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Background: Osteonecrosis of the femoral head (ONFH) is a refractory
orthopedic disease in which steroids may induce bone cell necroptosis.
Extracellular vesicles derived from bone marrow mesenchymal stromal cells
(BMSC-EVs) are recognized as novel therapies to improve ONFH. Pulsed
electromagnetic fields (PEMFs) increase the paracrine activity of BMSCs.
Nonetheless, the effect and mechanism of PEMFs preconditioned BMSC-EVs
(BMSC-EVsPEMFs) for treating ONFH are unclear.
Methods: The BMSC-EVsPEMFs with differentmagnetic amplitudeswere incubated
with dexamethasone-inducedMC3T3-E1 cells and the osteogenic differentiation
and necroptosis were observed. Furthermore, RNA sequencing of MC3T3-E1
cells incubated with incubated with PEMFs of a specific amplitude or without
PEMFs was conducted to identify potential mechanisms involved. Reverse
transcription‒quantitative polymerase chain reaction (RT-qPCR),
immunofluorescence and Western blotting were performed to detect
necroptosis-related pathways. SD rats receiving steroid injections were
randomly assigned to receive PBS, BMSC-EVs or BMSC-EVsPEMFs therapy.
Micro-CT scan, histological, and immunohistochemical analyses were used to
evaluate the therapeutic effects on bone formation and necroptosis of the
femoral head in ONFH animals.
Results: The characteristics of the BMSC-EVsPEMFs were similar to those of the
BMSC-EVs. In vitro, co-culture of osteoblasts and PEMFs with 3 millitesla (mT)
amplitude preconditioned BMSC-EVs (BMSC-EVsPEMFs (3 mT) promoted osteogenic
differentiation and inhibited cell death. The results of RNA sequencing revealed
that the expression of Ripk3 was significantly lower in the BMSC-EVsPEMFs (3 mT)

group than in the BMSC-EVs group. RT-qPCR, immunofluorescence andWestern
blotting revealed that the expression of necroptosis-related molecules (RIPK1,
RIPK3, and MLKL) was suppressed in BMSC-EVsPEMFs (3 mT) group (p < 0.05). In vivo,
the BMSC-EVsPEMFs (3 mT) group presented better bone morphology of the femoral
head via micro-CT, with a lower protein expression of MLKL and a higher
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expression of RUNX2 (p < 0.05) at 2 weeks, while lower expressions of RIPK1 and
RIPK3, and higher levels of RUNX2 and OCN (p < 0.05) at the femoral head at
6 weeks after injection than did the BMSCs-EVs group.
Conclusion: PEMFs with 3 mT amplitude preconditioned BMSC-EVs could
promote bone formation by inhibiting osteoblasts necroptosis via
Ripk1–Ripk3–Mlkl signaling in ONFH.

KEYWORDS

osteonecrosis of the femoral head, extracellular vesicles, bone marrow
mesenchymalstromal cells, pulsed electromagnetic fields, necroptosis

1 Introduction

Glucocorticoids, although widely prescribed as anti-
inflammatory and immunomodulatory agents, are a major cause
of osteonecrosis of the femoral head (ONFH) due to their
detrimental effects on bone metabolism (Padhye et al., 2016;
Mimura et al., 2023). ONFH affects over 8 million individuals in
China, with an average onset age of 58.3 years (Mi crosurgery
Department of the Orthopedics Branch of the Chinese Medical
Doctor A et al., 2017; Lamb et al., 2019), and most individuals with
ONFH suffer pain and collapse of the femoral head leading to
subsequent deterioration of the hip joint (Kawano et al., 2020). Since
patients are young, guidelines suggest the implementation of
multiple techniques aimed at preserving hips (Hannon et al.,
2023; Zhao et al., 2020), yet the optimal surgical approach
remains debated (Miladi et al., 2018; Sadile et al., 2016;
Migliorini et al., 2021). ONFH is characterized by the decrease in
bone formation and situ death of bone cells, making it difficult for
affected bones to recover (Chan et al., 2020). Numerous studies have
reported that imbalanced programmed cell death, such as apoptosis
(Zhao et al., 2023; Chen et al., 2020), necroptosis (Fan et al., 2022;
Feng et al., 2023) and pyroptosis (Fang et al., 2024), disrupts bone
homeostasis and causes osteonecrosis (Shao et al., 2024). Therefore,
alternative approaches for preventing bone cell death and the
progression of ONFH during the initial phase are urgently needed.

Bone marrow mesenchymal stromal cells (BMSCs) exhibit
therapeutic effects for ONFH as their potential to promote
osteogenesis and angiogenesis (Daltro et al., 2015). However,
challenges such as limited progenitor cell availability, poor survival
of transplanted cells, immune rejection, and possible pro-tumor risks
restrict their clinical translation (McKinley et al., 2023). Extracellular
vesicles (EVs), nanoscale mediators of intercellular communication,
have recently attracted attention as cell-free alternatives (Boulestreau

et al., 2021; Lu et al., 2022) and new tools for managing diseases (Han
et al., 2024; Wang et al., 2025; Liu et al., 2024). BMSC-derived EVs
(BMSC-EVs) have been shown to alleviate ONFH by enhancing cell
survival (Huang et al., 2020), promoting osteoblast proliferation (Liao
et al., 2019), and stimulating bonemicrovascular endothelial activity (Li
L. et al., 2020). Due to the limited accessibility and poor yield of BMSC-
EVs (Debbi et al., 2022; Zhou et al., 2024), it is crucial to enhance their
specific biological functions.

