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Objective: This study aims to compare the effectiveness of 13 artificial
intelligence (AI)-assisted rehabilitation strategies for individuals with
musculoskeletal disorders (MSDs), categorized based on different intervention
types, including AI feedback systems, exergaming platforms, telerehabilitation,
and robotic solutions. The analysis focuses on improvements in pain relief,
functional outcomes, and range of motion (ROM), based on a network meta-
analysis (NMA) of randomized controlled trials (RCTs).
Methods: A systematic review and NMA were conducted in accordance with
PRISMA guidelines. Four databases (PubMed, Embase, Cochrane Library, Web of
Science) were searched for RCTs published between January 2000 and April
2025. A total of 33 RCTs involving participants with MSDs were included.
Interventions were categorized into 13 AI-assisted rehabilitation strategies. The
outcomes were grouped into three domains: pain, functional outcomes, and
ROM. Surface under the cumulative ranking curve (SUCRA) values and mean
ranks were used to compare the relative effectiveness of each intervention. The
Risk of Bias (RoB 2) tool was used to assess the bias risk of the studies, and the
Confidence in Network Meta-Analysis (CINeMA) tool was applied to evaluate the
credibility of the evidence.
Results: For pain relief, Therapeutic Exergaming (SUCRA = 87.6%) and Robotic
Exoskeleton (SUCRA = 86.3%) ranked highest. In functional outcomes, Gamified
Exergaming (SUCRA = 99.6%) and Hybrid Physical Therapy combined with
Exergaming (SUCRA = 81.2%) showed superior results. For ROM, Single-Joint
Rehab Robot (SUCRA = 84.7%) and AI-Feedback Motion Training (SUCRA =
83.7%) were most effective. Conventional or Usual Care and Asynchronous
Telerehabilitation consistently ranked lower across all outcomes.
Conclusion: This study demonstrates that AI-assisted rehabilitation strategies
significantly improve pain relief, functional recovery, and ROM in individuals with
MSDs. Interventions such as Therapeutic Exergaming, Robotic Exoskeletons,
Gamified Exergaming, and Single-Joint Rehab Robots performed excellently in
their respective domains, highlighting the potential of AI technologies in
personalized treatment and enhancing patient recovery. However, further
long-term research is needed to confirm the sustained effects of these
interventions and optimize their clinical application.
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1 Introduction

Musculoskeletal disorders (MSDs), such as osteoarthritis,
tendinopathies, and postoperative impairments, are among the
leading causes of disability worldwide (Wang et al., 2024). These
conditions not only significantly hinder individuals’ ability to
perform daily activities but are also closely linked to chronic pain,
reduced quality of life, and escalating healthcare costs (Gaskin and
Richard, 2012). Rehabilitation is a key component in managing
MSDs, aiming to alleviate pain, restore functional outcomes, and
improve range of motion (ROM) (Alaca et al., 2025). However,
traditional rehabilitation methods often face challenges, such as
varying patient adherence, lack of personalization, delayed
feedback mechanisms, and high resource demands (Ntantos
et al., 2020).

In recent years, artificial intelligence (AI) has emerged as a
transformative force in rehabilitation medicine (Topol, 2019). AI
technologies harness advanced algorithms to process complex
physiological, biomechanical, and behavioral data, providing real-
time, individualized feedback, dynamically adjusting training
intensity, and customizing therapy plans based on patient-
specific progress (Davenport and Kalakota, 2019). These
innovations have led to the development of a wide range of
AI-assisted rehabilitation strategies, including AI-driven
prescription platforms, motion-feedback systems, robotic
exoskeletons, virtual reality (VR)-enhanced therapies, and
technology-supported telerehabilitation programs (Louie and
Eng, 2016).

