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Pluripotency, once considered an exclusive attribute of early embryonic cells, is
increasingly recognized in certain adult tissue-derived stem cell populations,
challenging traditional developmental paradigms. Recent findings highlight
mitochondria as key regulators of cellular identity, integrating metabolic
status, redox signaling, and epigenetic cues to influence stemness and
differentiation. This review synthesizes current knowledge on mitochondrial
features (from morphology, dynamics, to bioenergetics and correlation to
cellular epigenetic status) in pluripotent stem cells (ESCs and iPSCs) as well as
in multipotent adult tissue stem cells (ASC) emphasizing transitions between
glycolytic and oxidative metabolism during reprogramming and lineage
specification. Particular attention is given to existing evidence on adult
pluripotent-like stem cells, including VSELs, MAPCs, MUSE cells, MIAMI, and
DFATs, which remain incompletely characterized but demonstrate promising
regenerative capacities. While direct data on mitochondrial behavior in these cells
are sparse, parallels with multipotent adult stem cells as well as with ESC and
IPSCs suggest a model wherein stress-induced bioenergetic shifts, ROS signaling,
and mitochondrial remodeling act as modulators of latent pluripotency.
Understanding these mechanisms could offer insights on adult pluripotent
stem cell role in orchestrating regeneration during major trauma or
environmental stress as well as on their distinctive responsiveness compared
to ASC. Such an approach could inform future strategies in regenerative
medicine, offering novel insights into how adult cells might resume
developmental plasticity through mitochondrial balance, intercellular transfer
and networking.

KEYWORDS

adult pluripotent stem cells, embryonic stem cells, induced pluripotent stem cells,
mitochondria, adult tissue stem cells

Introduction

Recent advances in biology have significantly reshaped our understanding of how
cellular phenotypes are established, maintained, and transitioned. Contrary to earlier beliefs
that cell identity is fixed, it is now evident that cells can alter their fate in response not only to
developmental cues but also to metabolic fluctuations and environmental stressors
encountered throughout post-developmental life (Sultan Sonia, 2017). Pluripotency
exemplifies remarkable cellular plasticity, which is no longer presumed to be strictly
associated with its developmental stages. Cellular pluripotency is defined by the unique
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capacity of a single cell type to differentiate into derivatives of all
three embryonic germ layers (Yilmaz and Benvenisty, 2019).

Pluripotent stem cells (PSCs) can be derived from the embryo’s
inner cell mass or reprogrammed in vitro and maintained in culture
while preserving both their pluripotency and self-renewal capacity
(Morgani et al,, 2017). The establishment of embryonic stem cell
(ESC) lines from mouse embryos (Evans and Kaufman, 1981) and
the later development of induced pluripotent stem cells (iPSCs)
represent landmark breakthroughs, recognized with Nobel Prizes in
2007 and 2012, respectively (Takahashi and Yamanaka, 2006;
Thomson et al., 1998). The derivation of human equivalents of
these cell types (Takahashi et al., 2007; Minger, 2013) marked a
pivotal moment for both basic cell biology and the development of
novel therapeutic strategies.

Engineered pluripotent cells have shown significant potential for
cell-based therapies (Zahumenska et al., 2020), modeling human
development and diseases, and creating in vitro personalized models
for drug testing (Young et al., 2013). The existence of naturally
occurring adult pluripotent stem cells has attracted considerable
interest and controversy. While these cells are a compelling subject
for basic, translational, and clinical research, their true pluripotency,
reliable isolation, and therapeutic potential remain open questions
(De Los Angeles et al, 2015). Understanding the mechanisms
behind adult pluripotency and how cellular identity is maintained
or changes after organismal maturation remains a debated issue in
developmental biology, with significant implications for drug
discovery and regenerative medicine.

To characterize bona fide pluripotent cells, four complementary
perspectives have been proposed (Yilmaz and Benvenisty, 2019).
The developmental perspective defines pluripotency based on cells
arising naturally during embryogenesis, particularly within the inner
cell mass of the pre-implantation blastocyst (naive pluripotency)
and the post-implantation
(Weinberger et al., 2016).

Cells are considered pluripotent if they exhibit both in vitro and in

epiblast (primed pluripotency)

vivo differentiation potential into the three germ layers. The
transcriptomic  perspective focuses on gene expression and
epigenetic profiles that typify the pluripotent state (Weinberger
et al, 2016). A third, the
demonstrated that the introduction of a specific set of
transcription factors (OCT4, SOX2, KLF4, and ¢-MYC) can revert
differentiated somatic cells to a pluripotent state (Takahashi and
Yamanaka, 2006; Takahashi et al., 2007). The fourth approach

involves genome-wide functional screens to identify essential genes

reprogramming  perspective,

that are critical for maintaining pluripotency across species. These
essential gene networks may serve as both diagnostic markers and
experimental platforms to explore the regulatory machinery that
sustains pluripotency (Yilmaz and Benvenisty, 2019).

In parallel with investigations into the genetic and epigenetic
hallmarks of pluripotency, emerging evidence highlights the critical
role of cellular energetics in supporting—and potentially
inducing—the pluripotent state. The energy metabolism of
eukaryotic cells is tightly linked to mitochondrial function.
Mitochondrial morphology and dynamics, particularly during
reprogramming, are now recognized as pivotal elements in
determining cell fate. In PSCs, mitochondria are not merely
powerhouses; they actively contribute to the maintenance of

stemness, modulate differentiation pathways, and orchestrate
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metabolic rewiring. These features position mitochondrial
dynamics as both a potential biomarker of pluripotency and a
promising target for interventions aimed at reprogramming or
regenerating tissues (Folmes et al., 2016).

This review begins by outlining the unique mitochondrial
features of pluripotent cells, discussing specific characteristics of
adult tissue-derived stem cells, and then delving into recent findings
regarding energy metabolism in proposed adult pluripotent stem
cells. We will further examine strategies aimed at modulating cell
fate through metabolic intervention, highlighting the intersection

between bioenergetics and cellular identity.

The role of mitochondria in cell
functioning-beyond the cellular
powerhouse-

Mitochondria’s role extends beyond the classically described role of
powerhouses of cells involved in generating energy from available
nutrients. Aside from energy, mitochondria generate essential
metabolic precursors required for the synthesis of lipids-fatty acids
(FA), cholesterol, but also amino acids, glucose, heme, and nucleotides.
Additionally, mitochondria produce metabolic by-products such as
reactive oxygen species (ROS) and ammonia, which have both complex
roles as secondary messengers and in the production of amino acids and
respectively.  Mitochondria ~ employ
mechanisms to eliminate or repurpose other waste products (such

nucleotides, specialized
as ethanol, glutamate, glutamine, and proline) (Spinelli and Haigis,
2018). Their role in orchestrating cellular adaptation to various external
and internal stressors (nutrient scarcity, DNA damage, oxidative and
endoplasmic reticulum (ER) stress) is closely related to cell fate from
maintaining a functional cell status quo to contributing to cellular major
shifts such as division, ageing and apoptosis, mitochondrial networks
act as rapidly transitioning and dynamic modulators. In a systemic
understanding, supra and intercellular mitochondrial networks could
be involved in orchestrating local and/or systemic stress and adaptive
responses at the cellular as well as at the organism and societal levels
(Brand et al.,, 2013; Picard and Sandi, 2021).

