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It is well established that the biomechanical environment guides bone
regeneration. It is also commonly accepted that the early inflammatory phase
of fracture healing is decisive for the later regeneration process by inducing
angiogenesis, stem cell invasion and cartilage and bone tissue formation. While
traditionally, biomechanical orchestration and inflammation were viewed as
distinct phenomena, recent research has illuminated the intricate relationship
between mechanics and inflammation in the mechanobiology of fracture
healing. In this review, we summarize the current knowledge of how
mechanical stimuli influence bone regeneration by inducing tissue
differentiation, and we broaden the perspective on the mechanobiology of
fracture healing by incorporating recent insights into the interaction between
mechanical forces and inflammation—an emerging field termed as “mechano-
immunomics.” Key topics include the impact of fixation stiffness on immune cell
migration and early gene expression of extracellular matrix-modulating genes,
the influence of the mechanical environment within the early fracture hematoma
on platelets and immune cells, and whether external biomechanical stimulation
can alter the mechano-immunomic landscape. Gaining a deeper understanding
of this dynamic interplay offers promising opportunities for innovative
therapeutic strategies to enhance fracture healing. However, significant
challenges remain, such as the development of suitable in vitro systems, well-
characterized in vivo models, and effective interdisciplinary collaboration across
the fields of biology, immunology, and biomechanics.
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1 Introduction

Bone healing is a complex biological process involving the tight interaction between
many different cell types with complete restoration of the natural structure, shape and
mechanical competence of the bone. While most bone fractures heal uneventfully, 5%–10%
of all fractures are described to be of risk for a delayed healing or non-union formation
(Bahney et al., 2019; Hellwinkel et al., 2020). The reasons are not fully known, although it is
evident from clinical practice that the biomechanical environment at the fracture site is
critical for successful healing. Decades of basic, translational and clinical research focused
on the orchestration of callus development and bone healing by mechanical forces (Claes,
2021). In recent years, it became more and more evident that also the inflammatory
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response of the bone to a fracture is decisive for the later
regeneration (Duda et al., 2023). While traditionally
biomechanical orchestration and inflammation were viewed as
distinct phenomena, recent research has illuminated the intricate
relationship between mechanics and inflammation in the
mechanobiology of fracture healing (Schmidt-Bleek et al., 2014).
This extended perspective narrative review article sheds light on how
mechanical cues influence the inflammatory milieu during the
healing process. Understanding this dynamic interplay holds
promise for innovative therapeutic interventions aimed at
optimizing the settings for fracture repair and structural healing
outcomes. We performed a PubMed-based literature research using
the terms “mechanobiology”/“mechanotransduction”/
“mechanosensation”/“biomechanics”/“biomechanical stimulation”/
“biomechanical simulation” together with the terms “fracture
healing”/“bone regeneration”/“bone healing” and further
“inflammation”/“inflammatory”/“immune cells”. We included
publications relevant for the topic of mechanobiology during
fracture healing in the context of this review. We did not
perform a systematic review approach for this manuscript.

2 Fracture healing process

Fracture healing is a complex and dynamic regenerative
process completely restoring the damaged bone to its pre-injury
structure. The whole process and the underlying molecular
mechanisms have been investigated using preclinical large- and
small-animal models (Haffner-L et al., 2020). Various cell types,
both from the hematopoietic and the mesenchymal lineage, in
company with their secreted factors, are important for the
regeneration process. In addition to these biological factors,
bone regeneration is also dependent on mechanical strains and
stresses at the fracture site. The fracture healing process can be
divided in three different phases which should not be regarded as
separated processes and rather partly overlap and influence each
other: the inflammatory phase, the repair phase, and the
remodeling phase (Bahney et al., 2019).

2.1 Inflammatory phase

The whole process starts with the inflammatory phase
immediately after the fracture when disruption of blood vessels
happens with a subsequent formation of a fibrin-rich blood clot
around the fractured bone ends (Hu et al., 2017). This early fracture
hematoma is characterized by low oxygen levels and decreased tissue
pH because of the limited oxygen supply in the injured area (Lu
et al., 2011). The injury further induces the release of damage-
associated molecular patterns (DAMPs) from damaged cells,
supplemented by pathogen-associated molecular patterns
(PAMPs) in the case of an open fracture event (Kovtun et al.,
2016). In addition, platelets arrive at the fracture site and become
activated. These activated non-nucleated cells secrete different
cytokines such as interleukin (IL)-1, IL-6 and tumor necrosis
factor-alpha (TNF-α) (Baht et al., 2018; Jingushi et al., 1995;
Dimitriou et al., 2005; Dulgeroglu and Metineren, 2017). Further,
growth factors such as platelet-derived growth factor (PDGF),

vascular endothelial growth factor (VEGF), Insuline-like growth
factor 1 (IGF-1), and transforming growth factor-beta (TGF-ß) are
released. Various immune cells are recruited to the injured area by
these signaling molecules (Gibon et al., 2017). The first immune cells
rapidly recruited to the early fracture hematoma are
polymorphonuclear neutrophils (PMNs), which facilitate the
removal of cell debris and pathogens through processes like
phagocytosis, the formation of neutrophil extracellular traps
(NETs) (Kovtun et al., 2016; Kolaczkowska and Kubes, 2013) and
secretion of inflammatory mediators (Kovtun et al., 2018). C-C
motif chemokine ligand 2 (CCL2 and its receptor chemokine
receptor type 2 (CCR2) play a pivotal role in mediating
subsequent monocyte chemotaxis (Chu et al., 2014). Monocytes
differentiate into pro-inflammatory M1 macrophages, contributing
to the innate immune response to PAMPs through toll-like receptors
(TLRs) (Claes et al., 2012; Einhorn and Gerstenfeld, 2015).
Following wound debridement and the cessation of classical
activation, macrophages can adopt an anti-inflammatory
M2 state through IL-4 and IL-13 signaling (Alexander et al.,
2011; Vi et al., 2015). A recent study from Zou et al. showed
higher secretion of prosenescent factors as grancalcin by
macrophages in calluses during aging which led to senescence of
skeletal stem/progenitor cells (SSPS). This mechanism results in an
impaired fracture healing by reducing the regeneration capability of
the bone (Zou et al., 2024). Moreover, studies also investigated the
role of mast cells in bone fracture healing. They showed that the
increased systemic posttraumatic inflammation after severe trauma
and the dysregulated early immune response at the fracture site in
case of an additional trauma are related to mast cells. One of the key
cytokines of posttraumatic inflammation is IL-6 which is
significantly reduced in mast cell-deficient mice 3 hours after
fracture compared to wildtype, indicating that mast-cell derived
mediators might play a role in fracture healing (Fischer et al., 2022;
Ragipoglu et al., 2022; Ragipoglu et al., 2020; Fischer and Haffner-
Luntzer, 2022). Also, cells from the adaptive immune system, such as
T lymphocytes, are recruited to the fracture site as well (Konnecke
et al., 2014). They have also been demonstrated to play a role in bone
healing. Notably, RAG1−/− mice, characterized by a complete
absence of the adaptive immune system, exhibited increased
callus mineralization, primarily attributed to the absence of T
lymphocytes (El Khassawna et al., 2017), (Reinke et al., 2013).
T cell response is strongly controlled by RANKL-activated
osteoclasts as they have been shown to activate T cells
(Amarasekara et al., 2018; Kiesel et al., 2009). In addition to
inflammatory and anti-inflammatory cytokines, angiogenic
factors such as angiopoetin-1 and VEGF are released (Ai-Aql
et al., 2008). This initiates the migration of endothelial cells from
pre-existing periosteal vessels towards the fracture hematoma,
facilitating the formation of new blood vessels crucial for
revascularization during fracture healing (Schmidt-Bleek et al.,
2012). These newly formed blood vessels play a pivotal role in
enabling the influx of osteoprogenitor cells and fibroblasts, which
contribute to the production of new collagen. This collagen-rich
granulation tissue replaces the hematoma and is characterized by the
presence of cells and invading capillaries (McKibbin, 1978). All these
processes and the numerous cell types, mediators and pathways
underline the importance of the inflammatory phase after bone
fracture on ongoing healing and regeneration processes.
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2.2 Repair phase