The rapid expansion of digital health infrastructure, combined
with a growing focus on remote, data-driven, and patient-centered
care, has facilitated the clinical integration of intelligent
rehabilitation technologies (Meskó et al., 2017). These systems
are increasingly used to complement traditional physical therapy
or function as independent interventions in outpatient and home
settings (Delnevo et al., 2021). With their potential to enhance
clinical outcomes, improve patient engagement, and increase access
to rehabilitation services, AI-assisted rehabilitation approaches are
becoming a key area of research (Lanotte et al., 2023). However,
despite the growing body of randomized controlled trials (RCTs)
evaluating individual AI-based interventions, there remains a
significant gap in comprehensive, comparative evidence that
synthesizes their effectiveness across key rehabilitation
outcomes—namely pain relief, functional recovery, and ROM
improvement (Kapil et al., 2025). This evidence gap hinders
clinical decision-making and impedes the optimal
implementation of the most effective interventions.

Network meta-analysis (NMA) provides a robust framework to
address this gap by enabling simultaneous comparisons of multiple
interventions, incorporating both direct and indirect evidence (Jiang
et al., 2025). Due to the diversity and complexity of AI-assisted
approaches, NMA is particularly well-suited for evaluating their
relative performance. The present study, therefore, seeks to conduct

a systematic review and NMA of RCTs evaluating 13 distinct AI-
assisted rehabilitation strategies for individuals with MSDs.
Focusing on three key outcomes—pain relief, functional recovery,
and ROM—this study aims to identify the most effective
interventions and contribute to the growing evidence supporting
intelligent, outcome-driven rehabilitation practices.

2 Methods

2.1 Study protocol and reporting standards

This systematic review and NMA was conducted in accordance
with the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) 2020 guidelines (Page et al.). The
PRISMA checklist is available in the supplementary materials.
The review protocol was prospectively registered in the
International Prospective Register of Systematic Reviews
(PROSPERO) under registration number CRD420251057777.

2.2 Data sources and search strategy

A comprehensive literature search was performed across four
electronic databases: PubMed, Embase, the Cochrane Library, and
Web of Science (Bramer et al., 2017). The search covered
publications from January 2000 to April 2025 and targeted RCTs
evaluating AI-assisted rehabilitation for MSDs.

The strategy combined both keywords and Medical Subject
Headings (MeSH) related to MSDs, AI, rehabilitation, and
randomized trials, using Boolean operators (AND, OR). No
language restrictions were applied. The complete PubMed search
syntax is provided in Supplementary Table S1.

2.3 Study selection

Studies were selected according to the PICOS framework:
Population (P): adults with musculoskeletal disorders (MSDs),
including osteoarthritis, tendinopathies, ligament or tendon
injuries, postoperative rehabilitation, and chronic
musculoskeletal pain; Interventions (I): AI-assisted
rehabilitation strategies classified into 13 types (e.g., AI-
feedback motion training, AI-prescription apps,
telerehabilitation, VR-based therapies, exergaming, robotic
systems, multimodal platforms); Comparators (C): conventional
or usual care, or other AI/digital interventions; Outcomes (O):
pain, functional outcomes, and range of motion (ROM) measured
with validated tools (e.g., VAS, WOMAC-Function, KOOS-ADL,
goniometry); Study design (S): randomized controlled trials.
Exclusion criteria were non-randomized designs, absence of AI-
assisted components, or lack of relevant outcome data.
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2.4 Data extraction

Two reviewers independently extracted the following
information from each eligible study: first author and year of
publication, country, study design and sample size, participant
characteristics, intervention and control details, duration of
intervention, and outcome measures. Discrepancies were resolved
through discussion or consultation with a third reviewer (Büchter
et al., 2020). In addition to these study-level variables, we also
extracted detailed rehabilitation protocol characteristics (e.g.,
intervention frequency, session duration, supervision, setting, and
exercise type) to allow meaningful comparison across trials.

2.5 Classification and characteristics of
13 AI-assisted rehabilitation interventions

AI-assisted rehabilitation encompasses a wide range of
approaches with different technological foundations, delivery
formats, and therapeutic objectives. To ensure systematic
comparison and consistency with our subsequent network meta-
analysis (NMA), all included interventions were categorized into
13 distinct types, spanning AI-based systems, robotics, virtual reality
(VR), telerehabilitation, exergaming, and multimodal platforms
(The detailed classification is summarized in Table 1).

