelastic imaging (Voigt model-derived Vi Mean and E Mean)
(Chen et al., 2009; Kanai, 2005) and demographic characteristics
(age, sex, BMI), we have developed an interpretable machine
learning diagnostic model. This model not only preserves the
clinical utility of traditional indicators but also leverages
viscoelastic parameters to reflect microstructural changes in renal
tissue, potentially addressing the clinical challenge of insufficient
sensitivity in early CKD diagnosis. The research outcomes will
provide a novel tool for noninvasive and dynamic monitoring of
renal function while advancing the application of precision medicine
in nephrology.
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2 Methods

2.1 Patients

This study employed a prospective single-center cohort design
to develop and validate a predictive diagnostic model for chronic
kidney disease (CKD) based on ultrasound viscoelastic imaging. The
study cohort comprised consecutive CKD patients admitted to the
Department of Nephrology at the Fourth Affiliated Hospital of
Zhejiang University School of Medicine between September
2024 and March 2025. The research protocol was approved by
the Fourth Affiliated Hospital of Zhejiang University School of
Medicine (K2025134), and written informed consent was
obtained from all participants. The study strictly adhered to the
KDIGO Clinical Practice Guidelines for CKD diagnosis (Stevens
and Levin, 2013). The sample size estimation was based on a 9.1%
prevalence rate of the disease in the population, with an anticipated
20% exclusion rate of cases. This study used “chronic kidney disease
(CKD) status” as the primary endpoint (dichotomous outcome: 1 =
CKD, 0 = non-CKD). To detect an association strength of an odds
ratio = 2.0 between the target exposure factor and CKD (α = 0.05,
power = 80%), the sample size was calculated based on a case-
control study design using a logistic regression model framework for
dichotomous outcomes. The calculation was performed using PASS
15.0 statistical software, which indicated a requirement of 140 CKD
patients to be included. The inclusion criteria required participants
to demonstrate either persistent renal dysfunction, defined as two
consecutive measurements taken at least 12 weeks apart showing an
estimated glomerular filtration rate <90 mL/min/1.73 m2, or
significant proteinuria indicated by an albumin-to-creatinine ratio
(ACR) of at least 30 mg/g or a protein-to-creatinine ratio (PCR) of at
least 150 mg/g. All CKD patients had ≥6 months of documented
medical history to exclude acute kidney injury. Healthy controls met
eGFR ≥90 mL/min/1.73 m2 with exclusion of chronic conditions
(diabetes, hypertension) and body mass index outside 18.5-24 kg/m2

range. The study established standardized exclusion criteria to
eliminate potential confounding factors, specifically excluding
patients with complex renal cysts, renal artery stenosis
characterized by a peak systolic velocity (PSV) exceeding 180 cm/
s combined with a resistance index (RI) above 0.7, uncontrolled
hypertension manifesting as systolic blood pressure greater than
160 mmHg or diastolic pressure surpassing 100 mmHg, and severe
cardiac dysfunction classified as NYHA class Ⅲ-Ⅳ. To maintain
optimal imaging quality standards, the study further excluded
participants demonstrating subcutaneous fat thickness beyond
8 cm or exhibiting ultrasound image stability indices lower than
85%. All enrolled subjects completed thorough clinical evaluations
incorporating demographic profiling, comprehensive laboratory
testing, and detailed comorbidity analysis, with every case
receiving precise staging following the established KDIGO
classification system.

2.2 Image acquisition

All renal viscoelastic imaging examinations were performed
using the Mindray Resona A20 ultrasound system equipped with
an SC7-1U high-frequency transducer (1.2-6.0 MHz) and dedicated

viscoelastic analysis module, which simultaneously quantified tissue
elasticity and viscosity parameters based on the Voigt biomechanical
model, with E mean values reflecting tissue stiffness in kPa and Vi
mean values in Pa·s derived from shear wave dispersion
characteristics across the 50-400 Hz frequency band. Participants
maintained a standardized prone position with arms crossed
beneath the forehead for stability during examinations performed
by two sonographers with over 5 years of specialized renal
ultrasound experience following a double-blind protocol where
operators remained unaware of clinical data, beginning with
B-mode images of the maximal longitudinal kidney section
followed by viscoelastic imaging in the identical plane during
which a standardized 2 × 2 cm region of interest was selected
within the renal cortex while avoiding vessels and collecting systems
during a 6-s breath-hold, with five repeated measurements per
kidney recorded for mean values (Figure 1). Stringent quality
control criteria including measurement coefficient of variation
below 30% within ROI, consistent 6 mm diameter ROI for all
acquisitions, and sound wave attenuation correction at 0.5 dB/
cm/MHz were implemented to ensure data reliability. Inter-rater
reliability was assessed for all ultrasound parameters using intraclass
correlation coefficient (ICC) for analysis according to a predefined
standardized examination manual.