Dependent on the local mechanical conditions in the fracture
area, intramembranous and endochondral ossification processes
take place during the repair phase of fracture healing. Primary
cortical bone healing is characterized by intramembranous bone
healing via Haversian remodeling, similar to the normal bone
remodeling facilitated by direct contact of the fracture surfaces
and high oxygen supply (Holzwarth et al., 2010). Osteoclasts,
establish resorbed tunnels from one side of the fracture to the
other. Subsequently, blood vessels can proliferate within these
tunnels what enables the recruitment of precursor cells that
undergo differentiation into bone-forming osteoblasts
(Einhorn, 2005). These osteoblasts generate new osteons to
bridge the fragments of the fracture, marking a gradual
process with a reduced influx of inflammatory cells, potentially
reducing systemic inflammation. Primary bone healing is mainly
applied in trauma surgery using compression plates (Bastian
et al., 2011). Secondary bone healing occurs under non-rigid
fixation via the processes of intramembranous and endochondral
ossification. Intramembranous ossification takes place distal to
the fracture site, along the periosteal and endosteal bone surfaces,
involving direct bone formation by osteoblasts derived from
osteoprogenitor cells in the periosteum. Conversely, bone
formation originating from a soft fracture callus occurs
between and around the fracture ends. Mesenchymal stem
cells (MSCs) from the bone marrow and periosteum are
recruited to the fracture site, where they differentiate into
chondrocytes (Bahney et al., 2019). Chondrogenesis is
subsequently induced by high tissue strains and reduced
oxygen saturation in the vicinity of the fracture gap (Claes
et al., 2011a). Once the cartilaginous callus has bridged the
fracture and interfragmentary movements decrease thereby,
chondrocytes undergo hypertrophy and promote
vascularization by expressing factors like VEGF (Bahney et al.,
2019). Subsequently, the monocytes differentiate into cartilage-
resorbing osteoclasts, while the invaded MSCs differentiate into
osteoblasts, contributing to a bony bridging by filling the
resorption lacunae of the callus with woven bone. Osteoblasts
transdifferentiated from chondrocytes also play a role in the bony
bridging of the fracture callus, as evidenced by studies using
lineage tracing mouse models (Hu et al., 2017; Zhou et al., 2014).

2.3 Remodeling phase

The bone remodeling phase may persist for months to years
following the clinical union of the fracture. Throughout this
remodeling phase, various signaling pathways, including BMP,
fibroblast growth factor (FGF), parathyroid hormone-related
peptide (PTHrP), and Indian hedgehog (IHH), play a role
(Sheen et al., 2024). During the remodeling phase, a balance
between osteoblasts and osteoclasts, which are highly present in
this phase is necessary. Especially the activity and differentiation of
osteoclasts is enhanced by pro-inflammatory cytokines as TNF-
alpha, IL-1, IL-6, IL-11 and IL-17, which are also shown to inhibit
osteoblast differentiation, function and collagen synthesis and
which can additionally be produced by macrophages (Lorenzo,

2000; Gilbert et al., 2000; Cavagis et al., 2014). Bone remodeling is
also heavily influenced by mast cells. For instance, Ragipoglu et al.
could show significantly reduced osteoclast numbers in mast cell-
deficient mice 21 days after fracture and an impaired callus
remodeling (Ragipoglu et al., 2022). The woven bone within the
callus undergoes conversion into lamellar bone by osteon
formation and the vascularization is reduced to pre-fracture
levels. The bone remodeling phase can take years in humans
but ends with the restoration of the original bone architecture
as the final target of the fracture healing process (Bahney
et al., 2019).

3 “Mechanobiology–state-of-the-art”:
role of the biomechanical environment
during fracture healing

3.1 Clinical experience on healingmechanics

During the healing process, the fracture callus stabilizes
fractured bone fragments and later unites them to achieve pre-
injury strength and stiffness of the broken bone. Therefore the
process of callus formation is, and must be, sensitive to the local
mechanical conditions that act in the fracture gap (Epari et al., 2007;
Yamagishi and Yoshimura, 1955). In clinical settings, these local
mechanical conditions result from the interplay between fracture
geometry, fixation stiffness and the physiological loading of the
broken bone. When a patient loads the operated limb, the implant
deforms, causing movements of bone fragments with respect to each
other that, in turn, strain the tissue in the fracture gap and stimulates
fracture healing (Inacio et al., 2023; Claes, 2011; Duda et al., 2002).
Over the last century, clinical experience and research on the
mechanobiology of bone fracture healing has changed the
paradigm of how bone fractures should be treated. Open-
reduction techniques—targeted towards perfectly restoring bone
continuity and geometry to allow for primary bone
healing—were (whenever possible) replaced with 1) minimally
invasive approaches for prevention of extensive damage of soft
tissue around the fracture, thereby accounting for enhanced
biology at the fracture site (Perren, 2002; Windolf et al., 2023;
Thaeter et al., 2016) and 2) fixation techniques which stimulate
fracture callus formation. This was done by introducing flexible
internal (or external) fixators (Perren, 2002; Schma et al., 2011),
which allow for mobility (interfragmentary motion) in the fracture
gap that stimulates the formation of fracture callus (Epari et al.,
2007; Augat et al., 2021; Goodship and Kenwright, 1985; Claes et al.,
1995; Lujan et al., 2010; Bottlang et al., 2010). When it comes to
intermediate or delayed weight bearing in fracture patients, there is
an ongoing debate in the current clinical practice due to fear of
fixation failure (Paulsson et al., 2021; Lieder et al., 2021). As a result,
the mechanical loading during the earlier phases of bone healing
might be limited, which might not be the optimal strategy, as
discussed later in this review (Windolf et al., 2021; Glatt et al.,
2021). However, in general it must unfortunately be said that
potential influences of mechanobiology on the early
inflammatory phase of fracture healing currently play no role in
clinical decision-making. Only knowledge on mechanics-dependent
callus formation is taken into consideration so far.
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3.2 Mechanics-dependent tissue formation
during regeneration: from tissue
differentiation theories to mathematical
modelling of fracture repair inflammation

