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The biomechanics of head acceleration events (HAEs) in sport have received
increasing attention due to growing concern over concussion and long-term
neurodegenerative disease risk. While wearable sensors, such as instrumented
mouthguards (iMGs), are now commonly used to measure HAEs, these devices
face well-documented challenges, including poor skull coupling, limited
compliance, and high false-positive rates. Video footage is routinely collected
in sports for performance analysis, and is a perhaps underutilised source for both
retrospective and in situ measurement surrounding HAEs. Traditionally used to
confirm HAE exposure in wearable sensor studies, video has more recently been
explored as a quantitative tool in its own right. This review synthesises the current
state of the art in video-based measurement of HAEs, with a particular focus on
videogrammetric methods, including manual point tracking and model-based
imagematching. Recent advances in computer vision and deep learning that offer
the potential to automate and extend these approaches are also examined. Key
limitations of current video-based methods are discussed, alongside
opportunities to improve their scalability, accuracy, and biomechanical insight.
By consolidating evidence across traditional and emerging approaches, this
review highlights the potential of video as a practical and valuable
measurement source for quantitative measurement and modelling of HAEs in
sport.
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1 Introduction

The high-speed and collision-intensive nature of contact sports such as association
football (or soccer, globally), rugby, and American football exposes athletes to frequent head
acceleration events (HAEs) (Tierney, 2021; Tooby et al., 2024), contributing to high rates of
sports-related concussion (SRC) (Daneshvar et al., 2011; Daniel et al., 2012) and an
increased risk of long-term neurodegenerative diseases (NDs), including chronic
traumatic encephalopathy (CTE) (Mackay et al., 2019; McKee et al., 2009; Russell et al.,
2021; 2022; Stewart et al., 2023). These concerns have attracted widespread media coverage
and public attention, including through high-profile legal actions, such as the $765 million
settlement between the NFL and former players in 2013 (Belson, 2013), the class-action
lawsuit filed against the NHL (Kaplan, 2021), and ongoing legal proceedings in the UK
involving the Rugby Football Union (RFU) and Rugby Players Association (RPA) (Bull,
2024). Going forward, there is therefore a clear need for improved understanding and
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monitoring of HAEs to inform preventative strategies and provide
better protection to athletes across all levels of play.

The precise mechanisms by which SRC and HAE exposure
contribute to ND risk remain unknown. The most recent report of
the Lancet Commission included head injury as a modifiable risk
factor for dementia for the first time (Livingston et al., 2020). In an
attempt to quantify the burden of HAEs, recent efforts in the
biomedical and biomechanical engineering fields have seen the
adoption of wearable sensors for field-based HAE monitoring (Le
Flao et al., 2022; O’Connor et al., 2017), and advanced
computational modelling strategies to quantify brain injury risk
(Ji et al., 2022). However, wearable devices have several limitations,
including sensor-skull coupling issues (Wu et al., 2016b), varying
accuracy with proximity of impact to sensor (Le Flao et al., 2025),
user compliance challenges (Jones et al., 2022; Kenny et al., 2024;
Roe et al., 2024), and the need for extensive manual video
confirmation to verify true positives (Kuo et al., 2018; Patton
et al., 2020).

Video, however, is already widely used in sport for performance
analysis and incident review, and offers a low-cost, non-invasive
means of collecting exposure data retrospectively (Funk et al., 2022;
Tierney et al., 2019). When combined with appropriate analysis
techniques, video footage can support both qualitative assessments
(e.g., verifying impact events or classifying impact scenarios
(Rotundo et al., 2023; Sherwood et al., 2025)) and quantitative
measurements of head motion and impact mechanics (Bailey
et al., 2018; Gyemi et al., 2023; Stark N. E.-P. et al., 2025),
making it increasingly valuable in HAE research.

Nevertheless, the use of video for quantitative measurement
remains underdeveloped. Traditional videogrammetric methods,
including point tracking and model-based image matching
(MBIM), have been validated for measuring impact velocities in
controlled environments (Bailey et al., 2018; Tierney et al., 2018a).
However, they often rely on high-speed cameras, multiple calibrated
views, and considerable manual effort, limiting their scalability in
field settings (Stark N. E.-P. et al., 2025; Tierney et al., 2019). These
constraints have historically prevented widespread deployment in
large-scale epidemiological studies. More recently, however,
advances in computer vision and deep learning, such as human
and head pose estimation (Asperti and Filippini, 2023; Marchand
et al., 2016) and action detection (Giancola et al., 2023; Rezaei and
Wu, 2022), have shown potential as approaches for automating the
process of extracting motion data from standard broadcast or
handheld video. These developments present new opportunities
for applying video-based HAE analysis in both research and
clinical settings.

This narrative review synthesises the literature on quantitative
videogrammetric methods applied to consumer-grade video footage
for analysing head, body and object motion resulting from HAEs.
The focus is on approaches that estimate measurable kinematic
parameters associated with HAEs, including positions, velocities,
orientations, and trajectories. Emphasis is placed on both traditional
methods and emerging deep learning solutions, evaluating their
current accuracy, scalability, and relevance to broader HAE
research interests.

The remainder of this review is structured as follows. Section 2
introduces the research areas associated withmeasurement of HAEs,
highlighting the expanding role of quantitative video analysis across

the full spectrum of HAE research, and the associated challenges that
come with it. This includes not only direct estimation of head
kinematics, but also broader contextual measurements (such as
player pose and inbound velocities) that can be extracted from
video to support downstream tasks like physical or computational
reconstructions. Section 3 covers the methodological details of
existing traditional videogrammetry techniques (e.g., point
tracking and MBIM) which have been developed and applied for
use in HAE research, analysing current capabilities and limitations
with regards to measurement accuracy and the wider value that they
contribute to the HAE practice and policy discussed in Section 2.
Section 4 then explores recent advances in deep learning, with a
focus on architectures and applications that offer near-term,
actionable improvements to both existing quantitative video-
based HAE analysis efforts and developing novel methodologies.
Finally, Section 5 reflects on the current state of the field,
highlighting key limitations in existing approaches, and outlining
future directions for improving the accuracy, scalability, and
practical impact of quantitative video analysis of HAEs.

2 Context and motivation for video-
based quantification

Although the primary focus of this review is to evaluate the
current state of video-based methods for quantitatively measuring
kinematics associated with HAEs, it is important to situate these
techniques within the broader landscape of HAE research. Video-
derived measurements, despite current limitations, are used to
support downstream applications such as physical reconstruction,
computational modelling, and brain injury risk estimation. This
section therefore provides a brief overview of these related domains
to contextualise the role and potential value which videogrammetric
methods add to the wider HAE analysis field, before expanding
discussion around specific methodological details in Sections 3,4.

2.1 HAE background

The term head acceleration event (HAE) was introduced to
address the limitations of the term head impact, which implies direct
contact with the head and fails to capture inertial loading from
indirect forces (Nguyen et al., 2019; Tierney, 2021). To clarify
terminology and support standardisation, the 2022 Consensus
Head Acceleration Measurement Practices (CHAMP) group
defined a HAE as any event that induces an acceleration
response of the head due to short-duration collision forces,
applied either directly to the head or indirectly via the body. In
contrast, a head impact event (HIE) refers specifically to events
involving direct contact with the head (Arbogast et al., 2022).

To structure the field, CHAMP identified six priority areas
relevant to HAE research:

1. Study design and statistical analysis (Rowson et al., 2022);
2. Laboratory validation of wearable kinematic devices (Gabler

et al., 2022);
3. On-field validation and deployment of wearable kinematic

devices (Kuo et al., 2022);

Frontiers in Bioengineering and Biotechnology frontiersin.org02

Aston and Teixeira-Dias 10.3389/fbioe.2025.1658222

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1658222


4. Video analysis of HAEs (Arbogast et al., 2022);
5. Physical reconstruction of HAEs (Funk et al., 2022);
6. Computational modelling of HAEs (Ji et al., 2022).

Each of these areas has been addressed by CHAMP through
peer-reviewed technical manuscripts, excluding video analysis of
HAEs, that is represented in the consensus framework only by a
reporting checklist (Arbogast et al., 2022) and an unpublished
companion manuscript describing the videogrammetry process
(Neale et al., 2022). Despite growing interest in using video to
support HAE measurement and interpretation, there remains no
review which provides a comprehensive overview of the use of
quantitative video-based methods in the literature.

This narrative review addresses that gap by examining how
videogrammetric approaches have been used to extract quantitative
kinematic parameters from standard video footage, as well as
identifying future trends for research in the field. While wearable
sensors remain the dominant tool for direct kinematic
measurement, video data (particularly from consumer-grade
cameras) offers a scalable, complementary avenue for quantifying
HAEs. The remainder of this section therefore aims to situate video
analysis within the broader HAE ecosystem, highlighting the
motivations, benefits, and limitations of its use in both research
and applied sport contexts.

2.2 Direct measurement

In the context of this work, direct measurement of HAEs refers
to the measurement of kinematic properties (position, velocity, and
acceleration) of the head during HAEs. To accomplish this, a range
of approaches to measuring head kinematics have been proposed in
the literature, from wearable sensors such as headgear, skin patches
and mouthguards instrumented with gyroscopes and/or
accelerometers (see Figure 1) (Le Flao et al., 2022; Patton, 2016),
to videogrammetry approaches where HAE parameters are
manually extracted from video footage (Bailey et al., 2018; Gyemi
et al., 2023; Stark N. E.-P. et al., 2025; Tierney, 2021).