Preconditioning strategies offer a potential solution. Pulsed
electromagnetic fields (PEMFs) are known to regulate MSC
proliferation, differentiation, and paracrine activity (Celik et al.,
2021; Parate et al., 2020). Recent study indicated that PEMFs
regulated the bioactivity of M2 macrophage-derived EVs on
decreasing osteoclastogenesis (Trentini et al., 2024). Our previous
work further showed that PEMF preconditioning enhances the anti-
apoptotic effects of MSC-EVs, with 75 Hz yielding the most
pronounced benefits (Xu et al., 2022). Nevertheless, the optimal
remain undefined, and the therapeutic efficacy and mechanisms of
PEMFs preconditioned BMSC-EVs (BMSC-EVsPEMFs) in the ONFH
animals are still unclear.

In the present study, we examined the effects of BMSC-EVsPEMFs

on osteogenesis and necroptosis, offering an initial exploration of
the mechanisms involved. Additionally, we explored the potential of
BMSC-EVsPEMFs as an innovative biomimetic approach to enhance
bone regeneration and reduce programmed cell death in a model
of ONFH rats.

2 Materials and methods

2.1 Isolation and identification of BMSCs

Three-week-old male Sprague-Dawley rats were humanely
euthanized, and the femurs and tibias were harvested
under sterile conditions. Culture method was previously
reported (Aghaloo et al., 2010; Wu et al., 2024), and
operation flow is shown in Supplementary Figure S1. The
cells from the third or fourth passage were used for the
subsequent experiments.

The levels of cell surface markers, including CD44, CD34,
CD45, and CD90, were analyzed following the guidelines provided
by the manufacturer (Shi et al., 2014). Additionally, the capacity
for multi-lineage differentiation was assessed by Alizarin red
staining (ARS), Oil red O staining, and Alcian blue staining
(Cyagen, China) after 7-day, 21-day, and 28-day stimulations.
Colony-forming unit assays were initially performed with 1 ×
103 single-cell suspensions seeded in a 10 cm diameter culture dish

Abbreviations: ONFH, Osteonecrosis of the femoral head; BMSC-EVs,
Extracellular vesicles derived from bone marrow mesenchymal stromal
cells; EVs, Extracellular vesicles; PEMFs, Pulsed electromagnetic fields;
BMSCs, Bone marrow mesenchymal stromal cells; BMSC-EVsPEMFs, PEMFs
preconditioned BMSCs-EVs; mT, milli Tesla; RIPK, Receptor-interacting
protein kinase; DEX, Dexamethasone; MLKL, Mixed lineage kinase domain-
like; ARS, Alizarin red staining; TEM, Transmission electron microscopy; NTA,
Nanoparticle trafficking analysis; ALP, Alkaline phosphatase; HRP, Horseradish
peroxidase; RT-qPCR, Reverse transcription-quantitative polymerase chain
reaction; SD, Sprague-Dawley; MPS, Methylprednisolone hemisuccinate; BV/
TV, Bone volume/total volume; BS/BV, Bone surface/bone volume; BMD,
Bone mineral density; Tb.N, Trabecular number; Tb.Th, Trabecular thickness;
Tb.Sp, Trabecular separation; H&E, Hematoxylin and eosin; SRA, Short Read
Archive; DEGs, Differentially expressed genes; KEGG, Kyoto Encyclopedia of
genes and genomes.
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(Corning, United States), and reflected by toluidine blue
(Beyotime, China) after 14 days.

2.2 PEMFs intervention

The PEMFs device (School of Manufacturing Science and
Engineering, Sichuan University, China) (Huang et al., 2022; Wang
et al., 2022) consists of a pulse generator, a stepper motor driver, and a
Helmholtz coil, and produces spatially homogeneous, time-varying
magnetic fields in the incubator (seen in Supplementary Figure S2;
Supplementary Table S1). There are two trays inside the circular
Helmholtz coil chamber, and the output waveform from the signal
generator produced a pulsed burst with a duty ratio of 50% (burst width:
6.67 ms; pulse width: 6.67 ms), repeated at a frequency of 75 Hz. The
magnetic flux density increased to a predetermined maximal level
within approximately 50 μs (with a rise rate of ~17 T/s) when
driving field amplitudes ranged between 0.5 and 3.8 mT. This was
measured using a hand-held Gaussmeter (HT201, Hengtong, China).
According to previous studies, BMSCs at passage 4 hungered with 5%
EVs-free FBS for 48 h, and then were placed in the incubator under
PEMFs with 0 (negative control), 1 mT (Celik et al., 2021), 1.6 mT
(Huang et al., 2021; Yang et al., 2018), or 3 mT (Parate et al., 2020)
amplitudes for 60 min.

2.3 EVs isolation, labeling, and uptake

BMSC-EVs were isolated via ultra-centrifugation method as
previously described (Guo et al., 2017; Xu et al., 2021) and flow is
shown in Supplementary Figure S3. The culture media were
harvested, centrifuged at 300 × g and 2,000 × g to remove
debris, and then filtered through a 0.22 μm filter (Merck-
Millipore). The supernatant was aliquoted into 15 mL Amicon
Ultra-15 devices with a 100 kDa membrane and subjected to
centrifugation at 4,000 × g. Then, it was ultra-centrifuged at
100,000 × g for 70 min (SW32Ti, Beckman Coulter), washed with
PBS, and ultra-centrifuged again at the same speed for 70 min.
The EVs were carefully resuspended in sterile PBS and stored
at −80 °C for subsequent experiments. Transmission electron
microscopy (TEM) (JEM-1400FLASH, Japan) was used for
observing morphology operating at 80–120 kV. For particle
size and number analysis, nanoparticle trafficking analysis
(NTA) was completed using the ZetaView system (Particle
Metrix, Germany) following the manufacturer’s instructions.
Western blot was employed to confirm the presence of
markers, such as positive expression of TSG101, CD81, and
CD9, and negative expression of Calnexin.