As early as 1960, Pauwels proposed the first tissue differentiation
paradigm, describing that local hydrostatic pressure transforms
MSCs to chondroblasts (cartilage formation) and the shear strain
transforms MSCs to osteoblast and fibroblast (bone and fibrous
tissue formation) (Pauwels and Pauwels, 1980; Betts and Müller,
2014). Following Pauwels’ pioneering work, several theories and
models were developed to describe the progression of fracture
healing, considering factors such as cyclic octahedral shear stress,
hydrostatic pressure, and blood supply quality (Carter et al., 1988),
interfragmentary strain, the combination of interfragmentary strain
and pressure (Claes et al., 1995; Claes and Heigele, 1999), and fluid
flow and shear strain (Lacroix et al., 2002). The development of these
theories andmodels significantly enhanced our understanding of the
impact of local mechanical conditions on healing progression;
however, they did not account for the inflammatory mechanisms
that follow fracture of a bone. With technological advancements in
computational simulations, modeling of cellular and molecular
dynamics, as well as inflammatory reactions, has become possible
(Lafuen et al., 2021).

The integration of simulation technology with experimental
data follows an iterative process that combines computer
modeling with empirical data. Borgiani et al. (2023) exemplify
such an approach using an agent-based model to simulate
immune cells, inflammatory cytokines, fracture debris, and their
interactions during the early inflammatory phase of bone healing.
Briefly, a model - a mathematical representation of the physical
system - is first developed based on parameters derived from prior
in vitro or in vivo studies. The model’s predictions are compared
with in vivo experimental outcomes (e.g., histological data) to
further calibrate its parameters. Subsequently, the model is
iteratively updated and refined and finally validated on an
independent dataset to evaluate its robustness. Similar
approaches have been employed by other groups to investigate
cell migration patterns, angiogenesis and different fracture
healing phases in small and large animal models (Hedayatzadeh
Razavi et al., 2024; Yang et al., 2024; Kendall et al., 2023).

Simulating the early stages of bone healing is challenging for
several reasons. The models themselves are complex integrating
numerous parameters derived from diverse studies [e.g., cellular
migration speed (Segovia-Juarez et al., 2004) and cytokine secretion
ratios (Byrne and Reen, 2002)]. Furthermore, obtaining structural
data at early healing stages is particularly difficult, as early repair
tissue cannot be visualized by computed tomography (CT). This has
recently been addressed by atomic force microscopy–based
nanoindentation (Hedayatzadeh Razavi et al., 2024). To date,
many models of early bone healing have been restricted to two-
dimensional representations, where the fracture area serves as the
simulation domain (Borgiani et al., 2023; Hedayatzadeh Razavi et al.,
2024; Yang et al., 2024), while the role of mechanical loading has
been addressed only to a limited extent. However, recent
developments in well-controlled animal models may help bridge
this gap by enabling the collection of more robust experimental
datasets (Wehrle et al., 2021; Hente and Perren, 2021).

Whereas some experimental validation has been reported for
simulations of the early healing stage, it remains limited, and thus
the predictive power of these models is still constrained [for a review
of validation methods of inflammation in fracture healing see
(Lafuen et al., 2021)]. Nevertheless, as more high-quality data
become available, in silico models are expected to become
powerful tools for exploring mechano-immunomics in the early
healing stage, thereby reducing the number of animals required for
in vivo experiments and paving the way toward patient-specific
models of bone regeneration.

3.3 Sensitivity to mechanical cues during
different phases of secondary bone healing

To assess the effect of mechanical cues on different phases of
fracture healing, several in vivo and in vitro models have been
introduced, which has been reviewed elsewhere [for review see: (Ma
et al., 2023)].

3.3.1 Impact of mechanics during early
healing stage

Although the post-fracture hematoma and early repair tissue
lack significant mechanical competence compared to cartilage or
bone (Woloszyk et al., 2022), it has been demonstrated that the early
healing stage is highly sensitive to mechanical inputs (Windolf et al.,
2021) and that alterations in the local mechanical environment
during this stage can influence the healing outcome.

Using an instrumented passive fixation in sheep, Windolf et al.
observed a positive correlation between number of loading cycles in
the first 2 weeks post-op with the strength of the healed bone
(9 weeks post-op), indicating the importance of early stimulation for
robust and timely fracture healing (Windolf et al., 2021). Similarly,
with an active fixator, Barcik et al. showed that withholding
mechanical stimulation for the first 3 weeks delayed healing,
whereas applying stimulation from the first postoperative day
accelerated the process (Barcik et al., 2023). Moreover,
experiments with reverse/inverse dynamization—where high-
magnitude stimulation is confined to early healing
phase—highlight the advantages of targeting mechanical cues to
this specific phase of healing (Glatt et al., 2021; Glatt et al., 2012).
Conversely, several in vivo experiments indicate that overly flexible
fixation can delay the transition from inflammation to the repair
phase. Epari et al. found that in sheep treated with more flexible
external fixators, remnants of the hematoma persisted for a longer
than in more rigidly fixed fractures (Epari et al., 2006). In a mouse
model, Sabate Bresco et al. showed that flexible fixators were
associated with elevated levels of inflammatory markers,
suggesting that excessive instability intensifies local inflammation
(Sabate-Bresco et al., 2021).

Hence, although early mechanical loading can be beneficial,
excessive flexibility may prolong inflammation and impede timely
progression to the repair phase. Furthermore, it remains unclear
whether the impact of mechanical cues is consistent throughout the
entire duration of inflammation. Using a small animal model,
Miclau et al. showed that delaying instrumentation by 24 h
(allowing for instability and, thus, large stimulation magnitude)
resulted in up to a 40-fold increase in cartilage formation, as
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observed histologically 10 days post-op. Interestingly, there was no
difference in cartilage area between animals treated 24 and 48 h after
surgery (Miclau et al., 2007). Taken together, these findings illustrate
that mechanical cues play an important role in shaping early repair
tissue, with profound consequences for the entire healing process.