To detect and record HAEs with wearable sensors, a threshold
for linear acceleration (e.g., 10g) is typically set (Wang T. et al., 2021;
King et al., 2016). However, when deployed on-field, such devices
often exhibit poor sensitivity, resulting in high false-positive rates
(Le Flao et al., 2024). Additionally, a number of these sensor
approaches suffer from poor coupling with the skull, leading to

noise and undesirable artefacts in the impact kinematic signals (Wu
et al., 2016b). Instrumented mouthguards (iMGs) demonstrate
superior coupling with the skull (Wu et al., 2016b) but are often
considered intrusive and uncomfortable by athletes (Roe et al., 2024;
Jones et al., 2022), especially in sports where mouthguard use is not
mandatory, such as association football (Kenny et al., 2024). Recent
work by Le Flao et al. (2025), Le Flao et al. (2024) has highlighted not
only coupling issues, but also the influence of impact location
relative to sensor position. Their evaluation of wearable sensors
in boxing demonstrated how both sensor type andmounting site can
drastically affect signal quality and classification accuracy.

To improve the sensitivity of wearable sensors, many head
impact exposure studies also employ manual video analysis to
visually confirm detected instances of head impact (Basinas et al.,
2022; Patton et al., 2020). However, this is a heavily time-consuming
and resource-intensive process. For example, in one study, 163 h of
video footage was manually reviewed by a team of 14 raters to verify
217 impact instances (Kuo et al., 2018).

The use of video to qualitatively verify HAE incidence has been
well-documented in other reviews (Basinas et al., 2022; Patton et al.,
2020), and recent studies have expanded on this by introducing
qualitative descriptors into human-rater video analysis frameworks
like tackle technique, phase of play, and action of player (Rotundo
et al., 2023; Sherwood et al., 2025; Woodward et al., 2025). This
review, however, is focused on approaches which can be used to
extract quantitative HAE outcome measures directly from video
footage using videogrammetric techniques. Point tracking and
MBIM methods, for example, have been previously used to
extract head kinematics from video footage. A complete overview
of these techniques, including specific implementation details and
practical considerations, is given in Section 3.

At present, a significant limitation of videogrammetric
approaches to direct measurement is that without sufficient
camera sampling rates, they are limited to capturing only the pre
and post HAE kinematics (Bailey et al., 2018). According to the
Nyquist-Shannon theorem, a signal must be sampled at a rate at least
twice its highest frequency to avoid aliasing. Wu et al. (2016a)
demonstrated that, in unhelmeted sports, gyroscopes with
bandwidths of at least 180Hz (corresponding to sampling rates
above 360Hz) are necessary to ensure that relative error margins of
no more than 10% across various metrics. Therefore,
videogrammetric methods like MBIM perform well in controlled
laboratory environments with high-sample rate cameras (e.g.,
1000Hz) (Tierney et al., 2018a), but their application to

FIGURE 1
Sensor-based approaches to HAE measurement: (a) skull cap (Luna, 2013), (b) skin patch (Linendoll, 2013), and (c) mouthguard (Wu, 2020).
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broadcast video is limited by low frame rates, which violate the
Nyquist-Shannon theorem (Edwards et al., 2021; Tierney et al.,
2019). Consequently, full video-based direct measurement of HAE
kinematics is not yet feasible, and videogrammetric approaches are
typically limited to extracting pre- and post-impact velocities, or a
reduced subset of HAE parameters used to inform downstream
reconstruction and modelling strategies.

2.3 Reconstruction and modelling

In the absence of detailed kinematic data for the head during a
HAE (as is typical with videogrammetric measurement due to
insufficient frame rate/resolution), there are additional
downstream computational and physical reconstruction steps
which have been utilised alongside quantitative video analysis to
gain higher fidelity estimates of head kinematics.

Computational reconstruction approaches typically involve the
use of mathematical models of the human body, such as MADYMO
(MAthematical DYnamic MOdels) (Bailly et al., 2017; Frechede and
McIntosh, 2007; Fréchède and Mcintosh, 2009; Gildea et al., 2024;
McIntosh et al., 2014; Tierney and and Simms, 2017; Tierney et al.,
2018b; Tierney and Simms, 2019; Tierney et al., 2021), commercially
developed finite element models such as the Total HumanModel for
Safety (THUMS) (Chen et al., 2015; Sharma and Smith, 2024; Yuan
et al., 2024b), and custom models developed for specific impact
scenarios (Cazzola et al., 2017; Johnson et al., 2016; Perkins et al.,
2022). It should be noted that the validation criteria used for these
models vary widely, with many human body models originally
developed for automotive crash applications, validated using Post
Mortem Human Subject (PMHS) experiments, where cadavers of
voluntary donors are used as specimens for testing (Wdowicz and
Ptak, 2023). Therefore, caution must be exercised when applying
these models to sports-related HAEs, in particular where active
muscle control has been identified as a significant factor (Tierney
and Simms, 2019).

Physical reconstructions, on the other hand, use surrogate
models of the human body in laboratory setups, such as crash
test dummies or anthropometric test devices (ATDs). These
typically include a model of the head instrumented with
accelerometers and gyroscopes to measure head kinematics
during reconstructed HAEs (Funk et al., 2022). The Hybrid III
(Hubbard and McLeod, 1974) and NOCSAE (Hodgson, 1975)
headforms have been most commonly used in the literature for
physical reconstruction of HAEs. However, the biofidelity of the
surrogates used range in sophistication, from headforms rigidly
attached to test frames to systems including the head, neck, torso,
and limbs with matched joint angles. It has been highlighted that
these surrogates may not be able to match an athlete’s pre-impact
posture due to their limited head-neck adjustability (Funk et al.,
2022), and concerns around unrealistically high stiffness of the
Hybrid III neck have also been raised (Gibson et al., 1995),
leading to the recent development of more biofidelic sport-
specific surrogate necks, for example, (Farmer et al., 2022).

A key consideration in the development of any reconstruction is
the choice of HAE parameters used in the reconstruction setup. For
computational reconstructions, these parameters are used for
simulation setup in the form of initial conditions, such as head

and full-body pose, inbound velocities, and impact location and
direction (Bailly et al., 2017; Gildea et al., 2024; Yuan et al., 2024a).
For physical reconstructions, these parameters are used to set up the
test rig, including the initial position of the surrogate headform and
the impactor used to recreate the HAE (Funk et al., 2022;
Zimmerman et al., 2023). In any case, quantitative video analysis
has been identified as a valuable source of data for estimating these
parameters, particularly in the context of both computational and
physical reconstructions (Funk et al., 2022; Tierney, 2021).

Both reconstruction types are used to generate detailed
kinematic data for the head, which is often the input to
subsequent injury analysis using brain injury criteria (BIC),
which provide a link between the kinematic data and risk of
brain injury. Simpler models use peak kinematics values (Laksari
et al., 2020; Denny-Brown and Russell, 1941; Holbourn, 1943),
reduced-order physical models (Gabler et al., 2018; 2019; Laksari
et al., 2020; Takahashi and Yanaoka, 2017) and statistical model
fitting (Rowson and Duma, 2013; Greenwald et al., 2008), while
more advanced approaches use finite element head models
(FEHMs), adhering to a range of differing validation criteria
(Dixit and Liu, 2017; Madhukar and Ostoja-Starzewski, 2019;
McGill et al., 2020) to estimate brain strain, a critical parameter
for assessing brain injury risk (Hajiaghamemar et al., 2020;
Hajiaghamemar and Margulies, 2021; O’Keeffe et al., 2020; Wu
et al., 2020). One such model, The University of Edinburgh’s 50th-
percentile male FEHM (EdiFEHM) is depicted in Figure 2.

The peak 95th percentile of maximum principal strain
(MPSpeak95 ) is a commonly used metric (Post et al., 2017; Zhan
et al., 2021), although alternative metrics such as regional strain
and time-dependent exposure have also been proposed (Perkins
et al., 2022; Wu et al., 2020). Despite their detail, FEHMs are also
computationally expensive, often requiring hours to simulate a
single event. Recent work has explored deep learning for faster
strain prediction (Ghazi et al., 2021; Wu et al., 2022), though these
methods remain in early stages.

To link video analysis with brain injury modelling, several early-
stage workflows have emerged in which pose and velocity estimates
derived from video are used to estimate full six degrees of freedom
head kinematics which drive brain injury predictions. For instance,
Yuan et al. (2024a) proposed a pipeline where human pose (joint
angles) extracted from monocular footage is used to initialise a
biomechanical human body model simulation, with the resulting
head kinematics used as input to a FEHM to estimate brain strain.
However, this approach has only been demonstrated in a single case
study involving a skiing accident, where predicted high-strain
regions were compared to magnetic resonance imaging (MRI)
and computed tomography (CT) images from a diagnosed TBI.
Commercial interest is also growing, with a recent US patent
application from Brainware AI (Karton et al., 2025) describing a
system for predicting brain injury directly from video using machine
learning techniques, bypassing traditional sensing hardware.

Despite these developments, no workflows that integrate video-
derived measurements directly into FEHMs or other brain injury
models have yet been validated or deployed at scale. This remains a
clear gap in the field, previously limited by the video quality and
sampling rate issues discussed previously. To address this, the
remainder of this review examines the suitability of current
videogrammetric techniques for extracting quantitative head
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kinematics from video, beginning with traditional methods and their
limitations, before turning to emerging deep learning-based
approaches and their potential to overcome existing barriers.