2.3 Statistical analysis

Statistical analyses were performed using R software (version
4.4.3, R Foundation for Statistical Computing, Vienna, Austria). The
normality of all continuous variables was rigorously assessed using
Shapiro-Wilk tests (n < 50) or Kolmogorov-Smirnov tests (n ≥ 50).
Based on these evaluations, continuous variables were expressed as
mean ± standard deviation (normally distributed) or median
(interquartile range) (non-normally distributed), and compared
using independent Student’s t-tests or Mann-Whitney U tests.
Categorical variables were presented as frequencies (percentages)
and analyzed by chi-square or Fisher’s exact tests (for cell
counts <5), with statistical significance set at P < 0.05.

Variables with >20% missingness were excluded from analysis.
When the proportion of missing data exceeds 20%, the remaining
data can hardly reflect the true distribution of variables. In
particular, non-random missing data will exacerbate bias. In
contrast, when the missing proportion is ≤ 20%, the remaining
data retain core characteristics. Using 20% as the threshold helps
retain valuable variables (detailed missing proportions in
Supplementary Table S1) while avoiding interference from low-
quality data, thus ensuring statistical power and model stability. For
remaining variables, missing data were handled using multiple
imputation by chained equations (MICE). Continuous variables
were imputed using predictive mean matching (for normally
distributed data) or quantile regression (for skewed data), while
categorical variables used logistic regression imputation. The study
strictly adhered to KDIGO guidelines for clinical data collection
from both CKD patients and healthy controls. The analytical
framework comprised dependent and independent variables,
where the dependent variable represented the CKD diagnosis
based on KDIGO criteria (Stevens and Levin, 2013). Independent
variables included two categories of measures: conventional
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FIGURE 1
(A) Pathology Report: The renal biopsy specimen was routinely processed with HE, PAS, PASM, and Masson trichrome staining. Masson trichrome
staining revealed subepithelial fuchsinophilic deposits along glomerular basement membranes, while PASM staining highlighted characteristic spike-like
projections on the epithelial side of the GBM. These features are consistent with stage II membranous nephropathy, PLA2R-associated. (B) Viscoelastic
ultrasound imaging findings in the aforementioned CKD patient with pathological diagnosis: Themean stiffnessmeasured by shear wave elasticity is
5.74 kPa. The mean viscosity coefficient measured by viscoelasticity is 2.10 Pa s.
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ultrasound-measured renal length and viscoelastic parameters,
along with basic demographic characteristics (age, sex, and body
mass index). All ultrasound examinations were conducted by
experienced sonographers with over 5 years of practice following
standardized image acquisition and processing protocols to ensure
data consistency and comparability throughout the study.

Variable selection was performed using 10-fold cross-validated
LASSO regression (repeated 100 times) (Van Beek et al., 2024) to
optimize the penalty coefficient λ, where λ.min was selected as the
value yielding minimum cross-validated mean squared error (MSE),
and λ.1se represented the most parsimonious model within one
standard error of the minimumMSE. Variables were retained only if
selected in the majority of 1000 bootstrap iterations to ensure
stability. Variance inflation factors (VIF) were calculated to
confirm the absence of multicollinearity. Model performance was
rigorously evaluated through discrimination (AUC with DeLong
95% CI, sensitivity/specificity at Youden-index optimal thresholds),
calibration (calibration plots, Brier score and Hosmer-Lemeshow
goodness-of-fit test), and clinical utility (decision curve analysis
across 0%–100% risk thresholds). Internal validation was enhanced
via 1000 bootstrap resamples to derive optimism-adjusted metrics.
Results were implemented via a dynamic nomogram explicitly
linked to KDIGO staging criteria and therapeutic decision points,
with probability thresholds informed by decision curve analysis.