Next process involved incubating EVs with DIO (Beyotime,
China) for 15 min at room temperature. After washing with PBS and
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centrifuging at 100,000 × g for 70 min, the various BMSC-EVs were
suspended in basal medium (1010/mL) and incubated with MC3T3-
E1 cells for 48 h at 37 °C (Wu et al., 2019; Li et al., 2022). Then
stained by 0.1 g/mL DAPI (Beyotime, China) for 5 min, the MC3T3-
E1 cells were placed under a confocal system of high-content
screening (PE/Opera Phenix Plus, PerkinElmer, United States)
for image capture.

2.4 Cell culture and dexamethasone
stimulation

MC3T3-E1 osteoblastic cells were purchased from CCTCC
(Subclone 14, GDC0188, China) and cultured in α-MEM
supplemented with 10% FBS (Lonsera, Uruguay) and 1%
penicillin-streptomycin in humidified incubators at 37 °C and 5%
CO2. Cells were treated with 10 μMDEX (TargetMol, China) in vitro
to mimic the disease for 24 h (Tao et al., 2017). BMSC-EVs, BMSC-
EVsPEMFs (1 mT), BMSC-EVsPEMFs (1.6 mT) and BMSC-EVsPEMFs (3 mT) at a
dosage of 1010/mL were co-cultured with MC3T3-E1 osteoblastic
cells for 48 h.

2.5 Annexin V staining

Annexin V-FITC/PI apoptosis detection kit (Cell Signaling
Technology, Danvers, MA, United States) was used for
distinguishing between live, early apoptotic, and late
apoptotic/necrotic cells (Zhu et al., 2021). Then the results
were obtained using a flow cytometer (FACSAria III, BD,
United States).

2.6 Alkaline phosphatase (ALP) and alizarin
red staining (ARS) staining

Following osteogenic induction for periods of 7 and 21 days, the
cells were fixed with a solution of 4% paraformaldehyde (Biosharp,
China). Subsequently, alkaline phosphatase (ALP) activity was
assessed with a BCIP/NBT staining kit (Beyotime, China). To
evaluate the formation of mineralized nodules, Alizarin Red S
(ARS) staining (Beyotime, China) was conducted for 20 min. The
cells were then examined microscopically (Ti2, Nikon,
United States) to assess osteogenic differentiation.

2.7 Western blotting analysis

Total proteins were extracted and examined using a protein
extraction kit (Beyotime, China) and BCA method with a
commercial kit (Thermo Fisher Scientific, United States)
following established protocols. Then the proteins were separated
using 10% SDS-PAGE (EpiZyme, China) and were then transferred
onto polyvinylidene fluoride membranes with a pore size of 0.22 μm.
GAPDH was used for normalization. The experiments were
performed in triplicate. The information concerning the
antibodies used and their concentrations is presented in
Supplementary Table S2.

2.8 Reverse transcription-quantitative
polymerase chain reaction (RT-qPCR)

Total RNA was extracted with TRIzol reagent (Takara, Japan)
from femoral heads and cultured cells, followed by reverse
transcription to generate the first-strand cDNA using the Stand
cDNA Synthesis SuperMix for qPCR Kit (Hifair III, Yeasen, China).
PCR was conducted with the SYBR Green PCR master mix
(HieffUNICON, Yeasen, China) utilizing a Bio-Rad CFX Connect
real-time system (Bio-Rad, United States). Primer sequences are
shown in Supplementary Table S3 and Supplementary Table S4. The
experiments were conducted in three replicates, and the data were
analyzed by the 2−ΔΔCT method (Bernáldez et al., 2017).

2.9 Immunofluorescence analysis

Briefly, after being fixed, permeabilization and blocked, cells
were incubated with primary antibodies: RUNX2, CON, RIPK1 or
RIPK3 (1:200) (Beyotime, China). After being washed twice, the 96-
well (PerkinElmer, United States) were subsequently treated with
secondary goat anti-rabbit antibody (Alexa Fluor 488, Beyotime,
China) at 37 °C for 1 h. F-action and nuclei were co-stained for
20 min with phalloidin (Actin-Tracker Red-594, Beyotime, China)
and for 5 min with DAPI, respectively.

2.10 RNA sequencing analysis

MC3T3-E1 cells treated with DEX or with proper EVs were
compared. The sequence and filtering of clean reads were completed
as previously described (Thompson et al., 2020). A cDNA library
was generated using pooled RNA from two groups and sequenced
utilizing the Illumina Novaseq™ 6000 sequencing platform (LC-
Biotechnology CO., Ltd., Hangzhou, China) (Kim et al., 2019;
Kovaka et al., 2019). The raw sequence data have been submitted
to the NCBI Short Read Archive (SRA) with the access number
PRJNA1115973 (SAMN41518211-SAMN41518218). DESeq2 soft
were utilized for analyzing the differentially expressed genes
(DEGs). A volcano plot was performed by DEGs (Fold change ≥
1.1 and false discovery rate (FDR) < 0.1). DEGs were included for
further functional analysis based on GO and Kyoto Encyclopedia of
Genes and Genomes (KEGG) databases.