3 Traditional videogrammetry

3.1 Overview

As highlighted by Neale et al. (2022) in the CHAMP report on
video analysis of HAEs, video footage can be used to extract both
qualitative and quantitative information. Qualitative approaches do
not involve precise measurements, but instead rely on visual
inspection to identify or confirm HAEs. This can include
manually reviewing footage to verify impacts detected by
wearable sensors (Kuo et al., 2018; Patton, 2016; Patton et al.,
2020), or to classify descriptive features such as tackle type,
impact location, and game context (Rotundo et al., 2023;
Sherwood et al., 2025; Woodward et al., 2025). By contrast,
quantitative approaches involve the extraction of measurable data
from video using videogrammetric techniques, such as the positions,
orientations, and velocities of the head and other body segments. It is
important to distinguish between these two methods, as this review
focuses specifically on quantitative video analysis techniques for
reconstructing and analysing the mechanics of HAEs. These
measurements enable a more detailed biomechanical analysis
beyond simple impact verification, and can provide valuable
inputs to downstream applications, including physical or
computational models for the evaluation of specific HAE
case studies.

Photogrammetry is defined as “the science and art of making
precise and reliable measurements from images” (Gruen, 1997;
Förstner and Wrobel, 2016). Extending this principle to moving
images leads to videogrammetry: the science and art of making
precise and reliable measurements from video, or still frames
extracted from video (Neale et al., 2022; Gruen, 1997). Most

quantitative video analysis approaches for HAEs are based on
this principle. Traditionally, these techniques can be broadly
categorised into manual methods (including point tracking and
MBIM) and optoelectronic marker-based tracking methods (Colyer
et al., 2018). Modern advances in computer vision and deep learning
have also enabled more sophisticated approaches to video-based
motion estimation, which build on or replace traditional manual
methods. These emerging methods are discussed in detail
in Section 4.

In this review, only methods that rely on standard consumer-
grade video are considered. This focus reflects the aim to review
scalable techniques that can be implemented flexibly in both
laboratory and field settings using readily available video
cameras, without the need for specialised equipment such as
reflective markers, high-end optical tracking systems, or other
dedicated hardware. By relying solely on standard video, these
methods are adaptable to a wide range of sports contexts and
can be applied retrospectively to footage captured during normal
play or training, making them practical and widely accessible tools
for the study of HAEs.

It is important to note that even with standard video footage
there can be significant variation between studies in terms of camera
setups, calibration methods, and tracking techniques depending on
the context in which a method is developed and applied. This
variability can lead to differences in the accuracy and reliability
of the measurements obtained, particularly when applying a method
outwith the context in which it was developed. For example, a
method developed for high-frame-rate laboratory video may not
perform well when applied to low-frame-rate broadcast footage
(Tierney et al., 2019).

These differences can introduce challenges in comparing results
across studies and methods, as well as in interpreting the findings in
the context of HAE biomechanics. The CHAMP checklist of
information to include when reporting video analysis of HAEs,
summarised in Table 1, therefore provides a valuable framework
with which methods can be compared and evaluated, and enables

FIGURE 2
The University of Edinburgh’s Finite Element Head Model (EdiFEHM), with details of its structural components and material models. Adapted from
McGill (2022).
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complete transparency and reproducibility of methods (Arbogast
et al., 2022). While the full checklist is useful for comprehensive
reporting of a methodology, including every checklist item in detail

for each study considered in this review would add little value.
Instead, a streamlined reporting structure is adopted in the
comparison tables (e.g., Table 2), which broadly summarise
essential elements such as video source, calibration method,
outcome measures, and validation approach, so as to support
consistent discussion.

3.2 Camera calibration

In general, the mathematical objective of videogrammetric
approaches is to estimate the position and/or orientation of an
object in 3D space (or 2D assuming planar motion) based on a
combination of 2D image coordinates over time. Traditionally, a
crucial precursor to this process is a camera calibration procedure to
establish the relationship between 2D image coordinates and 3D
world coordinates. The calibration process involves determining the
intrinsic (focal length, principal point and distortion coefficients)
and extrinsic (position and orientation in the world) parameters of a
camera, and can be performed using calibration objects with known
geometry or by leveraging fixed known reference geometry in
the scene.

Direct Linear Transformation (DLT) is one of the most
widely used calibration and reconstruction techniques in
biomechanics and sports analysis (Abdel-Aziz et al., 2015;
Hedrick, 2008). DLT relates 2D image coordinates to 3D
world coordinates via a linear mapping, which can be robustly
estimated when a sufficient number of known reference points
are visible. Its simplicity, flexibility, and compatibility with both
controlled laboratory and field environments have made DLT the
backbone of traditional multi-camera calibration workflows in
many sports applications.

In single-camera (monocular) setups where it is reasonable to
assume that all tracked motion occurs on a known planar surface
(e.g., a football pitch or ice rink), 2D-DLT is generally used
(Hedrick, 2008) (although more complex non-linear techniques
also exist to address issues such as radial lens distortions (Zhang,
1999; Dunn et al., 2012)). 2D-DLT establishes a projective
mapping between 2D world coordinates (x, y) on the plane
and 2D image coordinates (u, v) using a homography, as
described by Equation 1:

u
v
1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦∝H
x
y
1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (1)

Here, H is a 3 × 3 homography matrix with 8 degrees of
freedom, estimated using at least four non-collinear point
correspondences between the scene and the image. Calibration
points can often be extracted from visible field markings of
known dimensions (e.g., penalty spots, sidelines, hash marks),
allowing accurate determination of an object’s planar
displacement and velocity (Post et al., 2018; Tierney et al., 2019;
Gyemi et al., 2023).

When full 3D motion tracking is required (such as capturing
a helmet’s movement through space to estimate the velocity of a
fall) 3D DLT must be used. This requires synchronised views
from at least two calibrated cameras with overlapping fields of
view. A set of known 3D reference points (x, y, z) is then used to

TABLE 1 Adapted CHAMP checklist for reporting quantitative video
reconstruction studies of head acceleration events (Arbogast et al., 2022).

Item Description

1. Study Design and Case Selection

1a. Study purpose State the study aim (e.g., observational, validation)

1b. Video source Describe where the footage came from (e.g., broadcast)

1c. Eligibility criteria Define criteria for included events (e.g., sport, impact
type)

2. Camera Specifications

2a. Number/type Number and type of cameras used

2b. Locations Camera positions and distances relative to event

2c. Calibration How cameras were calibrated or aligned

2d. Field of view Camera lens FOV.

2e. Height Camera heights above ground

2f. Angle Camera tilt or orientation

2g. Landmarks Landmarks used for 3D scaling or scene recreation

2h. Obstructions How obstructions, glare or lighting were managed

3. Recording Parameters

3a. Frame rate Frames per second (FPS); interlaced/deinterlaced

3b. Frame rate
variability

Whether variable frame rate was corrected

3c. Shutter speed Camera shutter speed

3d. Resolution Video resolution in pixels

3e. Aspect ratio Display or pixel aspect ratio

3f. Compression Compression type used

3g. File format File format(s); any conversions made

4. Video Quality Corrections

4a. Lens distortion Methods used to correct lens distortion

4b. Motion blur How motion blur was handled during tracking

4c. Unstable footage How unstable video was removed or stabilised

5. Data Processing

5a. Software Analysis software used

5b. Resampling Any data downsampling or frame rate adjustments

5c. Stabilisation Methods/software for video stabilisation

5d. Filtering Filters used on kinematic data

5e. Start/end times How start and end of impact were defined

6. Accuracy and Outcomes

6a. Accuracy How measurement accuracy was validated

6b. Outcome measures What outcomes were calculated and how
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TABLE 2Overview of selected point trackingmethods used in estimating kinematic outcomes associatedwith HAEs, includingmethod description and case
studies where the method is applied.

Setting Method Method description Case
studies

Camera(s) Recording
Parameters

Calibration Points
Tracked

Outcome
Measures

Validation
Method

American
Football

Newman et al.
(1999)

Multiple
stationary and
handheld
(unspecified
number)

60 Hz
(deinterlaced)

Field markings Not specified Relative impact
velocity (2D)

No direct
validation, lab re-
enactment for
plausibility

Newman et al.
(2000), Newman
et al. (1999);
Pellman et al.
(2003)

Campolettano
et al. (2018)

1 camera 30 Hz Field markings (2D
grid in Kinovea)

Helmet
markers (not
specified)

Relative impact
velocity (2D)

Timing gates Campolettano
et al. (2018)

Gyemi et al.
(2023)

8 GoPro HERO6
(7 field-level,
1 overhead),
various pairs
tested

120 Hz,
2704 × 1520 px,
1/1920s

Field markings and
calibration objects

Helmet centre Helmet-to-
ground impact
velocity (3D)

Theoretical free
fall velocity

Gyemi et al.
(2021)

Rugby and/
or
Australian
Rules

McIntosh et al.
(2000)

Broadcast match
footage

25 Hz Player
anthropometrics;
field dimensions

Struck
player’s head
and striking
segment (arm,
shoulder)

Closing speed,
head velocity
change, head
impact energy

Timing gates McIntosh et al.
(2000)

Hendricks et al.
(2012)