To evaluate the model’s predictive performance across different
CKD progression stages, we implemented a multiclass ROC analysis
framework with the following specifications: (1) Stage classification
followed KDIGO guidelines (Class 1: normal controls; Class 2: G1-3
stages; Class 3: G4-5 stages); (2) Multiclass handling employed one-
vs-rest (OvR) methodology to generate stage-specific ROC curves,
reporting both sensitivity (True Positive Rate) and 1-specificity
(False Positive Rate) metrics; (3) Comprehensive evaluation
included micro-averaged AUC for overall discriminative ability
alongside stage-specific AUC values. All performance metrics
were derived with 1000 bootstrap iterations to generate 95%
confidence intervals, ensuring robust variance estimation.

3 Results

3.1 Baseline characteristics of study
participants

Following data preprocessing to handle missing values, the final
analysis included 228 participants comprising 138 chronic kidney
disease (CKD) patients and 90 healthy controls. Regarding the
imbalance in sample size between the case group (138 cases) and
the control group (90 cases), we implemented targeted statistical
adjustments: robust standard errors were used in the logistic
regression analysis to reduce the impact of inter-group sample size
differences on the variance of parameter estimates. Furthermore, the
model calibration curve showed that the mean absolute error between
predicted probabilities and actual observed probabilities was 0.03
(<0.05), which further confirms that the calibration effect of themodel
under this sample structure is acceptable. All intraclass correlation
coefficients (ICC) for measurements exceeded 0.8, indicating excellent
intra-observer reliability (Supplementary Table S2). As shown in
Table 1, comparative analysis of renal ultrasound parameters

revealed significant intergroup differences across multiple
indicators. CKD patients exhibited markedly reduced renal
dimensions bilaterally compared to controls (left kidney: 9.76 ±
1.42 cm vs. 10.32 ± 0.88 cm; right kidney: 9.73 ± 1.42 cm vs.
10.23 ± 0.68 cm; both P < 0.001), consistent with the characteristic
renal atrophy observed in CKD progression and confirming the
diagnostic value of renal length measurements. Regarding tissue
characterization parameters, the CKD group demonstrated
significant histopathological alterations with elevated elastic moduli
bilaterally (left kidney E mean: 6.02 ± 1.33 kPa vs. 5.34 ± 0.50 kPa;
right kidney: 6.07 ± 1.17 kPa vs. 5.36 ± 0.34 kPa; both P < 0.001) and
increased shear wave velocities (left kidney Cs mean: 1.39 ± 0.14 m/s
vs. 1.32 ± 0.06 m/s; right kidney: 1.40 ± 0.12 m/s vs. 1.33 ± 0.04 m/s;
both P < 0.001), suggesting increased renal tissue stiffness potentially
associated with fibrotic processes. Most notably, viscosity parameters
(Vi mean) reflecting inflammatory activity showed significant
elevation in CKD patients (1.99 ± 0.31 Pa·s vs. 1.64 ± 0.11 Pa·s
bilaterally, P < 0.001), providing quantitative biomarkers for renal
inflammation assessment.

Demographic analysis revealed CKD patients were older
(49.77 ± 16.92 years vs. 41.36 ± 10.76 years, P < 0.001) with
comparable BMI between groups (24.05 ± 3.55 kg/m2 vs. 24.34 ±
3.79 kg/m2, P = 0.457), effectively excluding body mass index as a
confounding factor. Gender distribution analysis showed female
proportions of 42.0% (58/138) in CKD and 51.1% (46/90) in control
groups (P = 0.178), with male predominance (58.0%) observed in
CKD patients. Despite these non-significant demographic
differences, both BMI and gender were incorporated as covariates
in subsequent modeling to ensure the identified ultrasound
parameter differences specifically reflected CKD-related
pathological changes rather than demographic variations.

3.2 Variable selection and model
construction

The LASSO regression analysis (Figures 2, 3) demonstrated that
as the penalty parameter λ increased, the coefficients of each
parameter gradually shrank toward zero. The model achieved
optimal performance at log(λ) = −3.705, retaining four significant
variables. As λ decreased, the number of variables systematically
reduced from 10 to 0, confirming the stability of the variable
selection process. Among the renal ultrasound parameters, the
viscosity coefficients of both kidneys, the elasticity parameter of
the right kidney (RE) and age were retained in the final model.
Multicollinearity assessment confirmed all retained variables had
Variance Inflation Factors (VIF) < 5 (Supplementary Table S3).
Notably, the viscosity parameters (LVi/RVi) exhibited the highest
absolute coefficient values (Table 2), indicating their dominant
contribution to CKD diagnosis. In contrast, age showed the
smallest absolute coefficient, suggesting its limited independent
diagnostic value after adjusting for other factors.