Much of the understanding of the mitochondrial role in the
pluripotent cellular state is derived from work dedicated to improving
or/and streamlining nuclear reprogramming. It has become evident
that the genetic and epigenetic alterations that allow an adult cell to
revert to pluripotency are parallel by profound changes in
mitochondrial number, morphology, and function to respond to
sudden energy and metabolic increase. The transition of
mitochondria during acquired pluripotency involves a complex
interplay of metabolic, structural, and regulatory changes that are
critical for obtaining and maintaining stem cell states as well as
facilitating further differentiation processes. It is beyond the scope
of this review to introduce these changes in detail; however, a brief

overview will be presented for enhancing understanding.

The metabolic shift: ?lycolysis replaces
oxidative phosphorylation (OXPHOS)

IPSCs share metabolic similarities with ESCs and other rapidly
proliferating cells, particularly in their reliance on glycolysis as the
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primary energy source, even under oxygen-rich conditions. This
metabolic preference, known as the “Warburg effect,” supports rapid
cell proliferation while limiting mitochondrial oxidative
metabolism, thereby reducing oxidative stress (Prieto et al,
2020).
structural remodeling drive a metabolic shift towards oxidative
phosphorylation (OXPHOS).

Hypoxia-Inducible Factors (HIFs): HIF-1la stabilizes at low
oxygen, further

mitochondrial

Upon differentiation, mitochondrial maturation and

promoting  glycolysis  and
thus

Conversely, exposure to oxygen-rich environments degrades

suppressing
respiration, maintaining  pluripotency.
HIFs, reversing OXPHOS activation. IPSCs typically maintain
their pluripotency and self-renewal abilities under hypoxic
conditions (Hung et al, 2016), while high oxygen levels can
trigger differentiation, reduce pluripotency, and even direct
differentiation towards specific lineages (Hakim et al, 2014).
Oxygen concentration and oxygen exposure have therefore been
presented as master regulators of pluripotency, influencing fate,
differentiation, as well as IPSC reprogramming efficiency (Nit
et al., 2021).

Particularities in mitochondrial structure and dynamics in
pluripotency and differentiation Pluripotent stem cells (PSCs)
exhibit fragmented, perinuclear mitochondria with immature
cristae, reflecting their limited contribution to cellular energy
Upon
cristae

production. differentiation, mitochondria  undergo

elongation, maturation, and form interconnected
networks, which enhance oxidative phosphorylation (OXPHOS)
efficiency in parallel with lineage commitment.

Mitochondrial dynamics are governed by two opposing
processes: fission—the division of mitochondria into smaller
organelles, mediated mainly by dynamin-related protein 1
(DRP1) and its which facilitates

redistribution, control, and

adaptors, mitochondrial

quality removal of damaged
mitochondria. Fusion, -the merging of mitochondrial membranes
to form elongated, interconnected networks-is driven by mitofusins
(MFN1 and MFN2) on the outer membrane and optic atrophy
protein 1 (OPA1) on the inner membrane (Zhong et al., 2019; Xu
et al,, 2013). These processes are tightly coordinated to maintain
mitochondrial function, adapt to metabolic demands, and
influence cell fate.

The balance between mitochondrial fission and fusion is critical
for embryonic development, induced pluripotent stem cell (iPSC)
reprogramming, and maintenance of the pluripotent phenotype.
Excessive mitochondrial fusion increases cytosolic Ca** influx and
activates calmodulin-dependent protein kinase II (CaMKII), leading
to B-catenin degradation and impaired embryonic development, as
demonstrated by tetraploid complementation assays (Zhong et al.,
2019). In the early stages of reprogramming, activation of dynamin-
related protein 1 (Drpl)—a key mediator of mitochondrial
fission—facilitates efficient iPSC generation (Xu et al., 2013).
Conversely, Drpl inhibition disrupts cell cycle progression and
induces G2/M phase arrest, impairing reprogramming efficiency
(Prieto et al., 2016).

Mitofusin 2 (MFN2), a dynamin-like GTPase, and optic atrophy
1 (OPA1) regulate mitochondrial fusion and cristae structure.
MEFN2 downregulation or silencing has been reported to facilitate
PSC differentiation into mesenchymal or neural lineages (Deng
et al,, 2022; Yi et al,, 2020). OPAL, on the other hand, plays a
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role in maintaining the quiescence and activation potential of adult
muscle stem cells (Baker et al., 2022). Taken together, pluripotency is
characterized by a dominance of mitochondrial fission, whereas
number, and intracellular

increased fusion, mitochondrial

networking typically parallel differentiation processes.

Reactive oxygen species (ROS)

PSCs maintain low ROS levels due to their reliance on glycolytic
metabolism. This low oxidative state is further supported by robust
antioxidant defenses and efficient DNA repair mechanisms in both
embryonic stem cells (ESCs) and iPSCs. Nonetheless, ROS
generation is essential for somatic cell reprogramming, with both
insufficient and excessive ROS impairing reprogramming efficiency
(Zhou et al., 2016).

In human iPSCs, ROS levels fluctuate throughout the cell
cycle, peaking during the S-to-G2/M transition. Exposure to
antioxidants or reduced ROS levels in human ESCs and their
differentiated fibroblast derivatives leads to decreased CYCLIN A
expression, impaired S phase entry, accumulation of DNA
damage, and activation of apoptotic pathways (Ivanova et al.,
2021). overload-induced ROS
significantly hampers proliferation in human ESCs and iPSCs

Similarly, iron elevation
via DNA damage, without affecting pluripotency (Ivanova

et al., 2021).

Mitochondria-mediated redox and
epigenetic regulation in stem cell fate

Differentiation is often linked to elevated levels of reactive
(ROS)
phosphorylation (OXPHOS) activity. ROS serve as signaling

oxygen  species because of increased oxidative

molecules that promote lineage specification (Han et al., 2020).
appears to be
outcomes;  for

Their role context-dependent,

ROS
mesodermal differentiation of human embryonic stem cells
(ESCs) via activation of p38 MAPK and AKT pathways (Ji et al.,

2010), while elevated ROS levels impair endodermal differentiation

modulating

differentiation example, facilitates

of human induced pluripotent stem cells (iPSCs) by activating the
tumor-associated transcription factor FOXCI. This impairment can
be partially rescued by antioxidant treatment with N-acetylcysteine
(NAC) (Oka et al., 2022).

Intrinsic variations in mitochondrial ROS (mitoROS) levels can
influence nuclear redox balance and epigenetic regulation, such as
histone H3 lysine 4 trimethylation (H3K4me3), thereby guiding cell
fate during embryogenesis. Mouse ESCs with elevated mitoROS
preferentially differentiate into mesoderm through primitive streak
formation during gastrulation, whereas cells with low mitoROS
favor neuroectodermal differentiation. This switch is regulated by
the redox-sensitive transcription factor Nrf2 and is associated with
the activation of the Wnt pathway. This switch is regulated by the
redox-sensitive transcription factor Nrf2 and is linked to the
activation of the Wnt pathway. Mitochondrial variability—both
in number and in function-has been proposed to introduce
other
cycling),

“noise” that can override sources of

(e.g.

extracellular

heterogeneity asynchronous  cell thereby
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influencing gene expression levels and potentially altering stem cell
fate (Jhonston et al., 2025).