2.11 Animal experiments

Approval for the animal experiments in this study was obtained
from the Animal Ethical Committee. According to the guidelines for
sample size calculations of Boston University and the study of Li and
colleagues (Li et al., 2023), a total of 40 male SD rats (8 weeks, male;
purchased from HFKbio, China) were randomly divided into four
groups (n = 10) by simple randomization method, using a
computer-generated table: normal (saline); MPS
(Methylprednisolone hemisuccinate (MPS) + saline); EVsNo PEMFs

(MPS+EVs without preconditioning); and EVsPEMFs (MPS+proper
EVsPEMFs). The model and treatment protocols were established as
previously reported. MPS (20 mg/kg per day; TargetMol, China) or
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FIGURE 1
Characterization of rat BMSC-EVs under different amplitudes of PEMFs exposure system and uptake of BMSC-EVs. (A) Flow cytometric analysis of
the surface markers of BMSCs. (B) The osteogenic differentiation, adipogenic differentiation, and chondrogenic differentiation of MSCs. Scale bars:
500 μm (white), 200 μm (black), and 100 μm (blue). (C) The particle size distribution of BMSC-EVswith different parameters of PEMFs. (D) A representative
TEM image of BMSC-EVs from supernatant under different parameters of PEMFs. White arrows: representative images of BMSC-EVs. Scale bars:
200 nm. (E) Cellular uptake assay by the confocal system of high-content screening demonstrated uptake of BMSC-EVs by MC3T3-E1 cells after 2, 24,
and 48 h (BMSC-EVs: green; MC3T3-E1 cytoskeleton: red; MC3T3-E1 nucleus: blue). Scale bars: 100 μm.
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FIGURE 2
The osteogenesis of MC3T3-E1 cells treated with different BMSC-EVsPEMFs. (A) Assessment of ALP by BCIP/NBT. Scale bars: 500 μm, and (B)
Quantification of ALP activity. (C) Immunofluorescence images of expression in MC3T3-E1 cells after different treatments for 7 days (RUNX2: green;
cytoskeleton: red; nucleus: blue; 3D thermal imaging: reconstruction of fluorescence intensity of RUNX2). Scale bar: 50 μm, and (D)Quantitative analysis
of immunofluorescence results of RUNX2. (E) Assessment of mineralization by alizarin red staining. Scale bar: 500 μm, and (F)Quantitative analysis

(Continued )
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saline was injected intramuscularly into rats to induce ONFH during
the first 3 days of each week, continuing until the third week (Zhao
et al., 2023). Beginning with the first injection of MPS, the EVs
(100 μL, 1010 particles) were injected into the rats through the tail
vein, thrice a week for 3 weeks (Chen et al., 2020; Guo et al., 2016).
Five rats were dissected after isoflurane overdose for examination at
2 weeks and the remaining rats were dissected at 6 weeks after the
first injection (Chen et al., 2022).

2.12 Micro-CT analysis

The femoral heads were scanned using micro-CT (Quantum
GX, PerkinElmer, United States), with a voltage of 80 kV and a
current of 100 μA. The scanner software was configured to achieve
high resolution, utilizing a voxel size of 20 μm and a field of view
measuring 10 mm. Three-dimensional (3D) images of the femoral
heads were reconstructed and the bone volume/total volume (BV/
TV), bone surface/bone volume (BS/BV), bone mineral density
(BMD), trabecular number (Tb.N), trabecular thickness (Tb.Th),
and trabecular separation (Tb.Sp) of the region of interest was
calculated by Caliper Analyze (BIR, Mayo Clinic, United States).

2.13 Histological and
immunohistochemistry analysis

The specimens for histological evaluation, including
hematoxylin and eosin (H&E) and Masson’s trichrome
staining, were processed according to earlier protocols (Li G.
et al., 2020). Images were captured using a light optical
microscope (Ni-E, Nikon, United States). The specimens were
decalcified, fixed in formaldehyde, dehydrated, and embedded in
paraffin. After dewaxing and antigen retrieval, 10% bovine
serum albumin was used to block nonspecific binding for
30 min. The sections were incubated overnight at 4 °C with
primary antibodies (seen in Supplementary Table S5) and then
with an HRP-conjugated secondary antibody (PV9001, ZSGB
Biotechnology, China), counterstained with hematoxylin. All
tests were done on at least three sections per specimen and
regions of interesting were selected randomly by two
independent observers to ensure consistency and
representativeness while minimizing sampling bias.

2.14 Statistical analysis

The data are expressed as the mean ± standard deviation (SD)
based on a minimum of three separate experiments. Statistical
analysis was conducted using GraphPad Prism 9 (La Jolla, CA,

United States). One-way ANOVA was used to compare group
means, with Bonferroni’s post hoc analysis for significance
between pairs. A p-value <0.05 was deemed significant.

3 Results

3.1 Characterization of BMSCs and PEMFs
with different amplitudes preconditioned
BMSC-EVs

BMSCs expressed CD44 andCD90, while showing no expression of
CD34 and CD45 (Figure 1A). They demonstrated the capacity to
differentiate into adipocytes, osteoblasts, or chondrocytes upon
appropriate induction (Figure 1B). The microscopy view indicated
typical shape of BMSCs, and good viability from colonies
(Supplementary Figure S4A). The EVs (BMSC-EVs and BMSC-
EVsPEMFs) were smaller than 200 nm (Figure 1C) with a mean
diameter of 97.30 ± 11.34 nm, 95.00 ± 8.26 nm, 103.50 ± 10.20 nm
and 99.60 ± 6.78 nm in BMSC-EVsNo PEMFs, BMSC-EVsPEMFs (1 mT),
BMSC-EVsPEMFs (1.6 mT), and BMSC-EVsPEMFs (3 mT) group, respectively.
The EVs exhibited a round-shaped morphology (Figure 1D). No
obvious difference of particles numbers was detected (p > 0.05,
Supplementary Figure S4B). Moreover, particles were positive for
EVs markers including CD9, CD81, and TSG101, and negative for
Calnexin (endoplasmic marker, Supplementary Figure S4C). The result
of immunofluorescence manifested that the DIO-labeled EVs could
transfer to the perinuclear region of BMSCs after incubation with
BMSCs (Figure 1E). The viability of osteoblasts was not reduced when
incubated with EVs and most EVs transferred to osteoblasts after 24 h
incubation (Supplementary Figure S4D). These results indicated that
BMSC-EVs were isolated and incorporated into MC3T3-E1 cells.