3.3 Model diagnostic performance

ROC analysis of the training set revealed excellent diagnostic
performance (Figure 5), with an AUC of 0.932 (95% CI:
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0.908–0.956). At the optimal threshold determined by Youden’s
index, the sensitivity was 87.8% (80.0%-93.3%) and specificity
was 88.4% (80.2%-94.0%). The ROC curve (Figure 4) clearly
illustrated the relationship between the true positive rate (TPR)
and false positive rate (FPR) across different thresholds,
demonstrating the model’s ability to maintain high TPR while
effectively controlling FPR. In the validation set (Figure 5), at a
cutoff of 0.383, sensitivity and specificity were both 0.884 and
0.878, respectively. The TPR-FPR curve further indicated that the
model achieved TPR >0.8 at FPR <0.2, outperforming the
random guessing line.

3.4 Model calibration and clinical
utility analysis

Calibration analysis (Figure 6; Table 3) demonstrated strong
agreement between predicted probabilities and observed outcomes.
The diagnostic model exhibited outstanding discriminative ability,
with an AUC of 0.932, and explained approximately 63.7% of the
outcome variance (R2 = 0.637), confirming its high diagnostic accuracy.
Calibration metrics indicated close alignment between logistic
calibration curves, nonparametric calibration curves, and the ideal
calibration line in the intermediate-risk range (actual probability =

TABLE 1 Baseline characteristics of patients with CKD group and control group.

Characteristics CKD group (n = 138) Control group (n = 90) P

Left Kidney length (cm) 9.76 ± 1.42 10.32 ± 0.88 <0.001

Right Kidney length (cm) 9.73 ± 1.42 10.23 ± 0.68 <0.001

Left Kidney E Mean (KPa) 6.02 ± 1.33 5.34 ± 0.50 <0.001

Right Kidney E Mean (KPa) 6.07 ± 1.17 5.36 ± 0.34 <0.001

Left Kidney Cs Mean (m/s) 1.39 ± 0.14 1.32 ± 0.06 <0.001

Right Kidney Cs Mean (m/s) 1.40 ± 0.12 1.33 ± 0.04 <0.001

Left Kidney Vi Mean (Pa·s) 1.99 ± 0.31 1.64 ± 0.11 <0.001

Right Kidney Vi Mean (Pa·s) 1.99 ± 0.32 1.65 ± 0.12 <0.001

Age (years) 49.77 ± 16.92 41.36 ± 10.76 <0.001

BMI (Kg/m2) 24.05 ± 3.55 24.34 ± 3.79 0.457

Gender Female 58 (42.0%) 46 (51.1%) 0.178

Male 80 (58.0%) 44 (48.9%)

Data are presented as means ± standard deviations for continuous variables and numbers (percentages) for categorical variables. BMI, is Body Mass Index. The Student’s t-test was used for

continuous variables, and the chi-square test was used for categorical variables.

FIGURE 2
LASSO Regression Coefficient Path Diagram. The plot displays how feature coefficients shrink as regularization intensity increases (left to right).
Numbers along the right margin (3, 6, 9,. . .) indicate the count of non-zero coefficients at selected λ values.
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0.4). (Supplementary analysis: Hosmer-Lemeshow goodness-of-fit test
indicated potential departure from perfect calibration [P = 0.001],
though this may be influenced by the test’s sensitivity to group
partitioning and large sample size, consistent with other calibration
evidence.) The Brier score of 0.104 suggested low overall prediction
error, while the calibration intercept of 0.000 indicated slight systematic
overestimation. A calibration slope of 1.000 suggested potential mild
overfitting; however, the model maintained good accuracy across most
risk ranges, with minor overestimation in the low-risk range (predicted
probability: 0–0.3) and slight underestimation in the high-risk range
(E90 = 0.086). Decision curve analysis (Figure 7) further confirmed
clinical utility, demonstrating superior net benefit versus “treat-all” and
“treat-none” strategies at risk thresholds of 20%-80%, with peak utility
at 40% threshold probability. These results collectively confirm that the
ultrasound-based diagnostic model provides well-calibrated risk
predictions while maintaining excellent discriminative performance.