Mitochondria in the epigenetic
regulation of pluripotency and
differentiation

Mitochondria are now recognized as key modulators of the
epigenetic landscape, primarily through their roles in metabolite
production, redox signaling, and organelle dynamics. These

mitochondrial ~ functions influence  histone and DNA
modifications, transcription factor activity, and chromatin
remodeling.

Some mitochondrial metabolites act as essential cofactors or
substrates for epigenetic enzymes. Notably, a-ketoglutarate (a-KG)
supports the activity of DNA and histone demethylases, including
ten-eleven translocation (TET) enzymes, DNA methyltransferases
(DNMTs), and Jumonji-domain histone demethylases (JHDMs).
Naive mouse ESCs exhibit a high a-KG/succinate ratio, which
maintains a demethylated chromatin state and supports
pluripotency (Carey et al, 2015). Upon induction toward the
trophoblast lineage, human ESCs undergo a metabolic shift that
elevates a-KG levels, thereby promoting lineage conversion. This a-
KG-driven metabolic reprogramming appears to function as a
positive feedback loop by enhancing trophoblast specification and
maturation (Van Nerum et al., 2025).

Sirtuins, a family of NAD*-dependent histone deacetylases, play
a central role in linking cellular metabolism to epigenetic control of
stemness and differentiation. Various isoforms with different
subcellular localizations regulate the balance between maintaining
pluripotency and committing to lineages.

SIRT1, a nuclear protein, modulates chromatin structure and
transcription factor activity. It regulates the p53-mediated
repression of the pluripotency gene NANOG. Conversely,
SIRT1 downregulation activates developmental genes such as
DLL4 (Delta-like ligand 4), TBX3 (T-box transcription factor 3),
and PAX6 (paired box protein 6) (Calvanese et al, 2010).
SIRT1

differentiation in mESCs, underscoring its role in lineage

deficiency results in abnormal neural and glial
specification (Mormone et al., 2023).

SIRT3 is located in the mitochondria and plays a role in
mitochondrial stress responses and protecting cells from aging. It
is essential for oocyte survival and quality, with SIRT3 deficiency
leading to reduced blastocyst formation and increased oxidative
stress. Enhancing SIRT3 expression may prevent age-related oocyte

decline (Kordowitzki, 2024).

Signalling pathways linking
mitochondrial metabolism,
maintenance, and pluripotency and
differentiation

Multiple signaling pathways integrate mitochondrial function
with pluripotency and stem cell differentiation, coordinating
metabolic state, redox balance, and transcriptional networks.
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AMP-activated protein kinase (AMPK), a sensor of cellular
energy status activated under conditions of low ATP/high AMP,
supports pluripotent stem cell (PSC) self-renewal by favoring
glycolytic metabolism and suppressing OXPHOS. AMPK inhibits
the mechanistic target of rapamycin (mTOR), which promotes
anabolic processes and cell growth necessary for differentiation.
Selective inhibition of mTORCI has been demonstrated to enhance
the self-renewal of hESCs and promote the development of the inner
cell mass (Kim et al., 2024)

A functional axis linking SIRT1 and peroxisome proliferator-
activated receptor alpha (PPAR-a/NR1C1), via PGC-1a, regulates
mitochondrial biogenesis and methionine metabolism. Methionine
depletion alters stemness in both normal and cancer stem cells,
suggesting that targeting methionine metabolism may offer
therapeutic strategies for regenerative medicine and cancer
relapse (Siblini et al., 2022).

The Wnt/f-Catenin signaling pathway is crucial for maintaining
pluripotency in both murine (mESCs) and human embryonic stem
cells (hESCs), as well as in induced pluripotent stem cells (iPSCs).
This pathway significantly enhances reprogramming efficiency
(Marson et al., 2008). Activation of Wnt/B-Catenin promotes the
self-renewal of pluripotent stem cells (Lee et al., 2025; Maurice and
Angers, 2025) enabling them to continue dividing while remaining
in an undifferentiated state. Wnt/p-catenin signaling is essential not
only for pluripotency but also for stimulating differentiation,
depending on the context and timing of activation. Transient
Whnt activation can induce mesodermal differentiation in ESCs
(Kreuser et al., 2020) and increase mesodermal commitment and
cartilage tissue yield in human foreskin fibroblast-derived iPSCs
(Davidson et al., 2012). In the hESC pathway, activation mediates
neural crest formation (Leung et al., 2016). Timing and activation
modes are, however, lineage specific. Constitutional Wnt pathway
activation was found to block the multilineage differentiation
potential in hematopoietic stem cells (HSC) (Kirstetter et al.,
2006). Species (human versus mice) heterogeneity regarding Wnt
pathway sensibility among ESC populations, as well as timing and
duration of exposure, are all intricate factors demonstrating Wnt/p-
Catenin involvement in cell fate decisions is not linear (Lien and
Fuchs, 2014). Added to the complexity, the Wnt role in
mitochondrial biogenesis and function could act as another
pluripotency supports  that
mitochondrial retrograde signaling influences the Wnt pathway

tuning mechanism. Evidence

with effects on cell fate conversion. Mitochondria can regulate
Whnt activation and (-catenin nuclear translocation, and the cell
cycle activation mechanism is widely studied and targeted for its
tumorigenesis implications (Delgado-Deida et al., 2020) that could
influence pluripotency in cell fate decisions.

Notch signaling also modulates reprogramming efficiency,
maintenance of stemness, and lineage differentiation in iPSCs
(Osanathon and Egusa, 2022). Proteomic analyses show that
Notch activation affects mitochondrial proteins involved in
OXPHOS, the Krebs cycle, and fatty acid metabolism (Basak et al.,
2014), pointing to a possible mechanistic link between Notch
signaling and mitochondrial function. Moreover, coordinated
mitochondrial dynamics during PSC differentiation appear to be
governed through interactions among Notch, Wnt, and
downstream YAP/TAZ signaling pathways (Lisowski et al., 2018).
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Pluripotency, mitophagy, and
biogenesis

Mitochondrial biogenesis and autophagy coordination are
critical for PSC functions. Mitochondrial biogenesis ensures an
adequate supply of functional mitochondria to meet energy
demands during differentiation and lineage commitment.
Autophagy eliminates defective mitochondria, preventing the
accumulation of reactive oxygen species (ROS) and maintaining
cellular health. Even though in glycolytic predominant PSC, this
process can have a lower impact, PSCs selectively degrade
mitochondria via pathways like Parkin/PINK1 to maintain a
glycolytic state. Differentiation, in turn, reduces mitophagy,
allowing mitochondrial accumulation. Defective mitophagy
results in the accumulation of depolarized mitochondria and
compromises ESC self-renewal in hESCs in a PARKI/optineurin
(OPTN) mediated mechanism (Wang et al, 2021). Mitophagy
appears as an essential method of mitochondrial “quality control”
during quiescence and pluripotency maintenance (Cairns et al.,
2020). Mitophagy can also leverage mitochondrial biogenesis and
increase OXPHOS during IPSC differentiation into endothelial
lineages via mitochondrial phosphatase PGAMS5 cleavage and
consecutive PGC-1la-mediated transcriptional activation (Krantz
et al., 2021).