As summarized in Table 1, AI-assisted rehabilitation
interventions can be categorized according to their underlying
technologies and therapeutic objectives. AI-based systems, such
as AI-feedback training and prescription apps, focus on real-time
monitoring and dynamic personalization; robotics, including
exoskeletons and single-joint rehabilitation robots, deliver
mechanical assistance for patients with severe impairments; VR-
based approaches, whether feedback- or immersion-oriented,
provide engaging virtual environments to facilitate motor
recovery and balance; telerehabilitation, in synchronous or
asynchronous formats, enhances accessibility while varying in
therapist involvement; exergaming, which may be gamified or
therapeutic, integrates exercise with motivational or clinically
designed game tasks; and multimodal platforms combine several
technologies, such as AI, VR, and robotics, to offer comprehensive
rehabilitation solutions. This classification framework forms the
analytical foundation of our NMA, enabling structured comparisons
across diverse AI-assisted strategies and their relative effects on pain,
range of motion, and functional outcomes.

2.6 Risk of bias assessment

The risk of bias for each included study was assessed using the
Cochrane RoB 2 tool (Delgado et al., 2018). Seven domains were

TABLE 1 Classification of AI-Assisted rehabilitation interventions.

Intervention type Definition (with representative references) Main features Intended rehabilitation
goals

AI-Feedback Motion
Training

Uses sensors and AI algorithms to analyze motion and provide real-
time feedback (Topol, 2019; Sánchez-Gil et al., 2025)

Corrects posture, personalized
feedback

Improve movement accuracy,
reduce compensations

AI-Prescription App AI-powered app generates individualized rehab plans from patient
data (Lanotte et al., 2023; Alshami et al., 2025; Jin et al., 2018)

Dynamic plan adjustment, self-
management

Personalize therapy, optimize
adherence

Asynchronous
Telerehabilitation

Patients follow pre-set rehab plans independently, feedback provided
later (Rasa, 2024; Abedi et al., 2024; Collado-Mateo et al., 2017)

High flexibility, no real-time
supervision

Enable home-based rehab, reduce
access barriers

Synchronous
Telerehabilitation

Real-time remote rehab guided by therapist (Alfieri et al., 2022;
Timurtas et al., 2023; Azma et al., 2018)

Live interaction, immediate
adjustments

Enhance adherence, ensure correct
performance

Gamified Exergaming Exercise integrated with gamemechanics (scores, rewards) (Timurtaş
et al., 2025; Anan et al., 2021)

Fun, motivational elements Increase engagement, improve
compliance

Therapeutic Exergaming Clinically designed game-based tasks supervised by professionals
(Rasa, 2024; Maeda et al., 2024; Marcuzzi et al., 2023)

Goal-oriented, therapeutic
alignment

Achieve specific functional
outcomes

Feedback VR Platform VR with integrated motion feedback (Davenport and Kalakota, 2019;
Jiang et al., 2025; Dahl-Popolizio et al., 2014)

Immersive training + corrective
feedback

Improve sensorimotor control,
functional recovery

Immersive VR System Fully immersive VR world for training (Davenport and Kalakota,
2019; Louie and Eng, 2016; Bossen et al., 2013; Cetin et al., 2022)

High ecological validity, intensive
training

Enhance balance, mobility,
cognitive-motor integration

Multimodule Digital App Digital app integrating AI, monitoring, and feedback (Kapil et al.,
2025; Abedi et al., 2024; Jin et al., 2018)

Comprehensive management
(exercise, pain, tracking)

Support holistic recovery, promote
adherence

Multimodal Digital
Platform

Combines AI, VR, robotics in one platform (Delnevo et al., 2021;
Jiang et al., 2025; Hardt et al., 2018)

Multidimensional therapeutic
support

Address physical, psychological,
functional needs

Robotic Exoskeleton Wearable robotic device assisting locomotion/upper limb (Topol,
2019; Louie and Eng, 2016; Bäcker et al., 2021)

Provides mechanical support Restore walking ability, mobility in
severe impairments