Broadcast match
footage

25 Hz Field markings Ball carrier
mid-section
(hip), tackler
upper body

Ball-carrier and
tackler velocity
and acceleration
before contact

Trials with cones
at known
distances

Hendricks et al.
(2012)

Ice Hockey Post et al.
(2018)

5 broadcast
cameras

30 Hz,
1920 × 1080 px

Rink markings (2D
grid in Kinovea)

Helmet front
edge or
helmet-
mounted
target

Skating speed High-speed
camera (250 Hz)

Post et al.
(2019a); Karton
et al. (2021);
Krbavac et al.
(2024); Chen
et al. (2023);
Butterfield et al.
(2023); Michio
Clark et al.
(2018); Post et al.
(2019b); Clark
et al. (2018); Post
et al. (2021);
Kendall et al.
(2020); Vale et al.
(2022);
Meliambro et al.
(2022); Kosziwka
et al. (2021)

Equestrian Clark et al.
(2020a)

Video sources
from governing
bodies (cameras
unspecified)

23.97–30 Hz Estimated
anthropometrics or
known racetrack
distances

Unspecified Head height
before falling and
body horizontal
velocity

Distances
compared with
known fence and
rider heights, no
direct velocity
validation

Clark et al.
(2020a), Clark
et al. (2021),
Clark et al.
(2020b)

Falls in care Choi et al.
(2015)

Fixed
surveillance
cameras
(216 cameras at
one site, 48 at
another)

30 Hz, 640 × 480
or 720 × 480 px

Site-specific
calibration grid
placed at fall
location and in
plane of the fall

Pelvis
(anterior
superior iliac
spine), head
(ear or
forehead) and
hand (palm)

Impact velocity,
fall duration

3D motion
capture (250 Hz)

Choi et al. (2015)

Shishov et al.
(2021)

4 Lorex
LNZ44P4B
surveillance
cameras

30 Hz,
640 × 480 px

2D grid in plane of
fall or 1D
participant height

Head,
sternum,
shoulders,
elbows, wrists,
pelvis (ASIS),
knees, ankles

Vertical and
horizontal
positions and
velocities;
angular positions
and velocities

3D motion
capture (600 Hz)

Shishov et al.
(2021)
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establish the projection parameters of each camera using
Equation 2:

u
v
1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦∝P

x
y
z
1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2)

The matrix P is the 3 × 4 camera projection matrix containing
both intrinsic and extrinsic parameters. It can be estimated using at
least six non-coplanar 3D–2D correspondences. Calibration is
typically performed using a known 3D object (e.g., a
checkerboard or a wand moved throughout the scene) or by
leveraging fixed known 3D geometry. Figure 3 illustrates the
difference between 2D and 3D calibration workflows.

In both 2D and 3D calibration contexts, the placement of
cameras plays a critical role in reconstruction accuracy. For 3D
calibration in which a multi-camera setup is used, achieving a wide
angular separation is important to ensure strong triangulation
geometry and reduce depth ambiguity (Hartley and Zisserman,
2004). Cameras should ideally capture the scene from multiple
angles with overlapping fields of view, and their positions should
be stable and known throughout the recording. In 2D calibrations,
for example, using known field markings, the camera must capture a
sufficient portion of the calibrated surface (e.g., a flat pitch) without
extreme perspective distortion (Szeliski, 2022). Oblique or high-
angle views can reduce the reliability of 2D-to-3D mappings,
especially when estimating motion in depth.

In scenarios where the camera is not stationary (as is often the
case for “in-the-wild” sports video or handheld footage) DLT
calibration can be performed independently for each frame,
provided that enough reliable 2D–3D correspondences are visible.
This results in a time-varying projection matrix (P(t) orH(t)) that
captures the frame-specific pose of the camera. Other approaches
such as camera stabilisation techniques (Bailey et al., 2018) and
structure-from-motion (SfM) can also be used to estimate time-
varying camera geometry directly from natural scene features
(Schonberger and Frahm, 2016).

3.3 Point tracking

Once cameras have been calibrated, points of interest (such as
anatomical landmarks, joint centres or the estimated centre of mass
of the head) can be identified and tracked across successive video
frames. In general, point tracking methods involve the identification
and subsequent tracking of specific points or landmarks on an
athlete’s body or equipment over a sequence of images. Historically,
this process was performed through “manual digitisation” or “point-
click” techniques, whereby researchers meticulously clicked on and
marked points of interest frame-by-frame (Colyer et al., 2018;
Yeadon and Challis, 1994; Hedrick, 2008). While advancements
have introduced semi-automated tracking algorithms, these often
still require initial manual seeding to define the points of interest
(Hedrick, 2008). Recent developments in computer vision and deep
learning have also enabled fully automated markerless tracking
systems, which will be discussed in more detail in Section 4.

In the context of HAEs, accurate point tracking has primarily
been used to estimate impact velocities and other collision

parameters, which in turn inform physical reconstructions,
computational simulations, and injury risk assessments. Some of
the earliest attempts at estimating head accelerations in sporting
collisions relied on point tracking techniques in the absence of
wearable sensors to measure player speeds around the instant of
impact, which were then used in physical reconstructions to estimate
head kinematics (McIntosh et al., 2000; Newman et al., 1999;
Withnall et al., 2005).

A range of both 2D and 3D point tracking methods have been
developed in the literature, with the choice of method often
depending on the available camera setups in a chosen setting and
the specific requirements of the analysis. In 2D point tracking, a
single calibrated camera is used to track points in a plane, while in
3D point tracking, two or more calibrated cameras are used to
reconstruct the 3D position of points in space. A schematic
illustration of the process of 2D point tracking using a single
camera is shown in Figure 4. In this example, a point in 3D
space is viewed by a single calibrated camera, and the tracked x
and y positions are extracted as time series data. Similarly, Figure 5
illustrates 3D point tracking, where a point in 3D space is viewed by
two or more calibrated cameras, allowing the tracked x, y, and z
positions to be reconstructed as time series data.

Table 2 provides a summary of a number of point tracking
methods which have been used in the literature to estimate
kinematic outcome measures associated with HAEs. Where
specified in the original studies, the table includes details of the
setting and method specifications (including camera configurations,
recording specifications, calibration approaches, points tracked,
kinematic outcomes, and validation methods) in order to provide
context for each of the methods in a manner consistent with the
CHAMP reporting checklist in Table 1. Table 2 also includes
references to relevant case studies demonstrating practical
applications of these methods in real-world scenarios.

Note that when a camera’s sample rate is referred to as
deinterlaced, this means that the original interlaced video (typical
with broadcast footage) has been converted to a progressive format,
effectively doubling the frame rate for analysis purposes. When
measuring positions in interlaced frames, there are two possible
positions, whereas the deinterlaced frames correctly provide both
positions in sequence, thereby improving the accuracy of motion
tracking and kinematic calculations. However, the accuracy of
deinterlaced footage depends on the method used: for instance,
simple line-doubling or field-repeating methods may introduce
artefacts, while motion-compensated deinterlacing offers more
accurate reconstruction at the cost of computational complexity
(Sugiyama and Nakamura, 1999). As such, appropriate deinterlacing
techniques should be applied and clearly reported when analysing
interlaced footage in HAE studies (Neale et al., 2022).

As shown in Table 2, a wide variety of camera configurations,
calibration procedures, tracking strategies, and outcome measures
have led to the development of a diverse range of point tracking
methods for analysing HAEs. These methods have supported a
range of practical applications, influencing both research and policy.
In some cases (such as studies in American football, rugby, and
Australian Rules) the estimated velocities from point tracking have
been used primarily as surrogate measures of impact magnitude,
without being applied in further modelling or reconstruction. For
example, Campolettano et al. (2018) noted that their method,
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alongside wearable sensors, could be directly used to inform the
design of impact testing conditions that better reflect youth football
collisions.

In contrast, other studies have further leveraged point tracking
as a foundation for more in-depth biomechanical analysis. The
approach developed by Post et al. (2018), which involved tracking
helmet markers to estimate skating speed in ice hockey, has been
widely applied in follow-up HAE research. Extracted velocities from
this method have been used to drive physical reconstructions
investigating the influence of athlete age (Chen et al., 2023),
playing position (Butterfield et al., 2023), and rule changes
related to body contact (Krbavac et al., 2024), to name a few
examples only. Crucially, these reconstructions have enabled
further evaluation of brain injury risk based on the resulting
head kinematics, demonstrating that a relatively simple point
tracking approach can provide the foundation for sophisticated
biomechanical modelling and injury risk assessment.

However, it should be emphasised that each method has been
designed and validated within the context of a specific sport or
activity and thus may not be directly transferable to other settings
without additional validation. For example, several studies in
American football (Taylor et al., 2019; Karton et al., 2020; Vale
et al., 2022; Meliambro et al., 2022) have cited the accuracy
demonstrated by Post et al. (2018) for a 2D point tracking
method for measuring player impact velocities in ice hockey to
support their own measurement approaches. However, differences
in camera configurations, calibration protocols, and the features
tracked mean that such validation results may not be generalisable
beyond their original context. This highlights the importance of
initiatives such as the CHAMP project, which advocates for
transparent reporting and rigorous validation of video-based
analysis methods for HAEs (Arbogast et al., 2022).

The observed differences in camera setups across point tracking
studies also have important implications for the scalability and wider
applicability of these methods. In particular, the financial and
logistical demands associated with high-end camera
configurations can limit their use beyond elite sporting contexts.
For example, studies by McIntosh et al. (2000) and Hendricks et al.