Pharmacological blocking of mitochondrial fission and
mIPSC

efficiency, pointing towards an important role in conversion to

mitophagy  dramatically —impacts reprogramming
pluripotency as well as in the maintenance of pluripotent status
(Vazquez-Martin et al., 2012).

mtDNA copy numbers are notoriously low in PSCs, reflecting a
predominant glycolytic metabolism, increasing with differentiation,
supporting  OXPHOS. shows that the

mitochondrial genome plays a broader role extending beyond

Recent evidence
ATP production. Variation in mtDNA, including haplotypes and
copy number, can impact in vitro fertilization outcomes, embryo
development, and tumorigenesis, respectively. These mtDNA
features may also reflect an evolutionary adaptation. Crosstalk
between the mitochondrial and nuclear genomes, including
mtDNA’s influence on nuclear DNA methylation and gene
expression during development, is increasingly recognized (St,
2016). Their perturbations during somatic cell reprogramming
can not only impede process efficiency but also impact the
stability of the resulting lineages (Haridhasapavalan et al., 2020).

Adult stem cells and mitochondria

Unlikely, the PSCs that during
developmental stages or artificially “arrested” (ESCs) or
engineered (IPSCs). Adult tissue stem cells (ASCs) are self-
renewing clonogenic, multipotent elements located within specific

occur are transient

tissues and organs throughout the body, residing in specialized
microenvironments known as “niches.” ASCs are maintained in a
quiescent state until they are activated by physiological needs, such
as tissue turnover or repair after trauma or disease. ASCs are
typically multipotent, meaning they can differentiate into a
limited range of cell types pertinent to their tissue of origin. For
example, hematopoietic stem cells (HSCs) can give rise to various
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blood lineages, mesenchymal stem cells (MSCs), to connective
tissues (bone, cartilage, and adipose tissue), but typically not to
cells from unrelated tissues. ASCs’ differentiation potential is
generally restricted to the cell lineages of their specific embryonic
layer/tissue of origin, even though exceptions might exist (Gonzalez
and Bernad, 2012).

ASC  mitochondrial
mitophagy processes maintain similar stemness characteristics to

metabolic features, dynamics, and
PSC, displaying several particularities generated by their distinct
phenotype shifts from dormancy to activation. ASC senses
environmental changes that require exiting from quiescence and
ASC

mitochondria are kept in a relatively immature and low-activity

engaging in proliferative and differentiation stages.
state during quiescence to minimize ROS production, thus
maintaining long-term stemness. As a general trait, low
mTORCI signaling in ASC minimizes mitochondrial ROS
production to preserve quiescence (Mohammad et al, 2019). In
several ASC types, discrete ROS fluctuation marks the exit from
quiescence, a double-edged sword that exposes them to irreversible
damage produced by high ROS levels generated by ageing,
inflammation, or environmental toxicity.

HSC:s in their hypoxic niche maintain low energy levels, relying
mostly on glycolytic metabolism. Mitochondrial ROS production
served as a subtle sensor in determining HSC fate. Distinct ROS
elevation induces HSC differentiation and lineage commitment,
reflected in the activation of the mammalian target of rapamycin
(mTOR)-signaling pathway and increased mitochondrial biogenesis
(Filippi and Ghaffari, 2019). Systemic increases in ROS levels during
ageing, inflammation-induced ROS, or irradiation compromise
HSC self-renewal and lineage commitment (Aires et al, 2021;
Zhang et al., 2007) but are partially reversible by antioxidant
administration (Hu et al., 2014).

MSCs were initially characterized retrospectively, based on their
appearance in long-term tissue cultures, which limited precise
definition of their native phenotype and anatomical distribution.
Subsequent marker-based analyses showed that perivascular cells
from diverse fetal and adult tissues share phenotypic and functional
characteristics with bone marrow-derived MSCs, including clonal
expansion and trilineage differentiation into osteogenic,
chondrogenic, and adipogenic lineages—meeting the defining
criteria for MSCs (Battula et al, 2007; Crisan et al., 2008a;
Corselli et al, 2012). Further studies in retinal and brain
pericytes were able to detected mitochondrial fragmentation,
metabolism  under
2011) as well as
bidirectional mitochondrial transfer with endothelial and glial

cells in the neurovascular niche (Velmurugan et al., 2024). In

depolarization, and reduced oxidative

hyperglycemic stress (Trudeau et al,

contrast, no in vivo data are available on mitochondrial
morphology or function in adventitial MSC-like cells, with
existing work focusing primarily on phenotypic identity and
lineage potential.

Adult hippocampal neural stem cells (NSC) activation is also
linked to ROS fluctuations. Increased levels determine the exit from
quiescent status, cellular proliferation, and lineage specification
(Adusumilli et al., 2021). Exposure to heavy environmental
metals such as cadmium, a potential neurotoxin, acts in part by
inducing mitochondrial ROS increase in neural stem cells, activating
oxidative stress and mitochondrial proton leak, compromising ATP
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production as well as NSC proliferative and differentiation ability
(Luo et al.,, 2021).

Mitochondrial ROS is one of the factors that not only induces
but is able to streamline lineage specification in MSCs, fine-tuning
chondrogenic, osteogenic, or adipogenic lineage commitment (Li
etal., 2017). Bone marrow adipose tissue (BMAT) imbalance during
ageing, obesity, or metabolic syndrome and the associated increase
in ROS within the bone marrow niche could be one of the factors
implicated in osteopenia and age-related bone loss by compromising
osteoblastogenesis versus adipose lineage conversion in the bone
marrow MSC niche (Hardouin et al., 2016; Labusca, 2022). BMAT
contains adipocytes with brown-like characteristics, including
mitochondria enriched in uncoupling protein-1 (UCPI). Such
mitochondria are abundant, display dense cristae, and have high
respiratory capacity, enabling the dissipation of the proton gradient
to generate heat rather than ATP through non-shivering
thermogenesis. Similar brown adipocyte progenitors have also
been identified in human skeletal muscle (Crisan et al., 2008b)
suggesting that thermogenically competent adipocytes can arise
from multiple perivascular niches.

Intestinal stem cells (ISC), being one of the most rapidly
proliferative adult stem cell niches, display a high sensitivity to
both external and internal mitochondrial ROS. The mouse (mISC)s
respond to moderate ROS levels by entering the cell cycle,
proliferation, and differentiation by means of P38 activation.
Increased ROS levels generated by impaired mitochondrial
metabolism and electron transport chain (ETC.) dysfunction are
cleared by mitophagy. Mitophagy activity is strongly dependent on
intestinal microbiota and nutrients by means of nucleotide-binding
oligomerization domain-containing protein 2 (NOD2)-dependent
activation of the autophagy-related gene ATGI6L1 and is inhibited
by calorie restriction, activated mTORC (Morris and Jasper, 2021).
ATGI16L1 genetic variants and consecutive mitophagy impairment
are correlated with both Chron disease and several types of colon
neoplastic proliferation centered on ISC anomalous activity
(Cadwell et al., 2008).

Epidermal stem cell (ESC) progeny differentiation does not
ETC. However, it still
mitochondrial dynamics and biogenesis to enter proliferative

require mitochondrial relies on
stages, particularly after skin injury (Baris et al, 2011). Hair
follicle stem cells (HFSC) activation and differentiation involve
mitochondrial shift to aerobic respiration as well as increased
levels of antioxidant mechanisms (such as superoxide dismutase
and SOD2 expression) to maintain ROS balance (Tang et al., 2016).