Single-Joint Rehab Robot Robotic device targeting a specific joint (Topol, 2019; Davenport and
Kalakota, 2019; Ditch et al., 2020)

High-precision repetitive training Regain joint function, increase ROM

Hybrid PT + Exergaming Conventional physiotherapy combined with exergames (Alfieri et al.,
2022; Timurtas et al., 2023; Anan et al., 2021)

Blends clinical rigor with
engagement

Improve clinical outcomes while
maintaining motivation
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evaluated: (1) Random sequence generation (selection bias), (2)
Allocation concealment (selection bias), (3) Blinding of participants
and personnel (performance bias), (4) Blinding of outcome assessment
(detection bias), (5) Incomplete outcome data (attrition bias), (6)
Selective reporting (reporting bias), and (7) Other bias. Risk of bias
judgments were categorized as “low risk,” “some concerns,” or “high
risk” in accordance with the RoB 2 manual. Any discrepancies between
reviewers were resolved by discussion and consensus. Additionally, the
CINeMA tool was used to assess the credibility of each comparison,
evaluating factors such as imprecision, heterogeneity, and indirectness.
This tool helped determine the quality of evidence for each comparison
based on a systematic evaluation of these factors.

2.7 Outcomes

The primary outcomes of interest were classified into
three domains:

1. Pain–measured using the Visual Analog Scale (VAS),
Numerical Rating Scale (NRS), or comparable tools
(Delgado et al., 2018);

2. Functional outcomes–assessed using validated scales such as
the KOOS–Activities of Daily Living (KOOS–ADL) and the
WOMAC–Function subscale (Roos and Lohmander, 2003;
Bellamy et al., 1988);

3. ROM–evaluated using goniometry or other clinically accepted
measurement instruments (Hanks and Myers, 2023).

If multiple assessment tools were reported for the same domain,
preference was given to widely validated and frequently applied
instruments (e.g., VAS or NRS for pain; KOOS–ADL or
WOMAC–Function for functional outcomes). When different
tools were used across studies within the same outcome domain,
their scores were harmonized by converting them into standardized
mean differences (SMDs). This approach ensured that results
derived from heterogeneous instruments could be pooled and
compared on a common scale.

2.8 Statistical analysis

The NMA was conducted using Stata version 15.1 (StataCorp,
College Station, TX), applying a random-effects model to account for
between-study heterogeneity. Treatment effects were ranked based on
the surface under the cumulative ranking curve (SUCRA), mean rank,
and the probability of being the best treatment (PrBest) (Rücker and
Schwarzer, 2015). Consistency between direct and indirect evidence
was assessed using both the design-by-treatment interaction model
and node-splitting analyses (Dias et al., 2013). Network plots were
generated to illustrate the structure of treatment comparisons.
Potential publication bias was evaluated through comparison-
adjusted funnel plots, used to visually assess the presence of small-
study effects (Chaimani and Salanti, 2012). All statistical analyses were
performed separately for each of the three outcome domains: pain,
functional outcomes, and ROM.

Subgroup analyses were additionally conducted according to
participant characteristics (mean age <60 vs. ≥60 years), baseline

disease severity (mild–moderate vs. moderate–severe
musculoskeletal disorders), and clinical condition (acute
postoperative vs. chronic musculoskeletal pain conditions,
including chronic low back pain, chronic neck pain, knee
osteoarthritis, and fibromyalgia).

3 Results

3.1 Study selection

A total of 1,542 records were retrieved from PubMed, Embase,
Cochrane Library, and Web of Science. After removing
476 duplicates, 1,066 records were screened by title and abstract.
Of these, 953 were excluded for irrelevance. Among the 113 full-text
articles assessed for eligibility, 8 were unavailable. Of the remaining
105 studies, 72 were excluded due to lack of a control group, missing
outcome data, unmatched interventions, or non-RCT design.
Ultimately, 33 RCTs were included in the final analysis. The
detailed selection process is illustrated in the PRISMA flow
diagram (Figure 1).