3.5 Risk scoring system

A visualized CKD risk scoring system was developed based on
the selected ultrasound parameters (Figure 8). This integrated

scoring system incorporates multidimensional diagnostic
indicators, where the total score is calculated as: Total Points =
RE (renal elasticity) + LVi/RVi (viscosity parameters) + age. Each
parameter was assigned a specific weight according to its regression
coefficient, and the total score was converted into a CKD probability
ranging from 0.1 to 0.9 via a linear predictor using the logistic
function specified in Supplementary Material Equation. The scoring
system highlights the significant contribution of viscosity
parameters, which reflect renal inflammatory activity, along with
elasticity (RE) and age, forming a comprehensive multidimensional
evaluation framework. Notably, the viscosity parameters alone could
contribute over 30 points to the total score, reaffirming their pivotal
diagnostic value in CKD assessment.

3.6 Model discriminative performance

ROC analysis of the test set (Figure 9) revealed excellent stage-
specific diagnostic accuracy. The model achieved highest
discrimination for end-stage CKD (Class 3: AUC = 0.918, 95%
CI: 0.890–0.946), followed by normal controls (Class 1: AUC =
0.884, 95% CI: 0.850–0.918) and early-stage CKD (Class 2: AUC =
0.774, 95% CI: 0.730–0.818). DeLong’s test confirmed significant
AUC differences between Class 3 vs Class 2 (P < 0.001). The micro-
average AUC (0.869) indicated consistent overall performance,
supporting clinical utility in distinguishing high-risk patients.

4 Discussion

This study systematically analyzed renal ultrasound parameter
differences between CKD patients and healthy controls to develop a
diagnostic model based on multimodal ultrasound indicators,
providing a novel approach for noninvasive CKD diagnosis. The

FIGURE 3
Regularization path plot for binomial deviance across different penalty terms (log(λ)). The x-axis represents the natural logarithm of regularization
strength (λ), while the y-axis shows the binomial deviance. The numbers along the curve (10, 10, 9,. . .) indicate the number of non-zero coefficients
retained at each λ value.

TABLE 2 Regression model variable coefficients table.

Index Coefficient

Intercept −25.627801

Right Kidney E Mean (KPa) 1.536479

Left Kidney Vi Mean (Pa·s) 5.980906

Right Kidney Vi Mean (Pa·s) 3.789646

Age (years) 0.009335

The 5 selected features and their coefficients.
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results not only validated the diagnostic value of multiple ultrasound
parameters for CKD but also elucidated their specific roles in
reflecting distinct renal pathological changes, demonstrating
significant clinical implications.

This study confirmed the continued diagnostic value of
traditional renal length measurements in CKD. We observed
significantly shorter kidney lengths in CKD patients (P < 0.001),
reflecting the pathological processes of nephron loss and renal
atrophy during disease progression (Singla et al., 2022). However,
relying solely on kidney length measurements has limitations,
particularly in early-stage disease (Leong et al., 2018). To address
this, we innovatively incorporated novel ultrasound parameters into

the diagnostic framework, among which the viscosity parameter (Vi)
demonstrated the highest diagnostic contribution, a finding
consistent with the positive GFR-viscosity relationship reported
by Maralescu et al. (2022) and further validating prior research
on inflammation-induced increases in tissue viscoelasticity.
Additionally, as per the study by Yuan et al. (2024), new tissue
viscosity indices show advantages over traditional elastic modulus in
differentiating CKD from normal renal function. The elastic
modulus showed significant elevation (12.7% in the left kidney
and 13.2% in the right kidney, both P < 0.001), while the shear
wave velocity (Cs) increased by approximately 5.3%, objectively
reflecting the degree of renal fibrosis, aligning with Wang et al.’s
(Arndt et al., 2010; Lukenda et al., 2014; Nakao et al., 2015)
histologically confirmed observations of increased tissue stiffness
in CKD. These novel parameters provide quantitative biomarkers
for assessing pathophysiological changes in CKD, effectively
addressing the limitations of conventional ultrasonography.