3.3.2 Advanced healing stages and remodeling
With the progression of healing and the formation of fracture

callus that bridges the fracture gap, interfragmentary strain
decreases. Nevertheless, the healing process is still sensitive to
mechanical cues. Claes et al. (2011b) showed that late
dynamization (from the third and fourth week) in rats resulted
in improved healing in comparison to a fixator that was stable
throughout the entire 5-week healing period. In a recent study,
Wehrle et al. showed the effect of individualized loading on bridged
defects in mice. The loading initiated 3 weeks post-op resulted in far
more advanced bone formation around the defect compared to 0 N
loaded controls (Wehrle et al., 2021). On the other hand, Goodship
and Kenwright (1985). Goodship et al. (1998) showed in sheep that
applying active stimulation only when the bridging occurs
diminished healing progression in comparison to animals
stimulated in the early healing stage. In the experiments of
Goodship et al. (which were instrumental to our understanding
of the importance of stimulation on fracture healing), the same
force-controlled loading regime was used for all study groups. This
contrasts with the study of Wehrle et al., where loading force was
individually computed based on the µCT imaging to ensure
favorable stimulatory conditions in the defect (Wehrle et al.,
2021). Overall, it suggests that the loading regimes in the
advanced healing stages must be carefully tuned to respect the
strength of the repair tissue when stimulation is actively applied.

3.4 Mechanical regulation of cellular and
molecular mechanisms during repair and
remodeling

The mechano-responsiveness of cells in the fracture region is
regarded as a key factor of biomechanical influences during the
fracture healing process and has been shown for many cell types, e.g.,
MSCs [inflammatory phase; (Josephson and Morgan, 2023)],
osteoblasts [repair phase; (Papachristou et al., 2021)], osteoclasts,
osteocytes [remodeling phase; (Papachristou et al., 2021)]. Thereby,
the mechanotransduction of extracellular stimuli into intracellular
biochemical responses mediates gene and protein expression with
subsequent effects on the bone healing process [for review of
mechanotransduction see: (Vogel, 2006; Vogel and Sheetz, 2006)].

The local mechanical environment changes throughout the
healing process, from the hematoma via the formation of the soft
and hard callus and subsequent callus remodeling with associated
healing phase-specific characteristic gene expression profiles
(Hussein et al., 2018). It has to be emphasized, that reported
strains within the fracture healing area [e.g., ca. 9′000 µε 2 weeks
post-op in a rat model (Klosterhoff et al., 2020)] are substantially
higher compared to strains measured on intact bone surfaces [ca.
500 - 3′000 µε; for review see (Paul et al., 2018)], indicating relevance
of the local mechanical environment for the healing process. To link
local mechanical properties and gene expression in the healing area

early after fracture, Woloszyk et al. (2022) used a femur defect model
in rats with different defect sizes to mimic normal (0.5 mm), delayed
(1.5 mm) and non-healing (5 mm) bone defects. Bulk RNA
sequencing and scanning electron microscopy (SEM) of the
hematoma at post-operative day 3 in subsets of animals revealed
distinct gene signatures and structural properties of the hematoma
in the different healing conditions. Novel multimodal mechanically-
controlled femur defect models in mice have enabled to link local
mechanical callus properties [e.g., effective strain; (Tourolle Ne Betts
et al., 2020; Paul et al., 2022)] with histology-based gene and protein
analyses (Wehrle et al., 2021). Specifically, using a recently
established spatial transcriptomics protocol for formalin-fixed
paraffin-embedded (FFPE) musculoskeletal tissue samples from
mice (Wehrle et al., 2024), Mathavan et al. were able to link the
transcriptomic responses of cells to the local strain magnitude
within the defect region during the remodeling phase of fracture
healing (Mathavan et al., 2024). Looking further downstream,
multiple signaling pathways (e.g., Estrogen, Wnt, BMP) have
been characterized as mechano-responsive with implications for
bone biology and fracture healing [for review see: (Wang et al., 2022;
da Silva Madaleno et al., 2020)]. Recently, mechanosensitive Piezo
channels as well as the transcriptional coactivators yes-associated
protein 1 (YAP) and transcriptional coactivator with PDZ-binding
motif (TAZ) turned in the focus. Chen et al. (2021) showed that
YAP/TAZ deletion of endothelial Piezo1 resulted in impaired bone
healing with inhibition of osteoblast maturation and ossification.
Via constitutive and developmental YAP/TAZ deletions in Osterix-
expressing cells in mice, Kegelman et al. (2021) comprehensively
assessed and characterized that YAP and TAZ promote periosteal
osteoblast precursor expansion and differentiation for
fracture repair.

Based on the importance of the local mechanical conditions in
the bone healing region, many in vivo studies have applied and
assessed external mechanical loading as a treatment option for
(healing phase-specific) improvement of impaired bone healing
conditions [reviewed in (Ma et al., 2023); low-magnitude high-
frequency vibration: (Steppe et al., 2020), exercise: (Song, 2022)]. In
combination with targeted transgenic mouse models, precisely
controlled mechanical regimens have enabled wider cellular and
molecular understanding of the local microenvironment and
mechanics in respect to angiogenesis, angio-osteogenic coupling
and chondro-osteogenic trans-differentiation relevant for successful
bone healing (Wazzani et al., 2021; Wong et al., 2018). Coupling of
angiogenesis and osteogenesis has been described for loadbearing
bones, whereas a recent study by Bixel et al. showed that
angiogenesis is uncoupled from osteogenesis during non-
loadbearing calvarial bone regeneration (Bixel et al., 2024),
indicating a strong influence of the local mechanical conditions
on this mechanism during bone healing. In addition, in vitro setups
and models have allowed for further characterizing the effect of
specific mechanical protocols and parameters (e.g., fluid flow stress,
compressive and tensile strain) on specific cells involved in the
different healing phases of fracture repair including the assessment
of lineage commitment, differentiation and gene/protein expression
profiles [reviewed in (Wu et al., 2024)]. Such targeted systems have
allowed for characterizing the mechano-responsiveness of specific
cell types (e.g., MSCs, osteoblasts, osteoclasts, osteoclasts) involved
in bone healing, however they often resemble a simplified setup (one
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type of mechanical stimulus, 2D vs. 3D, selected molecular markers
as readout) and lack the possibility for capturing and monitoring of
the local mechanical parameters in the system. To mechanistically
study fluid-flow dependent lineage commitment of MSCs, Song et al.
(2012) developed a platform based on confocal imaging of cell
surface bound-fluorescent microbeads enabling for measuring cell
surface strain in live cells in response to controlled delivery of
stresses. Recent developments have focused on in vitro platforms
enabling to study synergistic effects of multiple externally applied
cues [e.g., combined mechanical cues, combined biochemical and
physical cues; (Josephson and Morgan, 2023; Jesus et al., 2022)].
Further developments are targeted towards specific in vitro
platforms to study aspects of bone healing. Whelan et al. (2023)
developed a micro-physiological model integrating endothelial cells
and organoids mimicking different stages of endochondral bone
development within a microfluidic chip. Via combining such in vitro
systems with longitudinal monitoring of mechanical parameters in
the microenvironment and larger scale molecular readouts as well as
computational analyses, they may also provide a basis for
microenvironment-targeted treatment strategies for bone healing
(Hao et al., 2023; Zhu et al., 2021). Several other devices have been
used to simulate the effect of mechanical loading/presence of
mechanical stimuli during fracture healing in vivo and in vitro.
In vitro, various bioreactors systems have been used to apply
compression or shear stress to the cells, likewise shear stress may
be delivered via vibration platforms with attached cell culture plates
and cyclic tension (strain) may be simulated via the commercially
available FlexCell tension system or four-point bending devices
[reviewed in: (Michael Delaine-Smith et al., 2015; Ladner
et al., 2022)].