3.2 Study characteristics

A total of 33 RCTs, conducted between 2013 and 2024 across
15 countries, were included in this review (Albanese et al., 2021;
Allen et al., 2018; Anan et al., 2021; Azma et al., 2018; Bäcker et al.,
2021; Bini and Mahajan, 2017; Bossen et al., 2013; Cetin et al., 2022;
Collado-Mateo et al., 2017; Dahl-Popolizio et al., 2014; Ditch et al.,
2020; Hardt et al., 2018; I et al., 2019; Jin et al., 2018; Kim et al., 2014;
Kotani et al., 2020; Maeda et al., 2024; Marcuzzi et al., 2023; Mete
and Sari, 2022; Piqueras et al., 2013; Prabhu et al., 2020; Rini et al.,
2015; Sarig et al., 2018; Sarig Bahat et al., 2015; Tanaka et al., 2017;
Toelle et al., 2019; Tripuraneni et al., 2021; Yoon and Son, 2020; Yu
et al., 2023; Zadro et al., 2019; Zhang et al., 2024; Timmers et al.,
2019; Mehrholz et al., 2020). All studies involved participants with
MSDs and compared AI-assisted rehabilitation strategies with
conventional or usual care. Sample sizes ranged from 8 to
327 participants. The interventions were categorized into
13 predefined AI-assisted types. The duration and frequency of
interventions varied, from single-session treatments to 12-month
rehabilitation programs. Reported outcomes included pain,
functional outcomes, and ROM, with many studies contributing
data to multiple outcome domains. A summary of the study
characteristics is provided in Supplementary Table S2. In
addition to the classification of interventions, we summarized the
rehabilitation protocols across included RCTs (Supplementary
Table S2a), highlighting variations in frequency, session duration,
supervision, setting, and exercise type, which are critical for
interpreting clinical outcomes.

3.3 Risk of bias assessment summary

The risk of bias for all included studies was assessed using the
Cochrane RoB 2 tool, with the results summarized in Supplementary
Figure S1. Most studies were rated as having low risk or some
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concerns, with “deviations from intended interventions” identified
as the most common high-risk domain. Additionally, the CINeMA
tool was used to assess the credibility of each comparison. Most
comparisons were rated with high confidence; however, issues such
as heterogeneity and inconsistency were common concerns, leading
to lower confidence ratings for some comparisons. For further
details on the comparisons and credibility ratings, please refer to
Supplementary Tables S3–S5.

3.4 Network meta-analysis

NMAwere conducted separately for each of the three primary
outcome domains: pain, functional outcomes, and ROM.
Consistency between direct and indirect evidence was assessed
using node-splitting analysis, and treatment rankings were
evaluated based on SUCRA values. The results for each
outcome domain are reported in the following subsections.
For clarity in network plots and statistical analyses, each
intervention type was assigned a standardized abbreviation
(e.g., AI-App = AI-Prescription App, Control = Conventional

or Usual Care). A complete list of intervention categories and
their corresponding abbreviations is provided in
Supplementary Table S6.

3.4.1 Pain outcomes
A total of 13 AI-assisted interventions and a control group were

evaluated for their effectiveness in reducing pain. Figures 2A,B
illustrate the network structure and the corresponding SUCRA-
based rankings. The top-ranked interventions included Therapeutic
Exergaming (SUCRA = 87.6%), Robotic Exoskeleton (SUCRA =
86.3%), and Gamified Exergaming (SUCRA = 73.7%). In contrast,
Asynchronous Telerehabilitation (SUCRA = 4.2%) and
Conventional or Usual Care (SUCRA = 12.0%) consistently
ranked among the lowest across all comparisons. For a
comprehensive summary of SUCRA rankings across all
interventions and outcomes, please refer to
Supplementary Table S11.

Relative treatment effects are summarized in the league table
(see Supplementary Figure S2). Interventions such as Therapeutic
Exergaming, Robotic Exoskeleton, Feedback VR Platform, and
Gamified Exergaming demonstrated more favorable performance

FIGURE 1
PRISMA flow diagram of study selection.