The CKD diagnostic model developed in this study offers
significant technical and clinical advantages. Through LASSO
regression, key parameters were selected, including renal elasticity
(RE), viscosity (LVi/RVi), and age. These parameters demonstrate
exceptional discriminative ability, with an AUC of 0.932, while
effectively avoiding overfitting (calibration slope: 1.000). This
represents a notable improvement over previous single-parameter
diagnostic methods. For instance, in studies evaluating renal fibrosis
using shear wave elastography, the reported AUC reached only
76.4% (Chen et al., 2024). The enhanced performance primarily
stems from the synergistic integration of multiparametric data.
Viscosity parameters, which carry the highest weight and
contribute approximately 81.5%, are sensitive to early
inflammatory changes. In contrast, elasticity (RE) specifically
reflects the severity of fibrosis (Chen et al., 2024; Barr, 2006;

FIGURE 4
Sensitivity-specificity Balance Curve. Receiver operating characteristic (ROC) curve analysis showing the trade-off between TPR and FPR at different
classification thresholds. The TPR values (sensitivity) are highlighted at 0.2, 0.4, 0.6, and 0.8 intervals, demonstrating the model’s performance across
various decision boundaries.

FIGURE 5
ROC Curve of the Test Set. The optimal diagnostic cut-off value
of the predictionmodel was 0.383, with an area under the curve (AUC)
of 0.932.
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Hossain et al., 2018). Clinically, the innovative visual nomogram
(Figure 8) converts complex ultrasound measurements into an
intuitive 0–160-point scale, which corresponds to CKD
probabilities ranging from 0.1 to 0.9. Notably, the parameter
weights are scientifically aligned with their pathological relevance,
underscoring the model’s clinical utility and biological plausibility.
The optimal cutoff of 0.383 balances high sensitivity (0.884) and
specificity (0.878), making it suitable for both population screening
to identify high-risk individuals and specialist diagnosis to confirm
CKD in ambiguous cases. Context-specific adjustments to decision
thresholds are recommended: a lower threshold may enhance early
detection sensitivity in high-risk populations such as patients with
diabetes or hypertension, while a higher threshold can reduce
overdiagnosis and unnecessary follow-up in low-risk settings like
routine check-ups. Decision curve analysis (DCA) showed that the
40% high-risk threshold is the optimal decision threshold. However,
its clinical application needs to be adjusted individually according to
patient staging and scenarios: in early-stage CKD, the threshold
should be raised to 60%-80% to avoid over-intervention; in
advanced-stage CKD, the threshold can be lowered to 20%-40%
to prioritize the initiation of active management. To realize the
clinical translation of the 40% threshold, it is recommended that

individuals with a risk of ≥40% should be included in the high-
frequency monitoring pathway; those with ≥40% risk complicated
with diabetes/hypertension should be rapidly referred to nephrology
specialists; and patients with ≥40% risk accompanied by proteinuria
should be initiated on evidence-based treatments such as
SGLT2 inhibitors. To ensure accurate implementation, clinician
training should focus on translating the 0–160-point scale to
probability estimates and applying context-adjusted thresholds
through case-based simulations to standardize interpretation and
minimize inter-operator variability. The ROC analysis revealed
clinically meaningful stage-dependent performance, with
exceptional discrimination for end-stage CKD (G4-5 AUC =
0.918) reflecting distinct sonographic signatures of advanced
fibrosis, while the moderate early-stage detection (G1-3 AUC =
0.774) aligns with known challenges in identifying initial
microstructural changes. The robust overall performance (micro-
average AUC = 0.869) surpasses clinical adoption thresholds and
demonstrates advantages over conventional biomarkers, while
maintaining the accessibility benefits of ultrasound compared to
advanced imaging modalities. In advanced CKD (G4-G5), its high
discriminative power (AUC 0.918) supports utility as a decision aid
replacing invasive biopsies; whereas in early-stage CKD (G1-G3), it

FIGURE 6
Calibration Curve and Metrics. The y-axis represents the actual probability of CKD, and the x-axis represents the predicted probability. Our model
demonstrates good consistency between predicted and actual probabilities.

TABLE 3 Summary of diagnostic performance metrics for the CKD prediction model.

Metric Value Interpretation

Dxy 0.864 Strong predictive separation

AUC (C-statistic) 0.932 Excellent diagnostic accuracy

Brier score 0.104 Good overall prediction accuracy

Calibration intercept 0.000 Minor systematic overestimation

Calibration slope 1.000 Slight overfitting

E90 0.086 Error in high-risk estimates

AUC is area under the receiver operating characteristic curve; E90 is 90th percentile absolute error.
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should be positioned as a complementary tool to eGFR—identifying
subclinical high-risk patients (e.g., those with eGFR>60 mL/min/
1.73 m2 but model-predicted risk ≥40%) to initiate early
renoprotective therapy. Recent breakthroughs in urinary
peptidomics technology (test set AUC 99%) (Li et al., 2023)
demonstrate the potential of molecular diagnostics for CKD
detection. Our study confirms that ultrasound viscoelastic
parameters achieve comparable discriminative power in advanced
CKD (AUC 0.918), with unique clinical value characterized by real-
time, cost-effective, and highly reproducible advantages. The two

technologies are inherently complementary: peptidomics excels in
capturing early molecular abnormalities, while ultrasonography
quantifies late-stage structural remodeling.