4 “Mechanobiology reloaded”: interplay
between mechanics and inflammation
during fracture healing

4.1 Influence of hematoma stiffness and
biomechanical stimulation on inflammation

During early fracture healing, the formation of the fibrin-rich
hematoma induces strong changes in the tissue mechanical
environment which exert various forms of biomechanical
stimulation (e.g., changes in the tissue stiffness, local shear stress
conditions, compression loading and mechanical stretch) on
immune cells.

Platelets are the first immune cells to be recruited from the
circulation to the site of vascular injury after the fracture. Platelet
adhesion to the vascular endothelium, aggregation and activation
play a crucial role, together with the coagulation cascade, in blood
clot formation (Baht et al., 2018; Oshinowo et al., 2023). Activated
platelets secrete pro-inflammatory cytokines to recruit other
immune cells (neutrophils and monocytes) and mesenchymal
progenitors to the site of injury (Baht et al., 2018). Platelets sense
and respond to biomechanical stimuli such as local shear stress
conditions and changes in substrate stiffness (Oshinowo et al., 2023)
and these modulate platelet adhesion, aggregation and activation
(Woloszyk et al., 2022; Nesbitt et al., 2009; Kulkarni et al., 2000; Shi
et al., 2016; Mor et al., 2022; Qiu et al., 2014). Nesbitt et al. showed

that discoid platelets were found to form stable aggregates in vivo at
sites of rapid changes in blood flow such as vascular injury, inducing
micro-gradients in shear stress (Nesbitt et al., 2009). Moreover,
Morell et al. subjected human platelets to laminar and turbulent flow
in an in vitro flow-and-cone system for 120 min and observed an
increase in platelet activation by laminar flow, and even more so by
turbulent flow (Mor et al., 2022). Platelets within the developing
fibrin-rich blood clot may also mechano-sense changes in substrate
stiffness as coagulation factors such as thrombin induced the
conversion of fibrinogen to fibrin (Oshinowo et al., 2023). Qui
et al. observed a stiffness-dependent increase in human platelet
adhesion and spreading on fibrinogen immobilized polyacrylamide
(PAA) gels ranging from 0.25–50 kPa in vitro, and higher platelet
activation on gels stiffer than 5 kPa (Qiu et al., 2014). Platelet
activation plays a crucial role for remodeling of the fibrin-rich
matrix and strengthening of the hematoma as platelets contract
and thereby bend and shorten fibrin fibers via their filopodia (Lam
et al., 2011; Kim et al., 2017).

Likewise, neutrophil adhesion to the vasculature, transmigration
and chemotaxis as well as the activation in response to injury have
been shown to be sensitive to the stiffness of the underlying substrate
(Oakes et al., 2009; Jannat et al., 2010; Abaricia et al., 2021). Human
neutrophils spread more on PAA hydrogels with moduli of 12 kPa
and demonstrated directed migration towards a chemotactic
gradient as compared to on gels with a stiffness of 0.3 kPa
(Jannat et al., 2010). Moreover, hematoma stiffness may control
neutrophil pro-inflammatory behavior as Abaricia et al. showed
enhanced NET formation and IL-1ß-, TNF-α-, MCP-1-, MIP-1α-,
CCL5-, CXCL1 secretion from mouse neutrophils on
polydimethylsiloxane substrates with increasing stiffness
(0.2–32 kPa) (Abaricia et al., 2021).

This increase in pro-inflammatory cytokines at the fracture site
may lead to an enhanced recruitment of circulating monocytes into
the hematoma (Baht et al., 2018). Monocytes and monocyte-derived
macrophages are found at the site of tissue injury and play a crucial
role in the repair and remodeling of tissues subjected to mechanical
stress (Ar et al., 2007; Blomgran et al., 2016; Bergmann et al., 2006;
Krieger et al., 2016; Schlundt et al., 2018; Raggatt et al., 2014). Fahy
et al. investigated the effect of shear and compression on monocytes
entrapped in alginate gels via a multiaxial loading bioreactor.
Loading for 1 h/day for 3 consecutive days increased primary
human monocyte IL-6 and IL-8 gene expression levels compared
to free swelling controls and the protein levels of TNF-α, MIP-1α
and IL-13 (Fahy et al., 2019). Shear and compression loading may
exert differential effects on the inflammatory milieu during
endochondral fracture healing. Fahy et al. found that
compression loading alone enhanced the production of IL-1ß
from the human monocyte reporter cell line THP-1, as well as
the expression of inducible nitric oxide synthase (NOS2), which is
expressed in the fracture callus during the initial stage of repair
(Diwan et al., 2010), while shear increased MCP-1 secretion (Fahy
et al., 2019). Mechanical stimuli may also influence monocyte to
macrophage differentiation as Yang et al. found that applying 4%
strain at 1 Hz for 24 h to human monocytes increased the monocyte
differentiation-associated transcription factor PU.1 (Yang et al.,
2000). Evidence suggests that macrophages have a profound
impact on fracture healing. Recruitment of macrophages to the
fracture site is crucial for vascularization, callus formation, cartilage
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maturation and callus remodelling (Xing et al., 2010). In addition, a
reduced number of macrophages during fracture healing in murine
femoral defect models has been shown to impair endochondral
ossification and overall delay fracture healing (Schlundt et al., 2018;
Raggatt et al., 2014). The presence of pro-inflammatory
M1 macrophages and their secreted factors in conditioned
medium have been reported to enhance the osteogenesis of bone
marrow-derived MSCs (Guihard et al., 2012; Lu et al., 2017).
Moreover, enhancing the M2 macrophage phenotype in vivo
improved early bone regeneration (Schlundt et al., 2018). It has
been recognized that besides soluble factors, biomechanical cues
influence macrophage phenotype and function (McWhorter et al.,
2015; Escolano et al., 2021). Strain and vibration treatment have
been shown to alter macrophage polarization, cytokine secretion
and ECM remodeling. Cyclic strain has been found to modulate
macrophage phenotype in three-dimensional (3D) scaffolds,
depending on the strain rate. While strain magnitudes of 7%–8%
at a frequency of 0.8 Hz drive human peripheral blood-derived
monocyte polarization towards anM2 phenotype over 7 days, in line
with an increase in the secretion of anti-inflammatory cytokines like
IL-10 and TGF-ß1, higher strains (12%–14%) induce an
M1 phenotype concomitant with enhanced IL-6, TNF-α and IL-
1ß levels (Ballotta et al., 2014; Bonito et al., 2018). Contrary, Tu et al.
found an increased IL-1ß and IL-6 secretion from murine
macrophages with increasing strain amplitudes (5%, 10%, 15%)
after 8h, as well as in both the M1 and M2 phenotype (Tu et al.,
2022). Species-dependent differences in macrophage pro-
inflammatory response as well as differences arising from the
length and time-scale of the observations have been reported
before (McWhorter et al., 2015). Macrophages are known to
contribute to the secretion of ECM components to promote new
tissue formation by fibroblasts and are also capable of ECM
remodeling (Weitkamp et al., 1999; Schnoor et al., 2008; Werb
et al., 1980). Applying strain was found to have little influence on the
production of ECM components by human peripheral blood
monocyte-derived macrophages (Ballotta et al., 2014; Bonito
et al., 2018), however, 4% strain was found to upregulate
MMP1 and 3 expression (Yang et al., 2000). Low magnitude high
frequency vibration (35 Hz, 0.3 x g; 20 min/day 5 days/week)
increased the recruitment of macrophages to the fracture site in
ovariectomy-induced osteoporotic rats, enhanced M1/
M2 transition, IL-6 and TNFα expression and reduced IL-10
levels 1 week post-operatively (Chow et al., 2019). On the other
hand, Pongkitwitoon et al. observed that vibration treatment
(100 Hz, 0.15 x g; 20 min/2x/day 2 h break) of murine
macrophages in vitro reduced protein levels of INF-γ, IL-6 and
TNFα after 1 and 3 days of stimulation while enhancing
proliferation (Pongkitwitoon et al., 2016). A large amount of
studies investigated the effect of substrate stiffness on
macrophage recruitment (Blakney et al., 2012; Ni et al., 2023),
morphology (Escolano et al., 2021), migration mode (Sridharan
et al., 2019), phagocytosis (Scheraga et al., 2016; Patel et al., 2012),
phenotype and cytokine production (Blakney et al., 2012; Ni et al.,
2023; Chen et al., 2020; Okamoto et al., 2018). In general, bone
marrow-, RAW 264.7- and THP-1-derived macrophages cultured
on PAA hydrogels with various coatings possess a more round
morphology and secrete higher levels of M1markers (IL-1ß, TNF-α)
with lower stiffness moduli (0.2–1 kPa), while stiffer gels