(2012), conducted in rugby and Australian Rules football, used
footage from multiple broadcast-quality cameras to reconstruct
player kinematics. While such setups were shown to yield high-
fidelity data, and may be readily available in elite environments
where broadcast footage is routinely captured, they are clearly less
suited to large-scale research efforts focused on non-professional
settings, where such infrastructure is unlikely to exist. By contrast,
lower-cost approaches such as the single pitchside camera method
used by Campolettano et al. (2018), or the multi-GoPro
configuration employed by Gyemi et al. (2021), offer more
practical and affordable alternatives. These methods can be
deployed more flexibly in training sessions or amateur
competitions with minimal setup, reducing both financial barriers
and the practical burden of collecting and processing large volumes
of video data.

This variety in methods and their practical applications has
also contributed to a range of reported accuracies. When
measuring the velocities of ice skaters during slow and fast
trials, Post et al. (2018) observed variations in the accuracy of
their 2D point tracking method, with mean absolute errors of
approximately 0.2–0.7 m/s for slow skating speeds (around
4.5 m/s) and 0.4–1.3 m/s for fast speeds (around 7 m/s).
Hendricks et al. (2012) reported mean differences of
0.11–0.62 m/s between their video-derived speeds and timing
gates on rugby fields, and in American football, Campolettano
et al. (2018) measured player velocities ranging from 0.2 to 5.4 m/
s, reporting mean errors under 10% (suggesting absolute errors
up to about 0.5 m/s). Using a 3D point tracking method with
multiple cameras, Gyemi et al. (2023) validated helmet impact
velocities in controlled drop tests (4.5–6.1 m/s) and found
relative errors below 3.4% in optimal camera configurations,
equivalent to absolute errors below 0.22 m/s, but noted higher
errors (up to 10.9% or 0.55 m/s) when camera angles were
suboptimal. However, inconsistencies in validation procedures,
sample sizes, and the choice of reference standards make it
difficult to directly compare the accuracy of different methods.
Standardised reporting of camera placements, calibration steps,
and statistical validation metrics will support clearer cross-study

FIGURE 3
Illustration of the camera calibration process using (a) known reference points in the scene, such as fieldmarkings for 2D planar calibration, and (b) a
typical 3D calibration object, such as a chessboard or calibration grid, for 3D calibration.
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comparisons, but direct comparison will remain challenging due
to the inherent variability in sports contexts, camera setups, and
tracking techniques.

In addition, few studies have explicitly quantified the manual
workload associated with these approaches. Nevertheless, it is
evident that methods requiring manual digitisation or semi-
automated tracking with manual point seeding are inherently
limited in their scalability, particularly for exposure studies that
demand the analysis of hundreds or thousands of HAEs across many
frames. For example, Campolettano et al. (2018) analysed only a
subset (50) of the 336 high-acceleration game impacts recorded,
citing practical limitations such as insufficient field markings or
camera movement preventing the establishment of a reliable
reference grid. These constraints highlight how manual or
labour-intensive methods, while feasible for focused case studies,
can become prohibitively time-consuming in larger-scale
applications.

Finally, another crucial limitation of most point tracking methods
is that they are primarily used to estimate translational parameters,
such as linear velocity or displacement, while providing little or no
information about rigid body orientations, such as that of the head, for
example,. This is because tracking a single point on an object does not
sufficiently constrain its rotation in three-dimensional space.
Therefore, multiple (3 or more) non-collinear markers are required
to resolve rotational degrees of freedom reliably in this context
(Marchand et al., 2016), which comes with the challenges of
marker visibility and extensive manual effort. As a result, point-
tracking methods typically do not capture the full six degrees of
freedom motion of the head during HAEs. This is a significant
drawback, since rotational motion has been shown to be a major
contributor to brain injury risk (Ji et al., 2014; Bian and Mao, 2020;
Kleiven, 2013). Consequently, alternative approaches have been
developed in an effort to estimate both translation and rotation
parameters for HAEs.

FIGURE 4
Illustration of 2D point tracking, showing (a) the movement of a point in 3D space over time, viewed by a single calibrated camera, (b) the tracked x
and y positions (assuming planar motion), and (c) the corresponding time series data for the tracked position.
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3.4 Model-based image matching

An alternative to point tracking methods is the use of model-
based image matching (MBIM) techniques, which involve aligning a
3Dmodel of an object of interest (e.g., a human body or helmet) with
the corresponding observed instance of the object in the video
frames. Originally developed and validated to measure 6 DOF
motion for the pelvis, hip and knee during simple movements
such as jogging and side step cutting in a laboratory setting
(Krosshaug and Bahr, 2005), MBIM methods have since been
adapted to estimate kinematic parameters associated with HAEs
in a variety of sports contexts. Figure 6 illustrates an example in
which a 3D head model has been aligned with the observed head in
frames of a video depicting a head impact.

Several studies cite the use of “uncalibrated” video as a benefit
of MBIM methods (Stark N. E.-P. et al., 2025; Krosshaug and
Bahr, 2005). While these studies do not use explicit camera
calibration prior to video recording, as with a number of the

point tracking methods in the previous section, they utilise
objects of known dimensions present in the scene to establish
the necessary scale and spatial references needed for meaningful
measurement. For example, some studies achieve this by using
known field markings (Tierney et al., 2018a) or full 3D scans of
stadiums (Bailey et al., 2018; Jadischke et al., 2019) to reconstruct
camera positions and orientations relative to a global coordinate
system, enabling measurement of both absolute position and
orientation of the head or helmet in a global frame. Stark N. E.-P.
et al. (2025), bypass the need for environmental calibration
altogether by relying on a known size 3D headform or helmet
model being matched directly to the video. This model
calibration approach defines a local scale around the head
itself, which enables estimates of head position, depth motion,
and rotational pose relative to the camera to be obtained, even in
footage where the wider scene remains unmeasured. Therefore,
while MBIMmethods may not require explicit camera calibration
in the traditional sense, the fundamental requirement of a

FIGURE 5
Illustration of 3D point tracking, showing (a) themovement of a point in 3D space over time, viewed by two calibrated cameras, (b) the reconstructed
x, y, and z positions, and (c) the corresponding time series data for the tracked position.
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reference object or model of known size remains essential for
accurate measurement.

Table 3 summarises a number of MBIM methods which have
been used in the literature to estimate kinematic outcome measures
associated with HAEs. As with Table 2, the table includes details of
the setting and method specifications in a similar manner to the
CHAMP reporting checklist in Table 1.

As shown in Table 3, there is once again considerable variation
in camera setups used across MBIM studies. These range from
multi-camera broadcast systems (Bailey et al., 2018), to pitch-side
GoPro arrays (Jadischke et al., 2019), and even single-camera
surveillance footage (Stark N. E.-P. et al., 2025). As noted earlier,
calibration procedures also differ greatly in both cost and
practicality. At one end of the spectrum are resource-intensive
approaches involving full 3D scans of stadium environments
(Bailey et al., 2018; Jadischke et al., 2019), while other studies
used more accessible methods involving localised calibration by
aligning a 3D model of the headform or helmet directly to the video
frames (Stark N. E.-P. et al., 2025).

These differences extend beyond calibration to the broader
implementation of MBIM, particularly in how six degree of
freedom model alignment, and subsequent calculation of
kinematic data, is achieved. Studies have used a range of software
environments, including commercial packages such as Poser
(Tierney et al., 2018a) and SideFX Houdini (Bailey et al., 2018),
as well as in-house tools developed using the Godot game engine
(Stark N. E.-P. et al., 2025). The model positioning methodology also
varies. For instance, Bailey et al. (2018) describe a two-stage process
in which the translational path of an American football helmet is
first estimated by fitting an outline to the helmet in each frame,
followed by manual adjustment of all six degrees of freedom to align
the virtual and video helmet markings. Other studies describe
approaches such as self-assessing alignment based on minimising
discrepancies in visible facial features (e.g., edges, nose, eyes, mouth)
(Stark N. E.-P. et al., 2025), or manipulating a 3D skeleton model
frame-by-frame to match the skull orientation to that of the cadaver
model present in the video (Tierney et al., 2018a). Once model
alignment is complete, positions and orientations are typically
converted into velocities using numerical differentiation. To
mitigate the noise introduced by this numerical differentiation
process, various strategies have been employed, ranging from
fitting interpolating cubic spline polynomials (Tierney et al.,

2018a) to applying traditional filtering techniques, such as low-
pass Butterworth filters guided by fast Fourier transforms of the
positional data (Bailey et al., 2018).

Naturally, it follows that the variety in setups associated with
MBIM methods has led to a range of reported accuracies. Using
multiple camera views and environmental alignment, Tierney et al.
(2018a) reported errors ranging from 0.42 ± 0.07 m/s to 1.29 ± 0.21
m/s for head velocities spanning −10.9 to 1.2 m/s. In American
football, Bailey et al. (2018) and Jadischke et al. (2019) applied
MBIMwith 3D scans of the playing environment to calibrate camera
positions, achieving mean errors of about 9% (0.4 m/s) and 10.7%
(0.24 m/s), respectively. More recently, Stark N. E.-P. et al. (2025)
demonstrated that a model-based calibration can produce a
comparable error of approximately 0.7 ± 9.5% (0.01 ± 0.33 m/s),
for resultant head impact speed in uncalibrated single-
camera videos.