Compared to traditional GFR-dependent diagnostics, this model
offers a fully noninvasive approach that overcomes GFR’s
hemodynamic variability and remains unaffected by short-term
factors like diet or hydration status, enabling more stable organ-
level assessments critical for long-term monitoring of disease
progression and treatment response. The STVi model
complements the KDIGO 2024 guidelines by providing structural

FIGURE 7
Decision Curve Analysis of the Predictive Model. The y-axis represents the standardized net benefit, and the x-axis indicates the high-risk threshold
probability. The solid line denotes the model’s net benefit, while the gray dashed lines represent the “treat all” and “treat none” strategies. The model
demonstrates clinical utility between 20% and 80% risk thresholds, with peak net benefit at 40%.

FIGURE 8
Schematic Diagram of the Risk Scoring System. Based on sonographic examination, a nomogram was established in the primary cohort
incorporating the following variables: right kidney E mean (RE), left kidney Vi mean (LVi), right kidney Vi mean (RVi) and age. Each variable was assigned
corresponding predictor points according to the point scale marked at the top. The points of all variables were summed, and the total points were then
projected onto the bottom scale to determine the predicted probability of CKD.
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kidney assessment in cases where traditional biomarkers (eGFR/
ACR) are inconclusive (e.g., early CKD with normal eGFR but
abnormal STVi). Clinically, STVi may serve as an adjunct tool when
ACR is unavailable (e.g., resource-limited settings) or unreliable
(e.g., non-proteinuric CKD). Future studies should validate STVi in
multicenter cohorts integrating ACR and established risk factors,
assess cost-effectiveness, and explore automated analysis to reduce
operator dependence. STVi’s real-time imaging may benefit high-
risk monitoring (e.g., diabetes) and settings requiring rapid repeat
assessments. Furthermore, the multiparametric ultrasound
assessment not only matches GFR’s diagnostic efficacy (AUC
0.932) but also provides complementary structural information
unattainable through GFR alone. Their integration pioneers a
“function-structure” integrated diagnostic paradigm for precision
nephrology.

However, this study has several limitations. First, as a single-
center investigation, the sample representativeness may be limited.
Second, although the viscosity parameter demonstrated excellent
diagnostic performance, its measurement standardization requires
further refinement. Additionally, the model’s performance
variations across different CKD stages need to be validated in
subsequent studies. Future research should focus on conducting
multicenter validation studies to confirm the model’s
generalizability across diverse populations and settings,
optimizing ultrasound parameter measurement protocols to
enhance reproducibility for consistent data collection, and
exploring the model’s potential applications in predicting CKD

progression and evaluating therapeutic efficacy to inform clinical
decision-making and treatment strategies.

5 Conclusion

The sound touch viscosity has emerged as a valuable
noninvasive diagnostic tool that effectively evaluates renal
fibrosis, overcoming the limitations of traditional kidney biopsies
such as invasiveness and complication risks. This advancement
optimizes clinical management for CKD patients by facilitating
early identification of high-risk cases and enabling timely
interventions. The developed nomogram incorporating
viscoelastic parameters significantly improves diagnostic accuracy
for renal pathology in CKD patients while demonstrating potential
for predicting kidney-related clinical outcomes, particularly in
resource-limited settings. With its noninvasive nature and high
diagnostic performance, this technique represents a clinically
valuable tool for both diagnosis and prognosis assessment in
routine practice.
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FIGURE 9
Multiclass ROC Analysis of CKD Staging Performance. Stage-specific ROC curves demonstrating diagnostic accuracy for: Class 1 (normal controls,
AUC = 0.884), Class 2 (G1-3 CKD, AUC = 0.774), and Class 3 (G4-5 CKD, AUC = 0.918). Micro-average ROC curve (AUC = 0.869) representing overall
classification performance.
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