Mitochondrial dynamics is another mechanism for regulating
quiescence versus proliferation-differentiation. Increased fission and
perinuclear arrangement correlate with the maintenance of stemness
in ASC, while fusion is often associated with entering the cell cycle
and proliferation (Spurlock et al., 2020). Expression of Mfn1, Mfn2,
and OPAL1 is generally involved in mitochondrial fusion; however,
different ASC types may have particular activation mechanisms.
Drpl-dependent mitochondrial fission is required for ASC
2015)
downregulation promotes differentiation (Fu et al., 2019).

asymmetric  division (Katajisto et al, while its

Mitochondrial fission plays a role in satellite cell activation after
muscle injury; meanwhile, excessive Drpl and fission from
mitochondrial 1 (Fisl), resulting in excessive mitochondrial

fission, is activated via two specific ubiquitin ligases: MURF1 and
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atrogin-1. This activates the mitophagy process, resulting in the
elimination of excessively fragmented mitochondria. Drpl loss in
aging can be responsive to age-related muscle atrophy (Hong et al.,
2022). Loss of profusion protein Opal in the Drosophila NSC
induces loss of neural progeny, possibly mediated by the role in
mitochondrial cristae architecture (Dubal et al., 2022), while mutant
Drpl
proliferation in the cerebellum and hippocampal zones
(Wakabayashi et al., 2009; Steib et al, 2014). Conversely,
in Mifnl and Mifn2 that
mitochondrial fragmentation are associated with decreased NSC

and consequent mitochondrial fusion decrease NSC

mutations induce abnormal
proliferation in the hippocampus (Khacho et al., 2016) suggesting
that the impact of proteins involved in mitochondrial fusion and
fission interplay could have different impacts dependent on stem cell
environment (in vitro versus in vivo) (Petrid et al, 2022) or
anatomic location.

Selective degradation of damaged mitochondria via
mitophagy is essential for preserving adult stem cell function,
particularly given the fact that ROS-induced defective organelle
targeting and clearance might be less effective. Increased
mitophagy is largely associated with preserving stemness and
dormancy, while mitochondrial  biogenesis  parallels
proliferation and differentiation. Several mechanisms are
involved in activating stem cell-specific mitophagy. Deletion
of the autophagy gene Atg7 was found to increase mitochondria
and ROS with increased proliferation as well as DNA damage in
HSC, which, however, were proven dysfunctional and unable to
restore hematopoiesis in irradiated mice (Mortensen
et al., 2011).

HSCs were found to display enriched mitophagy-related genes,
including Parkin, PTEN induced kinase (PINK1), optineurin
(OPTN), outer mitochondrial membrane 7 (TOM7),
microtubule-associated protein 1A/1B light chain 3a (AMPLC3a),
and p62/sequestrome-1 (SQSTM1) (Ito et al., 2016). Excessive
mitophagy and decreased mitochondrial biogenesis, however,
prevent entering the differentiation stage in bone marrow MSCs
from patients with the progressive nuclear palsy form of Parkinson’s
disease, pointing towards an association of the disease with impaired
balance of mitophagy/biogenesis (Angelova et al., 2018). In equine
adipose-derived mesenchymal stem cells (ASCs) during the
occurrence of metabolic syndrome, a mitophagy switch results in
decreased chondrogenic potential and maintenance of stemness can
point towards an adaptive mechanism to counteract metabolic ROS
increase and therefore maintain stemness (Marycz et al., 2016).

Abnormal mitophagy induced by exposure to advanced
glycation end products (AGEs) could induce bone marrow
ASC(BMSC) senescence (Guo et al., 2021). Overexpression of
mitochondrial NAD-dependent deacetylase SIRT3 can reduce
AGE influence, decrease BMSC mitophagy and senescence
associated with osteoporosis (Hu and Wang, 2022).

Metabolic reprogramming of quiescent ASC to OXPHOS
metabolism is a well-known mechanism governing activation.
That relies on epigenetic mechanisms. In satellite muscle cells,
activation after intense activity or post-trauma relies on
decreased intracellular NAD + levels and the histone deacetylase
SIRT1,

transcriptional activity (Walzik et al, 2023). In mice’ skeletal

triggering H4K16 acetylation and activation of

muscle satellite cells, genetic ablation of SIRT1 induced elevated
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TABLE 1 Mitochondrial features characteristic of pluripotent stem cells (embryonic stem cells—ESC, induced pluripotent stem cells—IPSc) and adult tissue

stem cells (ASC).

Characteristics Pluripotent stem cells

(ESCs/iPSCs)

Multipotent stem cells (ASCs)

References

Mitochondrial
morphology

Fragmented, perinuclear

Tubular, elongated

Folmes et al. (2016), Xu et al. (2013)

Cristae structure Immature, poorly developed Mature, dense

Brand et al. (2013), Picard and Sandi (2021),
Prieto et al. (2020)

Metabolic profile Glycolytic

Preferred energy pathway | Aerobic glycolysis (Warburg effect)
Dominant fission

Mitochondrial dynamics

ROS levels Low

Glycolytic/Oxidative
Aerobic glycolysis/ OXPHOS
Fission in quiescence, fusion upon activation of

proliferation and differentiation status

Moderate to high, dynamic

Hung et al. (2016), Hakim et al. (2014),
Siblini et al. (2022)

Hakim et al. (2014), Nit et al. (2021), Baker
et al. (2022)

Spinelli and Haigis (2018), Zhong et al.
(2019), Xu et al. (2013)

Zhou et al. (2016), Ivanova et al. (2021)

Mitochondrial biogenesis | Low

Mitophagy activity High (to maintain glycolytic state)

Induced upon activation

Moderate, supports quality control

Ulfig and Jakob (2024), Carey et al. (2015)

Deng et al. (2022), Yi et al. (2020)

mtDNA copy number Low

Higher than PSCs

Hung et al. (2016), Hakim et al. (2014),
Zhong et al. (2019)

Sensitivity to oxidative Low to moderate

stress

High, especially with aging or stress

Xu et al. (2013), Deng et al. (2022)

H4K16 acetylation, resulting in deregulated myogenesis, reduced
myofiber size, and impaired muscle regeneration (Ryall et al., 2015).

A rather low number, as well as mitochondrial connectivity and
biogenesis, reliance on glycolysis are therefore features of
pluripotent phenotypes, while multipotent cells residing in adult
tissues appear to contain mitochondria with transitional features
able to respond to environmental stimuli (Table 1).