3.2 PEMFs with 3 mT preconditioned BMSC-
EVs enhanced the osteogenesis of MC3T3-
E1 cells

All intervention groups displayed an enhancement of osteogenic
activity, with the effect of BMSC-EVsPEMFs (3 mT) being significantly
stronger than that of different intensities and BMSC-EVsNo PEMFs.
The activity of ALP was higher in BMSC-EVsPEMFs (3 mT) group (p <
0.001, Figures 2A,B). The protein level of RUNX2 after 7-day induce
were significantly higher than other groups with DEX (p < 0.001,
Figures 2C,D). RT-qPCR determined that the expression of Runx2
and Bmp2 in BMSC-EVsPEMFs (3 mT) group were significantly higher
than that in the DEX, EVs, and other amplitudes groups (p < 0.001,
Figure 2I). Subsequently, the result of ARS staining after 21-day
differentiation demonstrated that the calcium nodules in EVs,
BMSC-EVsPEMFs (1.6 mT) and BMSC-EVsPEMFs (3 mT) groups were

FIGURE 2 (Continued)

of alizarin red staining. (G) Immunofluorescence images of expression in MC3T3-E1 cells after different treatments for 21 days (OCN: green;
cytoskeleton: yellow; nucleus: blue; 3D thermal imaging: reconstruction of fluorescence intensity of OCN). Scale bar: 50 μm. (H)Quantitative analysis of
immunofluorescence results of OCN. (I) Expression of Runx2, Bmp2, Ocn and Col1a1 mRNA was measured by RT-qPCR. Bars represent mean and SD.
Compared with each group as determined by one-way ANOVA and post hoc analysis, where *p < 0.05, **p < 0.001, ***p < 0.0001.
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FIGURE 3
RNA-Seq analysis in MC3T3-E1 treated with BMSC-EVsPEMFs (3 mT) and negative control. (A)Heatmap depicting the expression of different expression
genes (DEGs) in groups, which was extracted from DEX group (n = 4) and DEX with EVsPEMFs (3 mT) group (n = 4). The top 100mRNAs with the highest fold-
change were identified, and cell programmed death-related gene is circled. (B) Volcanic map of DEGs between groups. Red spots represent upregulated
genes and blue spots represent downregulated genes. (C) Enrichment plot of GO annotations. The top significant GO enrichments of the target
genes of the DEGs are shown. The correlation between mRNA and related biological processes, cellular component, and molecular function was
measured using the negative log10 of the q-value. GO, Gene Ontology. (D) The Reactome enrichment analysis scatter plot. (E) KEGG enrichment for
groups. The top 8 most relevant KEGG pathways of the DEGs. KEGG, Kyoto Encyclopedia of Genes and Genomes.
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FIGURE 4
Effect of the different BMSC-EVPEMFs on necroptosis of MC3T3-E1 cells and activation of the necroptosis pathway. (A) The programmed cell death of
MC3T3-E1 cells estimated with Annexin V/PI staining and reflected in Q2, and (C) the rate of programmed cell death of MC3T3-E1 cells estimated with
Annexin V/PI staining. (B) Representative western blots of RIPK1, RIPK3, and MLKL proteins in MC3T3-E1 cells treated with the BMSCs-EVs under different
intensities of PEMFs. GAPDH was used as internal loading control (gel was cut at 70 and 40 kDa and the original images are presented in
Supplementary Figures S5–S9). (D) Relative protein immunofluorescence intensity of RIPK1 and RIPK3. (E,F) Immunofluorescence images of RIPK1 and
RIPK3 expression inMC3T3-E1 cells after different treatments. (RIPK1/RIPK3: green; cytoskeleton: red; nucleus: blue; 3D thermal imaging: reconstruction

(Continued )
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significantly higher than that in the DEX groups (p < 0.001, Figures
2E,F). OCN was high-expressed in BMSC-EVsPEMFs (3 mT) group than
EVs and BMSC-EVsPEMFs (1.6 mT) group (p < 0.001, Figures 2G,H).
Moreover, the expression of Ocn and Col1a1 in the BMSC-EVsPEMFs

(3 mT) group was be increased comparing to DEX, EVs, and other
amplitude groups (p < 0.001, Figure 2i).

3.3 Comparison of mRNAs revealed the
mechanism of BMSC-EVsPEMFs (3 mT) therapy

Based on mentioned results, BMSC-EVsPEMFs (3 mT) and the DEX
group were conducted for RNA sequencing. The heatmap
demonstrated the top 100 genes according to relative expression
(Figure 3A). The volcano plot analysis indicated 58 DEGs were
upregulated and 54 DEGs were downregulated in the DEX
compared with the BMSC-EVsPEMFs (3 mT) (Figure 3B). There results
confirmed that the programmed cell death-related gene, Ripk3, was
significantly reduced in BMSC-EVsPEMFs (3 mT) group. Furthermore, GO
database analysis indicated mechanism involved in bone development
and cell death (Figure 3C). Reactome pathway database analysis
determined several pathways were involved, such as ECM synthesis,
metabolism, immune system, collagen synthesis (Figure 3D). The
relevant enriched KEGG pathways analysis in Figure 3E indicated
that the regulated genes clustered in cell adhesion and
communication, immune-inflammatory regulation, and bone
mentalism (such as TGF-beta, Wnt, and Hippo signaling pathways).