Frontiers in Bioengineering and Biotechnology frontiersin.org05

Luo et al. 10.3389/fbioe.2025.1660524

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1660524


compared to Conventional or Usual Care and other comparators.
Node-splitting analysis revealed no significant inconsistency
between direct and indirect evidence (P > 0.05), and detailed
results are provided in Supplementary Table S7.

3.4.2 Functional outcomes
A total of 12 AI-assisted interventions and a control group were

assessed for their effectiveness in improving functional outcomes.
Figures 3A,B illustrate the network structure and corresponding

FIGURE 2
(A) Network plot of pain comparisons. (B) SUCRA ranking of interventions for pain.
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SUCRA rankings. The highest-ranked interventions included
Gamified Exergaming (SUCRA = 99.6%), Hybrid Physical Therapy
combined with Exergaming (SUCRA = 81.2%), and Therapeutic
Exergaming (SUCRA = 80.4%). In contrast, Conventional or Usual

Care (SUCRA = 17.1%) and AI-FeedbackMotion Training (SUCRA =
17.8%) consistently ranked among the lowest across all comparisons.
For a comprehensive summary of SUCRA rankings across all
interventions and outcomes, please refer to Supplementary Table S11.

FIGURE 3
(A) Network plot of functional outcomes comparisons. (B) SUCRA ranking of interventions for functional outcomes.
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Relative treatment effects are presented in the
league table (see Supplementary Figure S3). Interventions
such as Gamified Exergaming and Therapeutic Exergaming
demonstrated consistently favorable performance across the

network. Node-splitting analysis revealed no
significant inconsistency between direct and indirect
evidence (P > 0.05); detailed results are provided in
Supplementary Table S8.

FIGURE 4
(A) Network plot of ROM comparisons. (B) SUCRA ranking of interventions for ROM.
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FIGURE 5
Comparison-adjusted funnel plots. (A) Pain outcome; (B) Functional outcomes; (C) ROM.
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3.4.3 ROM outcomes
A total of 9 AI-assisted interventions and a control group were

assessed for their effects on ROM. Figures 4A,B present the network
structure and the corresponding SUCRA rankings. The top-
performing interventions were Single-Joint Rehab Robot
(SUCRA = 84.7%), AI-Feedback Motion Training (SUCRA =
83.7%), and Therapeutic Exergaming (SUCRA = 76.8%). In
contrast, Conventional or Usual Care (SUCRA = 15.0%) and
Gamified Exergaming (SUCRA = 31.2%) consistently ranked
among the lowest across all comparisons. For a comprehensive
summary of SUCRA rankings across all interventions and outcomes,
please refer to Supplementary Table S11.

Relative treatment effects are presented in the league table (see
Supplementary Figure S4). Interventions such as AI-Feedback
Motion Training, Therapeutic Exergaming, and Single-Joint
Rehab Robot demonstrated greater improvements in ROM
compared to other interventions. Node-splitting analysis revealed
no significant inconsistency between direct and indirect evidence
(P > 0.05); detailed results are provided in Supplementary Table S9.

Subgroup analyses are summarized in Supplementary Table S10,
which presents pooled effect sizes, heterogeneity estimates, and
statistical significance across subgroups. The results suggest that
younger patients and those with mild-to-moderate musculoskeletal
disorders benefited more, while acute postoperative populations
showed more pronounced short-term improvements, although
evidence on long-term effects in elderly or more severe cases
remains limited.

3.5 Assessment of publication bias

Comparison-adjusted funnel plots were used to evaluate
potential publication bias (Albanese et al., 2021). As shown in
Figures 5A–C, the funnel plots for pain, functional outcomes,
and ROM appeared generally symmetric, indicating a low risk of
selective reporting or small-study effects.

4 Discussion

The findings of this NMA provide valuable insights into the
comparative effectiveness of AI-assisted rehabilitation strategies for
MSDs in improving pain relief, functional outcomes, and ROM.
This study synthesizes evidence from 33 RCTs, offering a robust
framework to guide clinical decisions and future research in the field.