(16–150 kPa) induce a spread morphology and higher levels of
M2 markers (Escolano et al., 2021; Scheraga et al., 2016; Patel et al.,
2012; Chen et al., 2020; Carnicer-Lombarte et al., 2019; Xing et al.,
2021). However, others have observed a more pro-inflammatory
macrophage phenotype on stiffer gels ranging from 840–230 kPa
(Blakney et al., 2012; Sridharan et al., 2019; Previtera and Sengupta,
2016). These differences may arise from the use of different ligands,
coating densities or factors to induce inflammation (Escolano et al.,
2021). Also, mechanostimulation protocols in term of loading,
frequencies, amplitudes and duration differ a lot, potentially
leading to different results. Furthermore, as mentioned earlier,
species-differences might have influenced the contrasting results
reported in these studies. Another important factor to consider
would be a specific time-dependency of mechanobiological
responses of immune cells, which is very likely due to the highly
dynamic nature of immune cell responses.

The stiffness of the underlying substrate has also been shown to
modulate T-cell activity. Majedi et al. cultured T-cells on
microporous, alginate-based, RGD-functionalized 3D scaffolds
with stiffness moduli of 4 and 40 kPa. They observed faster
T-cell migration, higher proliferation and IL-2, IFN-γ and TNF-α
expression as well as an upregulation of the T-cell activation surface
marker CD25 on the stiffer scaffolds (Majedi et al., 2020).

These findings imply that mechanical cues in the tissue
microenvironment may mediate cellular responses during the
inflammatory phase of fracture healing. However, variations in
the duration and magnitude of the stimuli, the time period of
observation and the presence/absence of various factors to induce
inflammation and species-dependent differences (in particular
between studies using cells from murine- and human origin)
make it difficult to transfer this knowledge to improve fracture
healing in the clinical setting. Another concern is that most of the
findings are currently based on in vitro studies. In vivo studies
identifying which mechanical stimuli are relevant to consider during
fracture healing and whether these stimuli are determinant of cell
behaviour in vivo are currently underrepresented. However,
measuring local tissue strains or fluid shear stresses induced by
e.g., fixator stiffness or gap size and linking these stimuli to cellular
responses and tissue formation during early fracture healing in vivo,
is challenging (Duda et al., 2023).

4.2 Influence of mechanical stability on the
inflammatory phase

The first hints that mechanical stability is influencing the
inflammatory phase of fracture healing were given by the
extensive work of Duda and colleagues [reviewed in (Schmidt-
Bleek et al., 2014) and (Knecht et al., 2021)]. In 2012, they
compared the early and late healing phases in an uneventful
fracture healing scenario versus a mechanically induced delayed
healing model in sheep (Schmidt-Bleek et al., 2012). In the early
phase, they found significantly higher T-lymphocyte counts in the
mechanically delayed model, both in the hematoma itself and the
adjacent bone marrow. Especially cytotoxic T-cells were highly
present. Furthermore, the periosteum at the early healing phases
showed lower expression of hematopoietic stem cell markers and
angiogenic factors, indicating that the unfavorable mechanical
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environment directly interferes with inflammation and therefore
also regeneration (Kolar et al., 2010). In 2014, Ode et al. did an
unbiased whole genome expression analysis of fracture hematoma
tissue under different mechanical conditions (Ode et al., 2014). They
found more than 1000 differentially regulated genes, with 144 genes
being regulated by both age and fixation stability (which is
interesting because age is proposed as a regulator of bone
mechanosensitivity itself). Functional annotation analyses
revealed an interplay between mechanics, inflammatory genes
and genes which influence later repair stages, like ECM
modulating matrix metalloproteinases (MMPs). In 2024, Mehl
et al. detected that extrinsically imposed shear stress in the gap
delayed hematoma remodeling and shaped the morphology of early
collagen fiber orientations and microvascular networks, suggesting
that enhanced shear increased the nutrient exchange between cells in
the hematoma (Mehl et al., 2024). All these data implies that fracture
fixation stability is able to modulate very early healing responses
during bone regeneration and that this interferes with the later
repair response. Conversely, that would mean that clinical fixation
devices should not only be optimized towards their biomechanical
properties for later healing stages, but also towards the early healing
stages (as already mentioned in chapter 3.3). Eventually, this might
lead to the need for adjustable devices as described for small and
large animal models (Glatt et al., 2021; Muller et al., 2015).

When reviewing the influence of mechanical stability on fracture
healing, it would be interesting to compare the early healing phases
in long-bone fracture models vs. non-locomotion loaded bones like
the skull bone. However, also cranial bones are loaded due to muscle
forces and it is not really known in small animals how the
magnitudes of strains are different between for example, a
mandible healing model or a long bone healing model.
Therefore, it is challenging to draw specific conclusions for
mechano-immunomics in those models.