3.4 BMSC-EVsPEMFs reduced the level of
necroptosis via inhibition of
RIPK1–RIPK3–MLKL signaling

Annexin V/PI staining indicated that higher percentage of cell
with programmed cell death in the DEX group than that other
groups and the BMSC-EVsPEMFs (3 mT) significantly ameliorated the
ratio of dying cells (p < 0.001, Figures 4A,C). Western blot in
Figure 4B (full-length gels are presented in Supplementary Figures
S5–S9) determined a decrease in RIPK1, RIPK3, and mixed lineage
kinase domain-like (MLKL). Immunofluorescence analysis in
Figures 4E,F and RT-qPCR (Figure 4G) indicated, and RT-qPCR
indicated BMSC-EVsPEMFs (3 mT) abolished the increase of RIPK3 and
MLKL (p < 0.001) than DEX group, suggesting a therapeutic effect
on inhibiting necroptosis.

3.5 BMSC-EVsPEMFs (3 mT) improved bone
morphology of the femoral head

ONFH rat models were used to investigate if BMSC-EVsPEMFs (3 mT)

could effectively prevent the development of ONFH in vivo (Figure 5A).

The normal, MPS, EVsNo PEMFs, and EVsPEMFs (3 mT) group were
established for comparison, and the weights of each group were
recorded (Figure 5B). Images of the coronal, sagittal, and transverse
planes of micro-CT analyzing short-term effect srevealed that the MPS
group suffered significant bone mineral loss, decreased bone density,
and the presence of osteonecrosis-like structures below the epiphyseal
line compared to the normal group. However, these adverse effects were
somewhat improved in the EVsNo PEMFs and EVsPEMFs (3 mT) groups,
although the results still fell short of expectations (Figure 5C). The BS/
BV of the region of interest was significantly increased in EVsPEMFs (3 mT)

group compared to EVsNo PEMFs group (p< 0.01, Figure 5D). In the long-
term observations, images of the planes revealed that the EVsPEMFs (3 mT)

group displayed a compact and evenly distributed trabecular bone
structure. This suggests that the EVsPEMFs (3 mT) eliminated the negative
effect to the femoral head caused byMPS. However, the EVsNo PEMFs still
did not meet expectations (Figure 5E). The BV/TV, BS/BV, Tb.Th,
Tb.N and BMD were significantly increased in EVsPEMFs (3 mT)

group compared to EVsNo PEMFs group, while Tb.Sp was decreased
(p < 0.05, Figure 5F).

3.6 BMSC-EVsPEMFs (3 mT) inhibited
necroptosis and promoted bone formation
of femoral head

H&E staining Figure 6A revealed significant formation of empty
bone lacunae, localized disruption of bone trabeculae characterized by
a sparse and disorganized structure, as well as the invasion of adipose
tissue into the marrow cavity in the short-term samples of the femoral
head from theMPS and EVsNo PEMFs groups. Most areas of the femoral
head in EVsPEMFs (3 mT) group also presented the above changes.
Masson staining indicated some new bone trabeculae transitioning
from blue to red in EVsPEMFs (3 mT) group. For dissection at long-term
shown in Figure 6B, HE staining revealed that the trabecular bone was
still occupied by an abundance of cells resembling adipocytes, along
with deteriorating cells exhibiting condensed nuclei and encircled by a
lucid cytoplasmic area in MPS group, and the trabecular bone became
sparse and thin in EVsNo PEMFs group. In contrast, rats after the
treatment of EVsPEMFs (3 mT) showed only slight osteonecrosis of the
trabecular bone, as well as fewer empty lacunae and adipose cells.
Short-term immunohistochemistry analysis revealed lower expression
of MLKL, and higher expression of RUNX2 in EVsPEMFs (3 mT) group
(p < 0.05, Figures 6C,E). For long-term, lower expression of
RIPK1 and RIPK3, and higher expression of RUNX2 and OCN in
EVsPEMFs (3 mT) group than others (p < 0.05, Figures 6D,F).
Furthermore, more mRNA of Ripk1, Ripk3, and Mlkl were
expressed in MPS group (p < 0.05), and more mRNA of Ocn and
Runx2 were expressed in normal group than others (p <
0.05) (Figure 6G).

Immunohistochemical staining for CD31 and TRAP was
conducted to investigate the distribution of blood vessels and

FIGURE 4 (Continued)

of fluorescence intensity of RIPK1). Scale bar: 50 μm. (G) Expression of Ripk1, Ripk3, andMlklmRNAwasmeasured by RT-qPCR. Bars representmean
and SD. The significant difference was analyzed by one-way ANOVA and post hoc analysis, where *p < 0.05, **p < 0.001, ***p < 0.0001.