Despite methodological differences between MBIM and point
tracking techniques, the outcome measures reported in MBIM
studies are often similar to those derived from point tracking
(primarily translational kinematics) with the notable addition of
rotational velocity estimates in some cases. As with point tracking
studies, the extracted velocity data are rarely used beyond basic
comparisons of raw magnitudes. For instance, Bailey et al. (2020)
used MBIM to compare impact velocities across different contact
scenarios (e.g., helmet-to-helmet, helmet-to-shoulder, etc.) with the
goal of producing a biomechanical characterisation of concussive
events, but did not extend their analysis into further modelling or
simulation.

Of the studies listed in Table 3, only Stark N. E. P. et al. (2025)
used MBIM-derived velocities as input for downstream modelling
beyond simple magnitude comparisons. In their study of elderly
falls, linear head impact velocities obtained fromMBIMwere used to
inform drop-weight impact testing conditions. Outside the peer-
reviewed literature, England (2025) also applied a MBIM approach
to extract helmet orientation at the moment of impact between ball
and helmet in cricket, which was then used to support physical
reconstructions of injury events. To the authors’ knowledge,
however, no published computational modelling studies of HAEs
have explicitly detailed the use of MBIM-derived kinematics to
initialise their simulations, despite the clear potential of MBIM to
provide full-body pose data for this purpose (Bailly et al., 2017;
Frechede and McIntosh, 2007; Fréchède and Mcintosh, 2009; Gildea

FIGURE 6
Overview of the MBIM approach to HAE measurement for a video sampled at 50 Hz.
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et al., 2024; McIntosh et al., 2014; Tierney and and Simms, 2017;
Tierney et al., 2018b; Tierney and Simms, 2019; Tierney et al., 2021).
For example, Fréchède and Mcintosh (2009) describe using
HYPERMESH to manually recreate pre-impact player positions
for multibody simulation in MADYMO (a method later
referenced by McIntosh et al. (2014)) but do not provide
methodological detail or validation of a complete MBIM
protocol. In other cases, researchers have opted for alternative
approaches: Tierney and Simms (2019) used marker-based
motion capture to stage rugby union tackles in the lab, from
which initial conditions for MADYMO simulations were
extracted, while Gildea et al. (2024) employed a deep learning-
based pose estimation method (see Section4) to initialise similar
computational reconstructions of cyclist falls.

A significant drawback of MBIM, perhaps limiting its
widespread use for informing model positioning for
computational and physical reconstructions, is the time-
consuming nature of the manual model alignment process.
For example, a case study of a single rugby HAE required an
estimated 60 h of manual effort by one researcher to complete the
MBIM procedure across three camera views, where only the
orientation of the head was estimated in each frame (Tierney
et al., 2019). When full-body orientation is required, this effort
would increase substantially. Results are also sensitive to small

inconsistencies in how the model is positioned and scaled in each
frame, which Stark N. E.-P. et al. (2025) addressed by using an
iterative re-tracking process to refine alignment until the
measurement error fell below a set threshold, emphasising the
need for well-trained operators. This repeated refinement further
adds to the time demands, limiting the practicality of MBIM for
large datasets or real-time applications.

4 Deep learning

As discussed earlier, videogrammetric analysis of HAEs has
often been limited by practical and technical limitations such as
occlusions, frame rate restrictions, highly labour intensive processes,
and the difficulty of recovering six degrees of freedom motion from
uncalibrated monocular footage. In recent years, advances in
machine learning (particularly deep learning) have provided
powerful solutions to these challenges in other domains, enabling
scalable and automated extraction of complex spatiotemporal
features from video data. These methods are now gaining
traction in the context of HAE analysis, and more specifically in
quantitative video analysis, where they hold significant promise for
reducing manual workload and enhancing the accuracy and
completeness of motion estimation.

TABLE 3 Overview of selected model-based image matching methods used in estimating kinematic outcomes associated with HAEs, including method
description and case studies where the method is applied.

Setting Method Method description Case
studies

Camera(s) Recording
Parameters

Calibration Bodies
Tracked

Outcome
Measures

Validation

American
Football

Bailey et al.
(2018)

11 broadcast
cameras in seven
standard
recording
locations

60 and 240 Hz
(deinterlaced);
1,000–18,600 px
per helmet

3D laser scan of
field and stadium

Helmet Linear and
rotational
velocities; pre,
during and
post HAE

3D motion capture
(1000 Hz)

Bailey et al.
(2018),
Bailey et al.
(2020)

Jadischke
et al. (2019)

15 stationary
GoPro
Hero6 action
cameras

Lab validation:
240 Hz,
1920 × 1080 px;
On-field: 120 Hz,
2704 × 1520 px

3D laser scan of
field and stadium

Head (skull
segment)

Linear and
rotational velocity;
pre-impact and
resultant change

Anthropomorphic
Test Dummy (ATD)
sensor data

Jadischke
et al.
(2019),
Jadischke
et al. (2020)

Skiing Yamazaki
et al. (2015)

4 cameras,
unspecified
location/motion

50 Hz
(deinterlaced);
1920 × 1080 px

Terrain
coordinates and
camera positions
measured with
global navigation
satellite system

5-segment
skeletal model:
pelvis (parent
segment),
abdomen,
chest, neck,
head

Linear (normal and
tangential to slope)
and rotational
(frontal plane tilt)
pre- and post-
impact velocities;
impact angle

No direct validation,
uncertainty
estimated using
constant velocity
assumption

Yamazaki
et al. (2015)

Falls in care Stark et al.
(2025b)

1 stationary
camera, various
heights and
distances

30 Hz;
1920 × 1080 px

Model-based
calibration (to-
scale 3D headform
and helmet
models)

Headform in
drop tests;
helmet/head
in participant
ladder falls

Linear impact
velocities

Speed gate (drop
tests), 3D motion
capture (ladder falls)

Stark et al.
(2025b),
Stark et al.
(2025a)

Automotive Tierney
et al.
(2018a)

3 stationary
digital video
cameras

100 Hz;
800 × 600 px

Known laboratory
dimensions

Head (skull
segment)

Linear and
rotational velocities
of head pre, post
and during impact

3D motion capture
(1000 Hz)

Tierney
et al.
(2018a)

Rugby Tierney
et al. (2019)

3 broadcast
cameras

25 Hz;
1280 × 720 px

Field dimensions Head and
pelvis

Linear and angular
velocities
(maximum
change)

No direct validation Tierney
et al. (2019)
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Traditional ML methods (such as support vector machines and
random forests) have been effective in processing lower-dimensional
wearable sensor data. However, these methods do not scale
effectively to the high-dimensional, non-linear nature of video
data. The shift to deep learning has therefore not only improved
performance but also enabled new applications, particularly in
video-based pose estimation and motion reconstruction.

This section traces the evolution of machine learning techniques
relevant to the quantitative analysis of HAEs, beginning with early
sensor-based applications of classical methods and progressing
toward recent advances in deep learning for image- and video-
based approaches. It also draws on developments from related
domains that demonstrate promising potential for advancing
HAE quantification specifically through video analysis.

4.1 Context and motivation

Traditional machine learning methods have played a
foundational role in classifying, detecting, and quantifying HAEs
from wearable sensor data. These approaches typically involve
hand-engineered features derived from time-series signals such as
linear acceleration and angular velocity. For example, Wu et al.
(2017) used a support vector machine to detect impacts from
accelerometer data, while Gabler et al. (2020) expanded this work
by benchmarking multiple classification algorithms and handcrafted
feature sets. Zhan et al. (2023) applied random forests to subtype
impacts and used nearest-neighbour regression to estimate brain
strain, showing the potential of classical ML models in injury
modelling. Other applications include distinguishing between
head and body impacts (Goodin et al., 2021) and generating
synthetic head impact signals using low-rank representations via
principal component analysis (PCA) (Arrué et al., 2020).

More relevant to quantitative video analysis are the earliest
algorithmic attempts to automate the estimation of human and
object motion from video. Silhouette-based techniques such as the
visual hull method (Laurentini, 1994) formed the foundation for
early markerless motion capture systems (Corazza et al., 2010),
enabling coarse reconstruction of human movement without
physical markers. As machine learning methods developed,
classical algorithms were adopted for pose and motion
estimation. These included the use of random decision forests for
real-time 3D human pose estimation from depth images (Shotton
et al., 2011), support vector machines paired with handcrafted
spatiotemporal features for action recognition (Wang et al.,
2011), and kernel ridge regression and nearest-neighbour
approaches for estimating full-body 3D pose from monocular
video (Ionescu et al., 2014). However, these early methods were
typically constrained to laboratory environments with controlled
lighting and camera setups. In the context of HAEs, practical
limitations, such as the scarcity of ground truth data in real-
world sport settings and the visual challenges posed by
occlusions and fast motion (to which early methods were not
robust), have limited their widespread adoption for quantitative
video analysis in this field.