A great barrier to progress in the field and gain a better
understanding of the effect of the mechanics during the
inflammatory phase of fracture healing currently represents the
spareness of robust and reliable in silico models, in particular
models which combine computer modeling with data from
experimental studies (Lafuen et al., 2021). The development of
such novel in silico models should focus both on modeling the
biological factors such as cells/cell densities and the temporal/
spatial distributing of pro- and anti-inflammatory agents present
during the inflammatory phase (Kojouharov et al., 2017. Modeling
the effects of inflammation in fracture healing; Trejo et al., 2019.
Modeling the macrophage-mediated inflammation involved in bone
fracture healing. Process. Math. Comput. Appl. 24, 12), as well as the
mechanobiology, and determine the effect of these combined initial
factors on the fracture healing outcome (Mathavan et al., 2025; Ghiasi
et al., 2019). These models would allow to better map local strains in
the fracture area with cellular reactions, therefore leading to better
conclusions regarding mechano-immunomic processes.

4.3 Molecular mechanisms:
mechanosensation of immune cells

The basis for the development of the mechano-immunomics
field are that there is a deeper understating of mechanotransduction

in immune cells. Several mechanosensors have been identified in
immune cells, among them the mechanosensitive calcium (II)-ion
(Ca2+)-permeable channels Piezo1 (Hamza et al., 2021; Solis et al.,
2019; Atcha et al., 2021; Baratchi et al., 2020) and transient receptor
potential vanilloid-type 4 (TRPV4) [(Michalick and Kuebler, 2020)]
as well as the transcriptional co-activator YAP (Meng et al., 2020;
Meli et al., 2020).

Piezo1 controlled Ca2+-influx upon mechanical stimulation
plays a crucial role in the regulation of Ca2+-dependent signaling
pathways in immune cells, modulating effector functions (Du et al.,
2023). E.g., Piezo1-dependent Ca2+-influx mediated the shear-stress
induced activation of human monocytes, leading to enhanced
monocyte adhesion, phagocytosis and pro-inflammatory behavior
(Baratchi et al., 2020), as well as activation and cytokine expression
of primary human T-cells (Hope et al., 2022). Moreover, Piezo1 has
been identified as mechanosensor of substrate stiffness in bone
marrow-derived macrophages as Atcha et al. observed higher
Piezo1 expression and Ca2+-activity of macrophages on stiffer
PAA hydrogels (280 kPa) compared to soft ones (1 kPa)
associated with increased NOS2 gene expression and regulated
via the cytoskeleton (Atcha et al., 2021). However, evidence
suggests that Piezo1 may also contribute to anti-inflammatory
effects as murine macrophages demonstrated reduced pro-
inflammatory gene expression, M2 polarization and TGF-ß1-
secretion, stimulation MSC osteogenesis (Hamza et al., 2021).

Moreover, Yin et al. demonstrated that TRPV4 is a major
regulator of neutrophil function as its deficiency impaired the
production of reactive oxygen species, adhesion, and
transmigration of murine neutrophils in response to pro-
inflammatory stimuli (Yin et al., 2016). Dutta et al. demonstrated
the crucial role of TRPV4 in mediating substrate stiffness-induced
M1macrophage polarization, as TRPV4 ablation in vivo and in vitro
lead to reduced upregulation of M1markers in response to increased
substrate stiffness compared to wild-type (Dutta et al., 2020).

Mechanosensing of substrate stiffness by immune cells is also
conveyed through transcriptional co-activator YAP and has been
shown to modulate T-cell- and macrophage activity (Meng et al.,
2020; Meli et al., 2020). Meng et al. demonstrated that YAPmediates
the nuclear localization of the transcription factor nuclear factor of
activated T-cells 1 (NFAT1) on stiff substrates and inhibits
translocation on compliant substrates, thereby controlling T-cell
proliferation and metabolic activity (Meng et al., 2020). Moreover,
Meli et al. observed a stiffness-dependent increase in the pro-
inflammatory response of human monocyte-derived macrophages
in response to nuclear translocation of YAP (Meli et al., 2020).

Mechanosensation of immune cells is also conveyed via
integrins and the cytoskeleton (Du et al., 2023; Ross et al., 2013).
Stiffness-dependent effects on neutrophil-, and macrophage pro-
inflammatory behavior and T-cell function have been shown to be
mediated by integrin/focal adhesion kinase (FAK) signaling
(Abaricia et al., 2021; Majedi et al., 2020; Hsieh et al., 2019) and
actomyosin contractility (Escolano et al., 2021).

In summary, clear evidence identifies the role of
mechanosensation by immune cells in modulating inflammatory
responses, however, up to date, the precise molecular mechanisms
on how mechanotransduction modulates cellular responses remains
unclear. This is mainly due to the fact that current in vitro and in
vivo studies solely focus on target approaches, e.g., knockout studies
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to inhibit or lose mechanosensory activity. Untargeted ‘global’
approaches including novel omics technologies such as
proteomics or transcriptomics would help to gain a better
understanding of downstream effects by e.g., identifying the
modulators and interaction partners of mechanosensors. A great
example of a novel technique which could be used is the
combination of finite element modeling, in vivo µCT imaging
and spatial transcriptomics, as recently introduced by Mathavan
et al. (Mathavan et al., 2025). A summary of mechanically induced
pathways in immune cells, which might be relevant during fracture
healing, is depicted in Figure 1.

5 Clinical perspective

While the bulk of evidence for mechanical modulation of
fracture healing originates from preclinical models, emerging
translational and clinical data provide encouraging support for
these concepts in humans. A completed multi-center
observational study of distal femur fractures treated with far-
cortical locking screws demonstrated the feasibility and safety of
inducing controlled axial micro-motion via reduced implant

stiffness to actively promote symmetric callus formation (Braun
et al., 2021). Moreover, a randomized clinical investigation
involving 80 tibial fracture patients stabilized with external
fixators and subjected to daily interfragmentary
micromovement (1 mm at 0.5 Hz for 20 min) showed a
statistically significantly faster attainment of healing, defined
by bending stiffness, compared to patients in the non-
stimulated control group (23 weeks vs. 29 weeks on average)
(LE, 2022). Additionally, narrative reviews highlight clinical
interventions such as axial micromovement protocols,
electromagnetic stimulation, and low-intensity pulsed
ultrasound, that have demonstrated up to 20%–30%
reductions in healing time in human patients when properly
applied (Ganse, 2024). While these findings are promising, the
limited number of trials and variability in methodologies
underscore the need for more rigorous, phase-specific clinical
studies. Future trials should aim to establish optimal loading
parameters, timing, and safety profiles to translate
mechanobiological insights into reliable therapeutic
strategies. Also, so far the clinical trials do not really take the
concept of mechano-immunomics into concept which should be
considered in the future.