4.1 Summary of main findings

Pain Relief: The most effective interventions for pain relief were
Therapeutic Exergaming (SUCRA = 87.6%) and Robotic
Exoskeleton (SUCRA = 86.3%). These interventions involve
active movement and external support, facilitating improved pain
management through task-specific exercises and robotic assistance.
Notably, Asynchronous Telerehabilitation and Conventional or
Usual Care demonstrated lower effectiveness, highlighting the
critical importance of real-time feedback and interaction in
rehabilitation (Louie and Eng, 2016; Jackson et al., 2014).

Functional Outcomes: Gamified Exergaming (SUCRA = 99.6%)
emerged as the top intervention for functional recovery, followed by
Hybrid Physical Therapy combined with Exergaming (SUCRA =
81.2%) and Therapeutic Exergaming (SUCRA = 80.4%). The
gamified approach, which incorporates exercise with engaging
game elements, significantly improved patient adherence,
resulting in superior functional outcomes compared to more
traditional rehabilitation methods (Sánchez-Gil et al., 2025; Zhu
et al., 2023).

ROM: Single-Joint Rehab Robot (SUCRA = 84.7%) and AI-
Feedback Motion Training (SUCRA = 83.7%) were the most
effective interventions for ROM improvement. These
interventions, which focus on targeted, joint-specific
rehabilitation, outperformed more general rehabilitation strategies
such as Gamified Exergaming and Conventional or Usual Care
(Kapil et al., 2025; Giggins et al., 2013).

4.2 Interpretation of Results

4.2.1 Pain relief
The results of this analysis indicate that Therapeutic Exergaming

and Robotic Exoskeletons are the most effective interventions for
pain relief, with Therapeutic Exergaming (SUCRA = 87.6%) and
Robotic Exoskeletons (SUCRA = 86.3%) ranking highest in the
NMA. The underlying mechanism driving the effectiveness of these
interventions likely lies in their ability to combine active
rehabilitation with external support and real-time feedback.
Therapeutic Exergaming, which integrates exercise and gaming
elements, engages patients in task-specific movements that are
not only therapeutic but also enjoyable. By involving the patient
in goal-directed activities, this method enhances motivation and
helps manage pain through increased physical activity, which has
been shown to release endorphins and promote pain reduction
(Louie and Eng, 2016; Levin et al., 2015). Additionally, the external
support provided by the Robotic Exoskeletons helps alleviate the
burden of movement on the patient’s joints and muscles, reducing
strain and mitigating pain, especially in patients with severe
impairments. Robotic exoskeletons are designed to assist with
precise, controlled movements, which not only improve
functional capacity but also help in pain modulation by
promoting proper alignment and reducing compensatory
movements that might exacerbate pain (Davenport and Kalakota,
2019; Subramanian et al., 2010).

On the other hand, Asynchronous Telerehabilitation (SUCRA =
4.2%) and Conventional or Usual Care (SUCRA = 12.0%)
consistently ranked the lowest across all outcome domains. This
finding is consistent with previous research suggesting that
interventions that lack real-time, personalized feedback are less
effective in providing pain relief. Asynchronous
Telerehabilitation, which relies on pre-recorded materials and
lacks synchronous interaction with healthcare providers, may fail
to address the immediate needs of patients, such as correcting
improper movements or adjusting therapy intensity. The absence
of real-time engagement reduces the opportunity for timely
adjustments, which is critical in managing pain effectively,
especially in patients with chronic conditions or acute flare-ups
(Topol, 2019; Koepp et al., 1998).
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4.2.2 Functional outcomes
The results for functional outcomes show that Gamified

Exergaming (SUCRA = 99.6%) is the most effective intervention,
followed by Hybrid Physical Therapy combined with Exergaming
(SUCRA = 81.2%) and Therapeutic Exergaming (SUCRA = 80.4%).
The superiority of Gamified Exergaming underscores the
importance of patient engagement in rehabilitation. Traditional
rehabilitation methods often struggle with patient adherence,
especially when exercises become repetitive or monotonous.
However, by integrating game mechanics, such as rewards, levels,
and competitive elements, Gamified Exergaming addresses this
challenge by making rehabilitation more enjoyable and
motivating. The ability of game-based platforms to provide
immediate, tangible rewards helps increase intrinsic motivation,
which is critical for sustained participation and functional recovery
(Sánchez-Gil et al., 2025; Li et al., 2021).