The advent of deep learning (LeCun et al., 2015) has driven rapid
advancements in video analysis, significantly expanding what is
possible when estimating human movement from “in-the-wild”

images (Bogo et al., 2016). Convolutional Neural Networks
(CNNs) have emerged as the foundational architecture for spatial
feature extraction in images and video. Introduced by Lecun et al.
(1998) and popularised in computer vision tasks by Krizhevsky et al.
(2012), CNNs can learn spatial filters that capture local patterns such
as edges, shapes, and textures. In the context of HAE analysis, Rezaei
and Wu (2022) used a CNN backbone to classify football headers
from cropped video clips. To capture temporal dependencies,
Recurrent Neural Networks (RNNs) and particularly LSTMs
(Hochreiter and Schmidhuber, 1997) have been widely used.
These models are capable of modelling sequential data by
maintaining hidden states that evolve over time, making them
well-suited to recognising events that unfold across multiple
timesteps or frames. Kern et al. (2022) employed LSTM networks
to detect HAEs in time-series data from wearable sensors. More
recently, transformer architectures (Vaswani et al., 2017) have
gained popularity due to their scalability and ability to model
long-range dependencies using self-attention mechanisms. These
models have seen early applications in biomechanics, including pose
tracking, video frame interpolation, and temporal upsampling.
Einfalt et al. (2023), for instance, used a transformer-based model
to uplift and upsample low sample rate 2D pose estimations to
higher temporal resolutions in 3D. Figure 7 illustrates the
representative examples of CNN, LSTM, and transformer
architectures mentioned above.

With modern deep learning methods demonstrating strong
performance in human pose estimation, and video-based motion
analysis more broadly, their application to HAEs is beginning to
emerge. The remainder of this section highlights these early deep
learning efforts, both those applied directly to HAE analysis and
promising approaches from adjacent domains that offer clear
potential for future adaptation.

4.2 Action detection

While this review focuses primarily on methods for the
quantitative measurement of HAEs from video, it is important to
acknowledge the foundational role that automated event detection
and localisation plays in enabling such measurements at scale. In
large video datasets, the initial task of identifying where and when
HAEs occur is often the most time-consuming and labour-intensive
stage of the analysis pipeline (as described in Section 2.2). Manual
review workflows, such as those employed in many exposure studies,
involve frame-by-frame inspection of footage to locate potential
HAEs, a process that is not only slow and resource-intensive but also
prone to inconsistency across annotators (Patton et al., 2020).
Therefore, although these methods may not yield quantitative
kinematic data directly, their ability to efficiently localise events
of interest is critical for making subsequent measurement methods
(e.g., point tracking, MBIM, or pose estimation) practically viable.

The detection of HAEs by applying deep learning techniques to
wearable sensor data has been considered. Motiwale et al. (2016)
explored the use of multilayer perceptrons for impact detection,
while Kern et al. (2022) introduced long short-term memory
(LSTM) networks to account for temporal dynamics. Raymond
et al. (2022) developed a physics-informed neural network that
integrates domain knowledge with data-driven learning. More
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FIGURE 7
Examples of deep learning architectures applied to video analysis of HAEs and pose estimation domains: (a) a convolutional neural network (CNN)
architecture for header classification (Rezaei andWu, 2022), (b) a recurrent neural network (RNN) architecture for header detection (Kern et al., 2022), and
(c) a transformer architecture for temporal upsampling (Einfalt et al., 2023).
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recent works have extended deep learning applications to tasks such
as kinematic denoising (Zhan et al., 2024a) and the estimation of
impact characteristics (e.g., location, speed, force) from time-series
sensor data using LSTM-based models (Zhan et al., 2024b).

With respect to video analysis, specifically, Giancola et al. (2023)
and Rezaei and Wu (2022) fine-tuned existing CNN-based models
to automatically detect headers in football, while Azadi et al. (2024)
addressed a similar problem regarding impacts in ice hockey.
Mohan et al. (2025) extended this line of work to rugby, using
temporal action localisation techniques to detect head-on-head
collisions. Reported model accuracies vary depending on sport
and dataset complexity, as well as the evaluation metrics used to
benchmarkmodel performance. For example, Rezaei andWu (2022)
reported a sensitivity of 92.9% (indicating the model’s ability to
correctly identify true head contact events) and a precision of 21.1%,
reflecting a high number of false positives relative to true positives.
Mohan et al. (2025) reported a lower sensitivity of 68%, suggesting
more missed events, while Azadi et al. (2024) reported only a
validation accuracy of 87%, which measures the overall
proportion of correctly classified instances in a held-out
validation set, without distinguishing between false positives and
false negatives.

The majority of these methods adopt a modular architecture,
using object detection models to crop relevant video regions (e.g.,
around the ball or players), which are then passed to a separate
action classification model. For example, Rezaei andWu (2022) used
a YOLO-based ball tracker to crop image patches, which were then
fed into a temporal shift module (TSM) (Lin et al., 2019) with a
ResNet-50 backbone (He et al., 2015). Similarly, Azadi et al. (2024)
and Mohan et al. (2025) implemented player or head detection to
crop and isolate regions of interest for classification. By contrast,
Giancola et al. (2023) developed a fully end-to-end approach using
uncropped broadcast video and popular architectures such as
NetVLAD++ (Giancola and Ghanem, 2021) and PTS (Hong
et al., 2022) for direct action spotting. These models differ
substantially in complexity. The ResNet-50 backbone used in
Rezaei and Wu (2022) includes around 25 million trainable
parameters, making it computationally expensive to train from
scratch. In contrast, Azadi et al. (2024) used a more compact
long-term recurrent convolutional network (LRCN) (Donahue
et al., 2016) with an estimated 100,000 parameters, while Mohan
et al. (2025) describe a small 3D CNN of unspecified size. These
simpler architectures offer advantages in deployment, albeit
potentially at the cost of detection performance. Transfer
learning and fine-tuning of pretrained models, such as ResNet-50
trained on the widely used Kinetics human action dataset (Kay et al.,
2017), were employed by Rezaei and Wu (2022) to reduce the
computational cost of training a large network from scratch and to
leverage knowledge learned from similar datasets.

In all cases discussed here, training has relied on manually
annotated datasets of ground truth head impacts, often sourced
from elite sport broadcast footage. This not only raises ethical and
legal considerations for researchers (e.g., content rights), but also
presents a highly labour-intensive bottleneck preceding model
training. For example, the dataset used by Rezaei and Wu (2022)
consisted of 4,843 manually annotated head contact events, while
(Azadi et al., 2024) manually annotated 150 events, later
augmented to 600.

The issues discussed here highlight the practical importance of
reusing pretrained models and aligning with existing open-source
efforts where possible. For instance, the latest release of the
SoccerNet action spotting challenge includes annotated headers
(Cioppa et al., 2024), offering a useful benchmark for association
football-specific HAE detection tasks. Such datasets can serve as a
foundation for fine-tuning rather than full re-training of models
from scratch, significantly reducing the development burden for
prospective models in the field of HAE research.

4.3 Pose estimation

As stated earlier, with the focus of this review being on
quantitative video analysis methods from which kinematic
parameters can be extracted, an area of significant interest in the
field of HAE study is that of pose estimation (Edwards et al., 2021;
Tierney, 2021). In the computer vision field, the goal of the pose
estimation task is to detect the position and orientation of a person
or an object. By definition, this objective therefore aligns closely with
the goals of videogrammetric techniques such as MBIM, and to a
lesser extent, point tracking, which were discussed in Section 3.

Pose estimation can offer deeper biomechanical insight into
HAEs than simple action detection approaches, as it enables the
tracking of body segment kinematics throughout an event. In
general, pose estimation involves predicting the 2D or 3D
positions of anatomical landmarks across video frames, and can
be applied to reconstruct full-body or joint-specific motion
dynamics. Yuan et al. (2024a), Yuan et al. (2024b) used pose
estimation to model the dynamics of skiing and other fall events,
while Gildea et al. (2024) applied similar techniques to reconstruct
cyclist crash kinematics. In rugby, pose tracking has been used to
quantify joint motion during staged tackles (Blythman et al., 2022)
and to inform injury risk classification models based on tackle
biomechanics (Martin et al., 2021; Nonaka et al., 2022). To date,
pose estimation accuracy in the context of HAE analysis has only
been evaluated in a controlled laboratory setting by Blythman et al.
(2022). In that study, a pre-trained 3D pose estimation model
(Iskakov et al., 2019) achieved “out-of-the-box” mean per-joint
position errors (the average Euclidean distance between predicted
and ground truth joint locations, from marker-based motion
capture) of approximately 47mm. Importantly, however, no
studies have thus far attempted a direct comparison between
such markerless motion capture systems and the traditional
approaches like MBIM discussed in Section 3. As a result, it
remains unclear how their relative accuracies compare in practice.

Several studies have identified the potential of pose estimation
for head acceleration event (HAE) analysis (Edwards et al., 2021;
Tierney, 2021; Rezaei andWu, 2022); however, systematic validation
of these methods in real-world sports settings using large-scale
ground truth pose datasets remains in its early stages. Efforts
such as the WorldPose dataset (Jiang et al., 2024), used to
benchmark monocular pose estimation in broadcast football
footage, mark important progress toward closing this gap (albeit
in a related but distinct domain to HAEs). The dataset includes
88 association football video sequences with approximately
2.5 million ground truth full-body poses. Notably, constructing
such a dataset is significantly more complex than those
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developed for action detection models. As part of their annotation
process, Jiang et al. (2024) used multi-camera bounding box
tracking, initial 2D and 3D pose estimation, followed by
bootstrapping and bundle adjustment processes to correct
inaccuracies in the initial predictions, particularly those caused
by occlusions or poor visibility. As a result, developing a
comparable dataset specifically for HAE analysis would demand
substantial financial resources and manual effort.