Mitochondrial transfer ASC rescuing
and sensor mechanism

Intercellular mitochondrial transfer by means of tunnelling
nanotubes (TNT) or extracellular vesicles has been recently
described as a mode of intercellular communication that impacts
tissue repair and regeneration, homeostasis, as well as tumor
formation, metastasis, and ageing (Li et al., 2021). Mitochondrial
transfer by ASC could be involved not only in cell bioenergetic rescue,
mitochondrial quality control by means of mitophagy, but could also
result from their potential role in sensing environmental stressors and
in assisting tissue repair and regeneration (Rodriguez et al., 2018). In
an in vitro study, human MSCs and skin fibroblasts have been shown
to transfer mitochondria to alveolar epithelial cells with damaged
mitochondria that cannot perform anaerobic respiration (Spees et al.,
2006). In the following years, human bone marrow mesenchymal
stem cells (BMMSCs) and human IPS-derived MSCs were shown to
transfer in vitro mitochondria to cardiomyocytes, bronchial cells,
corneas, as well as neurons damaged by diverse stressors such as
ischemia and reperfusion (Han et al., 2016), oxygen deprivation (Li
etal,, 2014), or tobacco smoke exposure (Babenko et al., 2015). In vitro
findings were confirmed in vivo in mice models of lung injury (Islam
et al., 2012) or asthma (Yao et al., 2018) Fluorescence labeled human
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BMSCs (mito-DsRed) or GFP-labeled IPS derived MSCs respectively
were tracked in vivo using live confocal microscopy and dual photon
microscopy proving that mitochondrial transfer by TNT is involved in
restoring OXPHOS in damaged tissues. MSC mitochondrial transfer
to immune cells (such as macrophages, T-cells, and dendritic cells)
could at least in part be involved in their immunomodulatory effect,
demonstrated both in vitro (Jackson et al., 2016) and in vivo in
rescuing bacterial-induced acute respiratory syndrome in mice
(Koyanagi et al, 2005). We speculate that mitochondria transfer
from immune or differentiated cells to MSCs could serve as a
mechanism for influencing their fate. Bi-directional transfer from
human MSC to renal tubular cells (Plotnikov et al., 2010) as well
as TNT mediated transfer of healthy mitochondria to cells with
blocked mitochondrial import function (Needs et al, 2024)
demonstrate a mechanism of mitochondrial exchange that could
be part of an adaptative mechanism. Even though such reports
currently involve vitro experiments, future research could be
performed to detect the eventual existence of an intercellular
mitochondrial transfer as part of stress response. Mitochondria
transfer from

surrounding cells could possibly determine

phenotype switching and induce cell cycle activation or
differentiation possibly by favoring metabolic transition to
OXPHOS, increasing the mitochondria’s number and ROS, or a
combination of these factors. Mitochondrial trafficking from and
to ASCs might be performed by alternative routes that have already
been described (direct import, TNTs, extracellular vesicles) (Zhang
et al, 2023). To facilitate both supportive and sensing functions,
mitochondrial responses to stress may be triggered not only within
individual cells but also communicated between tissues through the
transfer of mitokines. This has important implications for
maintaining homeostasis, responding to stress, and understanding

processes related to aging and disease (Figure 1).
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Bidirectional mitochondrial transfer between adult pluripotent stem cells (ASC), cells of the immune system (macrophages, dendritic cells),
differentiated cells (represented by fibroblasts and neurons) and apoptotic cells " TNT= tunneling nanotubes: ESV- extracellular vesicles.

TABLE 2 Summary of the currently known characteristics of mitochondrial features in adult pluripotent stem cells.

Mitochondrial morphology

Metabolic signature

Key stressors/
Activators

Evidence for pluripotency

VSELs Very few, spherical, perinuclear Predominantly glycolytic; low Hypoxia, ROS fluctuations; niche | Expression of OCT4, NANOG, SSEA;
mitochondria; sparse ER; morphology transcriptional activity stress; possibly developmental differentiation into all three germ layers
consistent with glycolytic metabolism and origin from epiblast/PGCs in vitro; controversy over isolation
deep quiescence reproducibility

MAPCs Not directly described; functional evidence  Likely glycolytic (cultured in 5% = Hypoxia during culture; growth | Broad in vitro differentiation;
of active mitochondria via mitochondrial 0,); potential for rapid factor exposure (PDGF, EGF) cardiomyocyte rescue via mitochondrial
transfer in rescue assays bioenergetic adaptation transfer in vivo; non-immunogenic

MIAMI Not described; long-term quiescence Cultured in hypoxia; likely Hypoxia; culture conditions Express OCT4, REX1; multipotent and
suggests low mitochondrial activity glycolytic some pluripotent markers; up to 50%

population doubling without senescence

MUSE Not described in detail; plausible stress- Quiescent under baseline; Severe stress (e.g., collagenase Express NANOG, OCT3/4, TRA1-60;
induced mitochondrial reprogramming activated by stress; metabolism incubation), inflammation, ROS, | trilineage differentiation without

not directly studied hypoxia teratoma formation; migratory and
regenerative in vivo

DFATs Not described; dedifferentiation may involve = Gene profile shift from lipid Mechanical/culture stress (ceiling = Transient expression of pluripotency

mitochondrial remodeling

oxidation to glycolysis;
upregulation of proliferation-
related genes

culture); dedifferentiation
process

factors (OCT4, SOX2, c-MYC, NANOG);
trilineage differentiation in vitro; no
teratoma formation

Adult pluripotency -what is known and
what is yet to be discovered-

Naturally occurring adult tissue-derived stem cells with
reported  pluripotent-like  features—including very  small
embryonic-like stem cells (VSELs), multipotent adult progenitor
cells (MAPCs), multilineage differentiating stress-enduring cells

Frontiers in Bioengineering and Biotechnology

(MUSE), marrow-isolated adult multilineage inducible cells
(MIAMI), and dedifferentiated fat cells (DFATs)—remain
incompletely characterized, particularly with regard to their
mitochondrial morphology, metabolic programming, and stress
responsiveness. While these populations differ in origin, isolation
methods, and stability of pluripotent traits, they share the potential
for multilineage differentiation as well as the ability to activate under
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defined stress conditions. Certain of the so far isolated populations
appear to persist in vivo in an ASC-like dormant state, whereas
others may attain a pluripotent phenotype as an artifact of, or in
response to, the isolation procedure itself. A summary of the so far
described characteristics of adult pluripotent cells are listed in
Table 2, To note, direct experimental data on mitochondrial
morphology, bioenergetics, redox balance, and dynamics in adult
pluripotent (-like) populations remain extremely limited. This
scarcity probably reflects multiple factors: such as the rarity of
these cells in native tissues, which constrains yield for functional
assays; the heterogeneity introduced by non-standardized isolation
methods. Finally, technical issues in applying high-resolution
mitochondrial analyses—such as respirometry, single-cell
imaging, or mitoROS quantification—to small, quiescent, and
stress-sensitive populations may also be involved. As a result,
much of our understanding is extrapolated from better-studied
pluripotent and multipotent models, underscoring the need for
systematic mitochondrial profiling in these rare adult-derived cells.

VSELs are a rare population isolated from adult bone marrow,
peripheral blood, and other tissues. They express bona fide
pluripotency markers (Oct4, Nanog, and SSEA), display primitive
cell morphology, and demonstrate the ability to differentiate into
derivatives of all three germ layers (Kucia et al., 2007). Even though a
consistent number of laboratories have successfully isolated VSELs,
others failed to do so, generating a still-existent controversy, much of
which may be derived from applying non-homogeneous methods of
isolation (Ratajczak et al., 2007) or from the scarcity of these cells
within adult tissues, as well as from potentially overlapping
populations differently nominated by groups using various
methods of isolation (Suszynska et al., 2014). Such pluripotent
elements could reside in adult tissues since embryo development,
possibly derived from epiblast-derived stem cells (EPSC) and/or
primordial germ cells (PG). The VSELs have around 2-4 pm
diameter, a large nucleus

with very few and spherical

mitochondria and scattered ER, perhaps witnessing their
glycolytic metabolism as well as low transcriptional activity as
they reside in a highly quiescent state in bone marrow, gonads,
and possibly other tissues (Ratajczak et al., 2019).