FIGURE 1
Interaction of mechanotransduction and immune response. Schematic representation of key mechanosensors and downstream pathways through
which immune cells respond to mechanical stimuli such as shear stress. Mechanical inputs are sensed by Piezo-1 and TRPV4 ion channels, leading to Ca
(Hellwinkel et al., 2020)+ influx and activation of transcriptional regulators such as YAP/TAZ and NFAT1. Integrins further mediate mechanotransduction
via FAK signaling and actomyosin contractility. These pathways converge to regulate immune cell behavior, including pro- or anti-inflammatory
responses, cytokine expression, reactive oxygen species (ROS) production, macrophage polarization (M1/M2), T-cell proliferation, and neutrophil
adhesion and transmigration.
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6 Conclusion

Decades of basic, translational and clinical research has
investigated the influence of mechanics on the repair and
remodeling phase of fracture healing. The basic tissue
differentiation hypothesis of how mechanical cues shape the
fracture callus development was already postulated by Pauwels in
1960. Since then, this hypothesis was further refined and developed
based on more sophisticated approaches of combining in silico
modeling and in vivo data. Clinical fracture fixation devices have
been and are still being developed based on these data to allow
successful bone regeneration. However, although we know a lot
about the general influence of mechanics on the fracture healing
process, still 5%–10% of all fracture patients suffer from delayed
healing or non-union formation. Part of these numbers will be based
on insufficient biology, but the other part might also be attributed to
an incomplete understanding of the mechanobiology of fracture
healing. It is also well established that the early inflammatory phase
of fracture healing might be decisive for the later regeneration
process by inducing angiogenesis, stem cell invasion and cartilage
and bone tissue formation. And while traditionally, biomechanical
orchestration and inflammation were viewed as distinct phenomena,
recent research has illuminated the intricate relationship between
mechanics and inflammation in the mechanobiology of fracture
healing. In this review, we identified the following key features of

how mechanics influences inflammation during fracture
healing (Figure 2).

• Fixation stiffness alters local strains, thereby influencing T cell
migration towards the fracture hematoma and guides early
gene expression of ECM modulating genes

• The mechanical environment in the early fracture hematoma
might influence platelet adhesion and activation; neutrophil
adhesion, transmigration, chemotaxis, and inflammatory
phenotype; recruitment of monocytes; differentiation and
polarization of macrophages; and T-cell migration,
proliferation and activity.

• External biomechanical stimulation is able to induce changes
in immune cell numbers during the early healing stages.

• Known mechanotransduction pathways in immune cells are
Piezo channels, TRPV4 as well as the transcriptional co-
activator YAP

This leads us to the direction that a more sophisticated approach
with a guided “mechano-immuno-therapy” might help to ensure
proper fracture healing in patients. This means that when designing
fracture fixation implants, not only “conventional” biomechanical
considerations regarding callus tissue differentiation should be taken
into account, but also information about how mechanics influence
inflammation and even the inflammatory status of the patient. For

FIGURE 2
Influence of mechanical cues on the inflammatory phase of fracture healing. Mechanical cues like fixation stiffness and extend of loading, the
hematoma mechanics and biomechanical stimulation might influence inflammatory cells like neutrophils, monocytes, macrophages and T-cells as well
as platelets. Changes in the phenotype and behavior of these cell types in turn will influence the hematoma environment and the regenerative potential of
stem cells, thereby shaping later healing stages (Baht et al., 2018; Woloszyk et al., 2022; Oshinowo et al., 2023; Nesbitt et al., 2009; Kulkarni et al.,
2000; Shi et al., 2016; Mor et al., 2022; Qiu et al., 2014; Oakes et al., 2009; Jannat et al., 2010; Abaricia et al., 2021; Ar et al., 2007; Blomgran et al., 2016;
Bergmann et al., 2006; Krieger et al., 2016; Schlundt et al., 2018; Raggatt et al., 2014; Fahy et al., 2019; Yang et al., 2000; Guihard et al., 2012; Lu et al., 2017;
McWhorter et al., 2015; Escolano et al., 2021; Blakney et al., 2012; Ni et al., 2023; Sridharan et al., 2019; Scheraga et al., 2016; Patel et al., 2012; Chen
et al., 2020; Okamoto et al., 2018; Majedi et al., 2020).
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this approach, one would need to determine the optimal mechanical
environment to guide inflammation towards regeneration (a topic
which is clearly under-investigated so far) and taking into
consideration the knowledge we have about mechanobiology in
later healing stages. As mechanical requirements might change
during the fracture healing process, this also showcases the need
for adjustable implants dependent on the stage of fracture healing.
From a clinical perspective, in conclusion our findings underscore
that implant design should not only focus on ensuring mechanical
stability for callus formation, but also on modulating the
inflammatory response during the early healing phase. For
example, fixation stiffness directly influences immune cell
recruitment and cytokine expression within the fracture
hematoma, thereby shaping the transition from inflammation to
repair. Excessive instability has been associated with prolonged
inflammation and impaired angiogenesis, while an overly rigid
construct may suppress beneficial mechanosensitive immune
responses. This knowledge points toward the development of
adaptive fixation systems such as dynamically adjustable plates,
external fixators, or splints that can provide stage-specific
mechanical environments: initially promoting a balanced
inflammatory response, and later enhancing callus maturation. In
this way, implant concepts that integrate the concept of “mechano-
immuno-therapy” could open new avenues for improving clinical
outcomes, particularly in patients at risk for delayed healing or the
development of non-unions. However, it is also important to
acknowledge that while mechanical modulation strategies hold
promise, potential risks must also be considered. Excessive
loading during the early inflammatory phase can prolong
inflammation, impair vascularization, and delay the transition
into the reparative stage, ultimately predisposing to delayed
union or non-union. Similarly, fixation constructs that are too
flexible may generate persistent micromotion, sustaining high
levels of pro-inflammatory cytokines and disrupting hematoma
remodeling. On the other hand, overly rigid fixation may
suppress beneficial mechanosensitive immune responses and limit
callus formation. These findings emphasize the need for a careful,
phase-specific balance: early controlled mechanical stimulation
appears advantageous, but both under- and over-stimulation can
be detrimental. For clinical translation, as mentioned above,
adjustable fixation systems and tailored loading protocols should
therefore be developed with safeguards to avoid adverse outcomes,
ensuring that the therapeutic benefit outweighs the potential harm.

Barriers to investigate the mentioned areas in more detail are
clearly that highly interdisciplinary teams are needed for that kind of
research, involving cell biologists, immunologists, clinicians,
engineers and bioinformaticians. Another barrier which lies in
the nature of highly interdisciplinary teams is, that a common
language needs to be found for all these disciplines. Also, there
are technological barriers, e.g., the lack of adequate in vitro and in
silicomodels to study mechano-immunomics and the complexity of
existing in vivomodels. Novel techniques like high-resolution spatial
transcriptomics might be utilized to overcome methodological
issues. Furthermore, another barrier for translation might be
species differences, which are also clearly under-investigated in

that area. To overcome these barriers would be needed to get
further mechanistic insight into the field of mechano-
immunomics during fracture healing.
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