In parallel, practical deployment of player tracking and pose
estimation in real-world sports settings is increasingly being
explored through systems that rely on lower-quality, monocular
video. For example, commercial tools such as Spiideo offer cloud-
based player tracking using fixed-position broadcast-style cameras,
which are already deployed in many elite and semi-professional
sporting environments. Similarly, UAV-based videogrammetry has
shown promise in capturing full-body kinematics from single or
multiple aerial camera views, even in outdoor, unstructured
environments. Approaches such as DroCap (Zhou et al., 2018)
and FlyCap (Xu et al., 2016) have demonstrated that drone-
mounted cameras can also be used to reconstruct 3D human
pose. Despite indicating the potential for low-cost player tracking
and pose estimation with more flexible camera setups, these
methods come with additional technical and regulatory
challenges that could further limit their widespread adoption in
HAE contexts.

Furthermore, a key limitation in using many of the generic
human pose estimation models for head tracking lies in their
representation of the head. Many models treat the head as a single
point or segment rigidly linked to the neck/torso without
resolving its independent motion, which limits their ability to
resolve full six degrees of freedom motion. Advances in
parametric human mesh models, such as HybrIK (Li et al.,
2022), HybrIK-X (Li et al., 2023), and GLAMR (Yuan et al.,
2022), enable more detailed recovery of local head motion,
though often still rely on coarse body-level cues. More precise
results have been achieved using dedicated head pose estimation
networks that directly regress six degree of freedom pose from
cropped head regions (Hempel et al., 2022; 2024; Martyniuk et al.,
2022; Cobo et al., 2024). A recent benchmark by Kupyn et al.
(2024) showed that specialised head pose models outperformed
full-body estimators on challenging sequences, supporting their
adoption for accurate video-based head motion recovery. Hasija
and Takhounts (2022) bypassed the need for explicit head pose
estimation by using a deep learning model (combining CNNs and
LSTMs) to directly predict head kinematics from frames of
simulated crash videos, achieving correlation coefficients for
predicted peak angular velocities of 0.73, 0.85, and 0.92 for
X,Y, and Z components, respectively. The model was,
however, trained and evaluated on entirely synthetic data
under ideal conditions, which limits its applicability to real-
world scenarios.

4.4 Video quality enhancement

An avenue which potentially presents greater actionability in the
near-term is in the use of deep learning for various video quality
enhancement processes, with Stark N. E.-P. et al. (2025) noting the

potential benefit of using advanced algorithms, such as motion
deblurring techniques or deep learning-based video enhancement,
as a preliminary step to mitigate the effects of motion blur in
MBIM analysis.

Deep learning-based motion deblurring and denoising
methods offer a promising avenue to improve low-quality
footage for quantitative analysis of HAEs. Models such as
DeblurGAN-v2 (Kupyn et al., 2019) and Restormer (Zamir
et al., 2022) have shown strong performance in recovering
detail from motion-blurred video sequences. More generally,
efforts have also addressed the task of increasing the spatial
(pixel) resolution of low-resolution images and videos. For
example, ESRGAN (Wang et al., 2018) and Real-ESRGAN
(Wang X. et al., 2021) use generative adversarial networks to
enhance image resolution while preserving realistic textures and
sharpness. Video-specific approaches such as BasicVSR++ (Chan
et al., 2021) extend this capability to temporal sequences,
maintaining consistency across frames. These spatial
enhancement techniques may prove particularly useful in
scenarios requiring precise localisation of visual features, such
as helmet markings, facial keypoints, or anatomical joint centres
for landmark tracking and model alignment. However, it is
important to note that these models do not recover true
resolution in a physical sense. Instead, they infer plausible
high-frequency content based on learned priors from their
training data, and should therefore be applied with caution,
particularly in relation to footage with characteristics that
differ substantially from the original training data of the model.

In the wider field of biomechanics, there is also growing interest
in the use of deep learning methods to enhance the temporal
resolution of video, representing a potentially delimiting factor in
the analysis of low sample rate video footage. Although such
techniques have not yet seen widespread application in HAE
analysis, they have shown promise in related domains. For
example, Einfalt et al. (2023) demonstrated that transformer-
based models can perform temporal upsampling, learning to
upsample low-frame-rate pose data and thereby reconstruct
kinematics at finer temporal scales. Similarly, Dunn et al. (2023)
applied video frame interpolation to recover sub-frame motion
details in the context of human gait analysis. These approaches
could be especially valuable in sports applications, where high-speed
impacts often occur between frames, and accurately capturing fine-
grained motion dynamics is critical for understanding injury
mechanisms and improving predictive modelling.

Together, these video enhancement techniques may serve as
valuable preprocessing tools that improve the reliability and
accuracy of downstream quantitative methods, especially when
analysing HAEs in low quality or existing video datasets, where
reshooting is not an option. However, as with any of the deep
learning methods discussed throughout this section, it is vital that
care is taken, particularly where models are applied in scenarious
which differ significantly from their training data.

5 Discussion

As shown throughout this review, quantitative video analysis
represents a promising yet underutilised approach for the study of
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HAEs in sport. While wearable sensors remain the primary method
for measuring HAE kinematics in the field, they are subject to several
limitations, including poor coupling to the skull (Wu et al., 2016b),
varying accuracy with proximity of impact to sensor (Le Flao et al.,
2025), user discomfort or non-compliance (Roe et al., 2024), and
high false-positive rates that necessitate time-consuming manual
verification (Patton et al., 2020). Video-based approaches (especially
when quantitative rather than qualitative) offer a flexible, scalable,
and non-invasive alternative that can supplement or, in certain
contexts, replace sensor-based methods by providing estimations of
key kinematic parameters associated with HAEs.

An overview of the videogrammetric tools and techniques
currently used to extract HAE kinematics from video has been
provided, with a particular focus on current capabilities of widely-
used point tracking and MBIM methods. These approaches, while
validated in controlled environments (Bailey et al., 2018; Tierney
et al., 2018a), remain labour-intensive and limited by the frame rate
and camera coverage of the source footage. As such, their application
to routine, “in-the-wild” (i.e., real-world, uncontrolled settings
outside of a laboratory) sports analysis remains limited in
practice. MBIM pipelines typically require hours of manual effort
per impact (Tierney et al., 2019), as a result of typically requiring
manual model alignment required across multiple camera views,
thus constraining their scalability in large datasets or real-
time settings.

Recent developments in deep learning and computer vision
present significant opportunities to overcome these limitations.
Markerless pose estimation models (Zheng et al., 2023),
specialised head pose networks (Asperti and Filippini, 2023), and
action detection pipelines (Giancola et al., 2023; Rezaei and Wu,
2022) now enable the automatic detection and tracking of head,
body and object motion directly from video, including broadcast
footage. To potentially improve accuracy of both traditional and
deep learning approaches, additional video quality enhancement
steps leveraging modern deep learning algorithms may be of use.
Methods for temporal upsampling (Einfalt et al., 2023) also offer the
potential to recover motion signals at frame rates that exceed the
source video, opening the door to higher-fidelity kinematic
reconstruction in scenarios where camera sampling rate would
otherwise be a limiting factor.

Despite these advances, several key challenges remain. Many
current pose estimation models still treat the head as a single point
or segment rigidly linked to the neck/torso without resolving its
independent motion, which limits their ability to resolve full six
degrees of freedom motion. Second, the generalisability of these
models to real-world, high-occlusion sports environments remains
an open question; many pose estimation networks are trained on
clean, lab-style datasets with well-lit scenes and unobstructed views.
Third, there is a lack of standardised evaluation protocols for
validating these models in the context of HAE biomechanics.
Efforts to incorporate quantitative video measures into workflows
in which downstream predictions of brain injury metrics, such as
peak angular acceleration, or predicted brain strain (Zhan et al.,
2021) are obtained remain in their infancy (Yuan et al., 2024a;
Karton et al., 2025), and thus their accuracy on a large scale remains
to be demonstrated.

To realise the full potential of video-based HAE analysis, several
future research directions are recommended:

• Domain specific benchmark datasets: Publicly available video
datasets with ground-truth kinematic data and action labels,
following the precedent set by other sports research efforts
such as WorldPose (Jiang et al., 2024) and SoccerNet (Deliege
et al., 2021), within the HAE research domain would facilitate
fair comparison of quantitative video-based methods.

• Domain-specific models: Pose and head tracking models
trained or fine-tuned on sports video (especially those
involving collisions, occlusions, and rapid motion) will
likely outperform generic “out-of-the-box” models.

• End-to-end pipelines: Complete end-to-end pipelines
combining action detection, pose estimation, wearable
sensors, and brain strain prediction could lead to practical
tools for automated, scalable analysis of HAEs (either in real-
time or retrospectively).

• Standardised reporting: Adoption of reporting frameworks
such as the CHAMP checklist (Arbogast et al., 2022) across
both traditional and machine learning-based video analysis
pipelines will improve reproducibility and allow more
meaningful cross-study comparison.

In summary, it appears that quantitative video analysis has
the potential to transition from a labour-intensive supplementary
tool to a viable method for measuring, reconstructing, and
modelling HAEs in sport. Realising this potential, however,
will require continued methodological development and
rigorous validation efforts. With these advances, video-based
approaches could play a central role in large-scale exposure
surveillance, retrospective concussion analysis, and, ultimately,
real-time decision support to enhance athlete safety.
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