A population of multipotent adult bone marrow-derived
progenitor cells (MAPCs), with important proliferation potential
and extensive differentiation capabilities that are non-immunogenic,
can be derived in large numbers with important regenerative
medicine implications (Jacobs et al., 2013). Clinical grade MAPCs
from bone marrow were proven to exert an immunomodulatory
effect by inhibiting the cytotoxic effect of CD8-positive T cells
(Plessers et al., 2016). Isolated mainly from bone marrow stroma,
MAPCs differ from MSCs in terms of size and shape (trigonal and
small cell body peak diameter 16 pm compared to more than 20 pm
in MSCs) as well as characteristic culture conditions (that require
hypoxia (5%02)) alongside exposure to human-platelet-derived
growth factor, PDGF, and human epidermal growth factor, EGF.
(Khan and Newsome, 2019). Due to their hypoxic culture condition,
they probably rely on glycolytic metabolism; however, evidence is
scarce in this respect. Nevertheless, MAPCs were proven to exert
therapeutic effects in rescuing cardiomyocytes in vivo in animal
models of infarction employing mitochondrial transfer either by
nanotubule or intercellular connexin-mediated transport. This
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evidence indirectly supports the existence of active and functional
mitochondrial trafficking in MAPCs (Jameel et al., 2010).

Human MAPCs are non-immunogenic and exert potent
immunomodulatory effects, influencing both innate and adaptive
with  their
multilineage differentiation potential, have been reported in

immune responses. These properties, together
various preclinical models. While the original description of
MAPCs by Verfaillie’s group (Nature, 2002) was retracted in
2024,

immunomodulatory phenotypes, supporting their relevance for

independent  studies  have  confirmed  similar
regenerative and immunotherapeutic applications.

MIAMI (marrow isolated adult multilineage inducible cells) are
derived from human bone marrow as cells with small body size,
express multipotent as well as pluripotent surface cell markers (Oct-
4 and Rex-1). MIAMI are cultivated in hypoxic conditions and can
undergo up to 50% population doubling without signs of senescence
and telomerase shortening (D’Ippolito et al, 2004). Given the
remarkable similarity regarding cell morphology and surface
markers as well as differentiation potential, it could be that they
could represent a unique cell identity obtained by means of different
isolation and/or cultivation methods. Remarkably, even if their long-
term dormancy as well as “deep quiescence” has been recorded by
several groups, little evidence exists on the mitochondrial metabolic
and dynamic features that characterize this
pluripotent phenotype.

Multilineage Differentiating Stress-Enduring (MUSE) cells have

particular

been isolated by several groups worldwide from the adult tissues of
mammals and humans (adipose tissue, dermis, cord blood, bone
marrow). MUSE cells can be isolated from cultured MSCs by stress
exposure (such as incubation with collagenase solution) or through
positive CD105/SSEA3 sorting (Heneidi et al., 2013). Currently,
MUSE stem cells are considered to be naturally occurring
pluripotent cells that reside in quiescence and are activated by
severe stressing conditions in vitro or in vivo (Ossanna et al,
2023). Regardless of the tissue of origin, MUSE cells display
markers of pluripotency (Nanog, OCT3/4, Tral-60) as well as
activity and
tumorigenic in vitro and not forming teratomas after being

telomerase asymmetric  growth, being non-
injected in mice (Kuroda et al., 2010). MUSE cells can undergo
three embryonic layer differentiation (endoderm ectoderm and
mesoderm) spontaneously or when exposed to specific conditions
in vitro (Wakao et al.,, 2011). Muse cells are particular for being
highly resistant to cellular stress (some methods of isolating them
rely exactly on this ability), for having remarkable migratory and as
well as tissue regenerative ability to integrate rapidly within highly
damaged tissues (such as fulminant hepatitis, acute lung ischemia,
diabetic skin ulcers, brain injury) (Iseki et al., 2017; Uchida et al,,
2016; Kinoshita et al., 2015; Yabuki et al., 2018)
that MUSE

regeneration by paracrine signaling secretion of cytokines, growth

Current evidence supports contribute to
factors, and extracellular vesicles—rather than trans differentiation,
or engraftment contributing to modulation of inflammation,
progenitor  activity, and

improvement of the local microenvironment. Considering their

enhancement of endogenous

high migratory and regenerative ability, such cells may belong to

a highly conserved mechanism of cell survival, potentially
compensating for lost organism regenerating ability in more
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evolutionary advanced animals, including mammals (Simerman
et al.,, 2016).

To date, little has been reported on the mitochondrial features
and metabolism of MUSE cells. Upon transplantation of human-
derived MUSE cells in an immunodeficiency mouse model of focal
brain injury, transplanted cells showed immunomarkers of the
human Golgi apparatus and mitochondria (Uchida et al., 2017).
Given MUSE cells’ quiescence, it is plausible that both inflammatory
cytokines, ROS presence, and hypoxia could be sensed to induce
mitochondrial metabolism reprogramming to initiate migration,
proliferation, and further tissue-specific differentiation; however,
this must be confirmed by further studies. (Trosko, 2018).

Dedifferentiated fat cells (DFAT)

A surprising example of culture-induced transient pluripotency
is represented by DFATs. By means of a ceiling culture, normal
tissue-derived mature adipocytes undergo dedifferentiation and
morphologic changes and transiently express pluripotency
transcription factors (OCT4, SOX2, cMyc, NANOG), stage-
specific embryonic antigens like SSEA3, as well as mesenchymal
stem cell markers such as CD105. These cells can differentiate into
several cell types from all three embryonic germ layers; however,
these unlikely PSCs do not form teratoma after inoculation in
immunodeficient mice (Jumabay and Bostrom, 2015). Profiling
mature dedifferentiated adipocytes using microarray revealed that
DFATS downregulates genes important for lipid metabolism and
upregulates genes pertaining to cell proliferation, cell morphology,
and differentiation (Ono et al.,, 2011). They have been tested for
possible applications in several fields of regenerative medicine such
as osteoporosis or replacing large bone defects in tissue engineering
(Shirakata et al., 2014; Kikuta et al, 2013),
revascularization in ischemic tissues (Planat-Benard et al., 2004)

approaches

and skin and soft-tissue regeneration (Asami et al., 2015), cartilage
(Okita et al., 2015) or brain ischemic injuries (Kakudo et al., 2018).
The main issues preventing broad adoption are mainly related to
phenotype stability, culture standardization, and scaling up required
for manufacturing (Liang et al., 2023). As in the other situation of
adult-derived cells with pluripotent potential, no direct investigation
or mention exists regarding mitochondrial metabolism and
dynamics. The identified significant reductions in genes involved
in lipid metabolism, including PDK4 (Pyruvate dehydrogenase
4) of the
dehydrogenase complex, linking glycolysis to mitochondrial
respiration. cLPL, FASN, LIPE, FABP4, and PPARG could
suggest a metabolic shift away from fatty acid oxidation--or