Frontiers in Bioengineering and Biotechnology frontiersin.org10

Xiang et al. 10.3389/fbioe.2025.1655579

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1655579


FIGURE 5
Effect of the BMSC-EVs assessed by micro-CT images of the femoral heads. (A) Schematic display of methods and time nodes for injection in vivo.
(B) The weight record of each group (week 1–3: n = 10; week 4–7: n = 5). (C)Micro-CT reconstructed images of femoral heads, including a coronal 2D
image, a sagittal 2D image, a transverse section, and a 3D reconstruction of ROI at 2 weeks after the first injection (short-term period), and (D) quantitative
analysis. (E) Micro-CT reconstructed images of femoral heads, including a coronal 2D image, a sagittal 2D image, a transverse section, and a 3D
reconstruction of ROI at 6 weeks after the first injection (long-term period) and (F) quantitative analysis of the ROI. n = 5 per group. Bars represent mean
and SD. The significant difference was analyzed by one-way ANOVA and post hoc analysis, where *p < 0.05, **p < 0.001, ***p < 0.0001.
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FIGURE 6
The anti-necroptosis and osteogenesis-promoting effects of EVs on the rat model of ONFH. (A) Representative H&E and Masson staining images of
femoral heads in rats receiving different treatments at week 2 and (B) Week 6 after the first injection. Scale bars: 750 μm (black) and 100 μm (white). (C)
Representative immunohistochemical staining of RIPK1, RIPK3, MLKL, OCN, and ALP in samples from different groups at week 2 and (D)Week 6 after the
first injection. Scale bars: 100 μm. Black arrow: RIPK1, RIPK3, MLKL, OCN, or ALP positive cells. (E)Quantitative analysis of the level of RIPK1, RIPK3,
MLKL, OCN, and ALP in femoral heads from each group at week 2 and (F)Week 6 after the first injection. The black arrow indicates the positive cells, n =
5 per group. (G) Expression of Ripk1, Ripk3,Mlkl,Ocn, and AlpmRNA at week 2 and week 6 after the first injection was measured by RT-qPCR (n = 5). Bars
represent mean and SD. The significant difference was analyzed by one-way ANOVA and post hoc analysis, where *p < 0.05, **p < 0.001, ***p < 0.0001.
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osteoclasts within the femoral heads across various groups. The
normal, EVsNo PEMFs, and EVsPEMFs (3 mT) groups had higher
expression of CD31, and the MPS group displayed the lowest
levels (Figure 7A). TRAP staining indicated that the osteoclasts
in normal and EVsPEMFs group were inactive than others (Figure 7B).
The results confirmed that the MPS injections in rats led to a
significant reduction in blood vessel formation and increased
activity of osteoclasts in the femoral head. In contrast, BMSC-
EVsPEMFs (3 mT) effectively mitigated blood vessel deficiency and
osteoclast activity, avoiding the deterioration of ONFH.
Additionally, HE staining of vital organs showed no significant
biotoxicity from BMSC-EVs and BMSC-EVsPEMFs (3 mT) to, although
nephrocalcinosis was observed in the MPS group (Figure 7C).

4 Discussion

In this study, we used the easily available BMSCs andmanufactured
PEMFs to engineer the EVs secreted by BMSCs. The optimal field

amplitude might be 3 mT, and BMSC-EVsPEMFs (3 mT) showed more
positive potential for anti-necroptosis and osteogenesis. Additionally,
we provided evidence that administering BMSC-EVs intravenously
under PEMFs at a field amplitude of 3 mT during the initial
glucocorticoid exposure stages significantly inhibited trabecular bone
cell necroptosis, restored compromised angiogenesis, and averted
trabecular bone deterioration in the femoral heads of rats.
Meanwhile, we identified the involvement of RIPK1, RIPK3, and
MLKL proteins in the anti-necroptotic effects of BMSC-EVsPEMFs

(3 mT) in cultured osteoblast precursors exposed to DEX and in
ONFH rats induced by MPS. Our study indicates the promising
prospect of BMSC-EVs as a nanoparticle-based tool for safeguarding
against GC-induced ONFH. Furthermore, the EVs derived from
BMSCs cultured under PEMFs at a field amplitude of 3 mT
enhanced the effects. Targeting molecules such as RIPK1, RIPK3,
and MLKL could further enhance their protective functions, opening
exciting avenues for research and potential treatments.

Previous studies more focused on the role of apoptosis in
ONFH. Yang et al. (2021) and Tao et al. (2017) both focused on

FIGURE 7
The effects of EVs on anti-osteoclasts, angiogenesis and important organs. (A) Representative immunohistochemical staining of Trap and CD31 in
samples from different groups at week 2 and (B) week 6 after injection. Scale bars: 100 μm. Black arrow: Trap/CD31-positive cells. (C) H&E staining of
major organs (heart, liver, spleen, lung, and kidneys, respectively) at week 2 and week 6. Scale bars: 100 μm.
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apoptosis and illustrated the mechanism by which apoptosis
attenuates ONFH and that exosomes from platelet-rich plasma
prevent apoptosis. Nonetheless, a recent study has demonstrated
that necroptosis plays an important role in the development of
ONFH (Fan et al., 2022). For musculoskeletal diseases, Yuan and
their colleague have reported that bone marrow necroptosis can
lead to myelodysplasia which was mediated by the over-
expression of Ripk1 (Yuan et al., 2019). RIPK1 is an important
molecular activated by the death receptor and leads to the
activity-dependent formation of a RIPK1-RIPK3-MLKL
complex (also known as complex IIb). In addition to its role
in necroptosis, Lawlor and colleagues reported that RIPK3 is
associated with NLRP3 inflammasome. On the one hand,
RIPK3 with active caspase-8 promoted apoptosis and
NLRP3–caspase-1 activation. On the other hand, in the
absence of caspase-8, RIPK3 kinase activity and MLKL are
essential for Toll-like receptor-induced NLRP3 activation
(Lawlor et al., 2024). In our study, differences in
Ripk3 expression were detected after the treatment of BMSC-
EVsPEMFs (3 mT). For ONFH, Dai et al. and their colleagues
demonstrated necroptosis of osteoblasts mediated by RIPK1,
RIPK3, and MLKL with relative resistance to apoptosis (Dai
et al., 2020). Hence, we further investigated the changes in
RIPK3 and MLKL, and focused on the Ripk1–Ripk3–Mlkl
mediated necroptosis in ONFH.