kinase

isozyme - a key regulator pyruvate

possibly toward glycolysis. Similarly, upregulation in genes
involved in “Mitosis”, “M phase”, “cell cycle progression
“functions is typically associated with a shift to glycolysis-
(“Warburg-like”) but this
speculative unless further investigated. From another perspective,

dominant metabolism remains
DFAT isolation and function could represent just another proof of
cellular drastic phenotypic changes under stressful conditions that
initiate profound adaptive responses of which mitochondrial
metabolism and dynamics may be an important component.
Summarizing, there is currently little direct evidence for

mitochondrial features in adult pluripotent stem cells (Table 2)
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Observations regarding their spatial morphology in VSELs as well
as reduced number are indicative of a predominant fission-like
dynamic while the extended periods of dormancy in VSELs, MUSE
cells could indicate a predominant glycolytic and increased
sensitivity to ROS as a signaling mechanism is a determinant of
the exit out of dormancy as per parallelism with other adult stem
cell populations. The case of DFATSs invites us to explore the
different situations of the potential shift from OXPHOS to
transient glycolysis and the potential from fusion to fission, as
well as their recovery after DFAT differentiation to various
lineages. While understandable, the main focus has so far been
on demonstrating adult pluripotent-like cells’ applicability to
tissue regeneration, a deeper understanding of the mechanisms
involved in the maintenance of pluripotency or acquisition of such
traits will fuel further mechanistic understandings. Be they
“awakened by stress” or “induced by (stressful) culture
conditions”, adult pluripotent cells are very likely to rely on
their
alterations that require massive bioenergetic adaptations, ROS

mitochondrial responses for profound phenotypic
handling, and a rapid response to modified environments.
Current understanding underlines the role of mitochondria in
stress responses—from remodeling networks via fission/fusion,
initiating quality control through mitophagy and UPRmt,
affecting energy output, and deciding cell fate (survival vs.
apoptosis) (Xu et al., 2025).

Computational models of mitochondrial network response
suggest that healthy mitochondria are poised at a critical point,
balancing robustness with flexibility. Disrupting this balance
through oxidative stress or excessive fusion decreases network
complexity, impacting cellular functions like energy production,
apoptosis regulation, or stress adaptation (Zamponi et al., 2018).
Similar approaches could be undertaken to model and validate the
role of mitochondrial metabolism, dynamics, and biogenesis in
paralleling or maybe even orchestrating pluripotency in
adult tissues.

Unlike ASC, adult pluripotent stem cells, mitochondria may be
more capable of sensing environmental cues and switching from
dormancy to rapid proliferative and differentiation phenotypes to
orchestrate responses to major perturbations, rather than tissue
turnover and minor stress. The role of intercellular and trans tissular

mitochondrial networking in adaptive responses is yet unexplored.

Concluding remarks

Mitochondria are increasingly perceived as dynamic regulators
of cell identity, metabolic adaptation, and stress responsiveness.
They are closely associated with but also extend their classical role as
cell Their the
maintenance, and exit from pluripotent states—whether in

powerhouses. contribution to acquisition,
embryonic, induced, or adult contexts—implies functions beyond
ATP production. Across developmental and experimental settings, a
consistent theme emerges that transitions in stemness states are
paralleled by tightly regulated mitochondrial

dynamics,

fission-fusion

mitophagy, and metabolic rewiring. Inviting
hypotheses regarding intra-as well as extracellular networking
capabilities, they are inviting further exploration. Such endeavors

could possibly elucidate potential hierarchical systems coordination
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in both organogenesis, tissue maintenance, and repair as a result of
external or internal perturbations.

Despite the compelling mechanistic insights gained from studies
in ESCs and iPSCs, our understanding of mitochondrial roles in
naturally occurring adult pluripotent-like cells remains fragmentary.
VSELs, MAPCs, MIAMI, MUSE cells, and DFATSs all challenge the
traditional paradigm of lineage restriction in adult stem cells.
However, direct evidence of their mitochondrial morphology,
function, and metabolic programming is scarce. Whether these
degrees  of
reprogramming or represent a latent embryonic relic, their

cells arise through various stress-induced
capacity for multilineage differentiation appears intimately tied to
mitochondrial plasticity. Here again, possible mitochondrial sensing
and networking functions could explain coordinated repair and
regenerative mechanisms as well as their perturbations due to
metabolic, inflammatory, senescent, or combinatorial origins.

A recurrent theme emerging from this review is the absence of direct
mitochondrial analyses in naturally occurring adult pluripotent (-like)
cell populations. While their regenerative capacity and stress
responsiveness have been described, the lack of detailed bioenergetic,
redox, and ultrastructural data leaves fundamental questions unanswered
about how mitochondria contribute to the maintenance, activation, or
loss of pluripotency in these rare cells. This lack of knowledge is partly
methodologically generated by the extremely low yield of such cells, their
heterogeneity across laboratories, and the technical challenges of adapting
high-resolution mitochondrial assays to quiescent or stress-sensitive
populations. However, in our understanding, it is also a conceptual
issue, reflecting both the historical focus on proving pluripotency rather
than probing its mechanistic underpinnings, and the partial
abandonment of this field in favor of the engineered pluripotency
and iPSC models. Addressing this gap will be essential to fully
integrate adult pluripotent cells into the mitochondrial framework of
stem cell biology. Future work should prioritize high-resolution
bioenergetic profiling, single-cell mitochondrial imaging, mitoROS
mapping, and integrated omics approaches coupled with lineage
tracing to uncover how mitochondrial morphology, dynamics, and
signaling intersect with the acquisition, maintenance, and functional
deployment of pluripotency in adult tissues Addressing this gap will be
essential to fully integrate adult pluripotent cells into the mitochondrial
framework of stem cell biology, to deepen understanding of natural
occurring regenerative processes and shifting cell states.

DFAT, VSEL, and other rare stem/progenitor populations have
been detected in vivo in specific adult tissues, albeit at very low
frequencies, and are generally expanded and characterized under
in vitro conditions, where phenotypic drift may occur. Their
contribution to endogenous repair processes remains uncertain,
and their mitochondrial profile—a potential determinant of the
stemness-to-differentiation transition—has not yet been elucidated.
Defining this profile could provide important insights into their
physiological relevance and inform strategies for their exogenous
application in cell- or gene-based therapies.

We propose that future work should systematically characterize
these cell populations using high-resolution bioenergetic profiling,
mitochondrial imaging, redox state mapping, and lineage tracing.
Combining single-cell omics and spatial biology with mitochondrial
network topology and flux analysis can uncover regulatory layers
that link cellular quiescence and activation, especially in the context
of cell fate transitions.

Frontiers in Bioengineering and Biotechnology

11

10.3389/fbioe.2025.1654593

From a regenerative medicine approach and a bold translational
perspective, manipulating mitochondrial function offers a novel axis
for enhancing adult pluripotent cell potency, stability, and therapeutic
applicability. Moreover, mitochondria-derived biomarkers may
eventually serve as indicators of latent regenerative potential in
adult tissues or even predictors of tissue resilience to aging and disease.

As this field eventually advances, mitochondria may no longer
be perceived as merely responders to cellular change, but concurrent
orchestrators of stem cell identity, balancing adaptability with
The  possible
mitochondrial networks that could orchestrate adaptive stress

stability. intercellular ~and  trans-tissular

responses invite further conceptual and analytical investigation.
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