EVs transfer into the extracellular space through the plasma
membrane while protecting their contents by the lipid structure,
hence inherently benefit from immune tolerance (Thakur et al.,
2022). Previous studies have reported the therapeutic effects of
EVs derived from CD34+ stem cells (Zuo et al., 2019), adipose-
derived stem cells (Nan et al., 2021), BMSCs (Li L. et al., 2020),
and synovial-derived MSCs (Guo et al., 2016) on preventing
ONFH via increased proliferation and osteogenic differentiation
of BMSCs. Our study focused on the function of osteoblasts,
which are major mediator for bone formation (Dirckx et al.,
2019). Additionally, an increasing number of researchers have
focused on methods for enhancing the function of EVs. Chen
et al. engineered EVs with hydrogel to improve bone repair
capabilities (Chen et al., 2023). Besides tissue engineering,
changing the condition of original cells also mediates the
contents in EVs. Tian and colleagues harvested EVs from
dental pulp stem cells subjected to hypoxic preconditioning.
Their findings revealed that these hypoxia-derived EVs can
promote the generation of M2 macrophages while
concurrently suppressing osteoclastogenesis (Tian et al., 2023).

PEMFs seem to be convenient physical therapy for
engineering EVs and enhancing the therapeutic role of EVs.
PEMFs may activate the BMP2 pathway via notable Ca2+

oscillations with robust Ca2+ spikes (Yan et al., 2022; So et al.,
2000). However, the parameters of PEMFs are always
controversial and different to be consistent for targeting
varied cells. Wong and their colleague indicated that a single
10-min exposure of donor myoblast cultures to 15 or 50 Hz with
1.5 mT amplitude PEMFs can stimulate EVs release and the
conditioned medium with EVs demonstrate similar growth and
survival potentials when compared to traditional fetal bovine
serum (Wong et al., 2022). Our previous study investigated the
effect of MSC-EVs under PEMFs exposure at 1 mT amplitude

with different frequencies of 15, 45, and 75 Hz on reducing IL-1β-
induced chondrocyte inflammation. The results demonstrated
that PEMFs with 75 Hz obviously regulated the biofunction of
MSC-EVs (Xu et al., 2022). Parate and their colleague
investigated the effect of PEMFs at a frequency of 15 Hz with
1–4 mT amplitude on BMSC chondrogenic differentiation, and
the RT-qPCR and secretome analysis indicated that 3 mT was the
best amplitude for two-dimensional culture (Parate et al., 2020).
In this study, we chose the PEMFs at a frequency of 75 Hz with
1–3 mT amplitude, and we found 3 mT amplitude might be the
optimal intensity for osteogenic differentiation of osteoblasts.
The conclusion was partly similar to Parate and their colleague,
but the PEMFs exposure frequency was different, which might be
caused by the character of targeted cells. Our results evidenced
that BMSC-EVsPEMFs (3 mT) effectively alleviate the development of
ONFH by promoting osteogenesis and inhibiting necroptosis of
osteoblasts via Ripk1–Ripk3–Mlkl signaling, which still warrants
future investigation.

Although we demonstrated the effect of BMSC-EVsPEMFs (3 mT),
several limitations were shown in this study, Initially, we established
MPS-induced ONFH models in SD rats through intramuscular
injections of MPS for three consecutive days each week over a 3-
week period. We observed characteristic pathological features of
ONFH, including notable and consistent bone lesions in the femoral
heads without femoral head collapse. We subsequently administered
the same types of therapies via tail vein injection. This type of
injection can only be used for the early stage of the disease or for
preventing ONFH, since the damage to blood vessels of the femoral
head worsens with the progression of the disease. Moreover, we only
tested CD31 while more angiogenic and vasculogenic markers and
functional assays should be conducted for a comprehensive
understanding of vascular responses in osteonecrosis. It remains
unclear whether BMSC-EVsPEMFs (3 mT) could effectively attenuate
glucocorticoid-induced ONFH in advanced stages. Finally, further
studies are needed to comprehensively understand the mechanisms
of PEMFs and the changes in EVs derived from cells under
PEMFs exposure.

5 Conclusion

To avert the onset and slow the progression of ONFH, we
implemented the PEMFs exposure system as a convenient
physical therapy to engineer the EVs secreted by BMSCs. A
novel BMSC-EVsPEMFs was successfully collected with cell-
entrance abilities. Cell experiments demonstrated that BMSC-
EVs with 3 mT amplitude PEMFs could markedly increase the
capacity of osteogenesis and inhibit necroptosis of
glucocorticoids-induced osteoblasts via the Ripk1–Ripk3–Mlkl
signaling. In ONFH rat models, we further confirmed the
outstanding therapeutic efficacy of EVs derived from BMSCs
under PEMFs exposure at 3 mT amplitude in the prevention of
ONFH. Therefore, the PEMFs exposure system shows great
promise as a physical agent. The notable preventive effects of
EVs derived from BMSCs under PEMFs exposure at 3 mT on
ONFH offer exciting new insights and innovative ideas for
treating ONFH and other conditions related to osteogenesis
and necroptotic disorders.
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