These findings are consistent with the concept of “gamification,”
which has been shown to increase both short-term and long-term
engagement in rehabilitation programs. Additionally, Gamified
Exergaming often incorporates real-time feedback and progress
tracking, which allows patients to visualize improvements in their
functional abilities. This not only provides motivation but also
reinforces the patient’s sense of accomplishment, contributing to
better functional recovery (Alfieri et al., 2022; Barry et al., 2014).

In contrast, AI-Feedback Motion Training (SUCRA = 17.8%)
and Conventional or Usual Care (SUCRA = 17.1%) ranked
significantly lower for functional outcomes. Although AI-
Feedback Motion Training provides real-time feedback on
movement quality, it does not necessarily address the broader
functional issues that patients with MSDs face, such as strength,
endurance, or coordination. Functional recovery often requires a
multifaceted approach that involves not only improving movement
quality but also rebuilding strength, improving endurance, and
enhancing motor control, areas in which Gamified Exergaming
excels (Cottrell et al., 2017; Holden, 2005).

4.2.3 ROM
In terms of ROM, Single-Joint Rehab Robot (SUCRA = 84.7%)

and AI-Feedback Motion Training (SUCRA = 83.7%) were the most
effective interventions. The Single-Joint Rehab Robot focuses on
joint-specific rehabilitation, offering highly controlled, targeted
exercises that can precisely address the limitations in ROM
associated with specific musculoskeletal disorders. The precision
of these robots allows for incremental increases in joint mobility
without overstressing the joint, thereby promoting both recovery
and pain reduction. This approach is particularly beneficial for
patients with localized joint stiffness, such as those with knee or
shoulder osteoarthritis, where the joint’s range of motion is severely
restricted (Kapil et al., 2025; Langhorne et al., 2009).

AI-Feedback Motion Training, which involves real-time
monitoring and correction of movement patterns, also
demonstrated strong performance in improving ROM. The
feedback provided by the AI system enables patients to adjust
their movements instantly, ensuring that exercises are performed
correctly and efficiently. By preventing improper movements, which
can lead to further injury or discomfort, AI-Feedback Motion
Training helps patients optimize their rehabilitation process,
leading to greater improvements in joint mobility. Furthermore,

AI-Feedback Motion Training can be personalized to suit individual
needs, which may explain its effectiveness across a variety of MSDs
(Huang and Krakauer, 2009; Dobkin, 2004).

In contrast, Gamified Exergaming (SUCRA = 31.2%) and
Conventional or Usual Care (SUCRA = 15.0%) performed less
effectively in improving ROM. While Gamified Exergaming has
proven benefits in improving functional outcomes, it may not
provide the specific, targeted interventions needed to address
joint stiffness. As a more generalized exercise intervention, it may
not be able to provide the level of specificity required for patients
with significant ROM limitations. Conventional or Usual Care,
which typically lacks the personalization and intensity of AI-
assisted interventions, showed the lowest rankings, reinforcing
the idea that more tailored, technology-driven approaches are
superior for improving ROM (Cullen et al., 2012; Proffitt and
Lange, 2015).

4.2.3.1 Implications of findings
The findings from this study emphasize the transformative

potential of AI-assisted rehabilitation interventions, particularly
those that integrate real-time feedback, personalized treatment
plans, and gamification elements. These technologies represent a
shift from traditional rehabilitation approaches, offering a more
engaging, individualized, and precise means of addressing the
complex needs of patients with MSDs. The success of
interventions such as Therapeutic Exergaming, Robotic
Exoskeletons, and Gamified Exergaming suggests that integrating
technological advancements into rehabilitation practices can
significantly enhance patient outcomes (Benjamin et al., 2014;
Liloia et al., 2021; Laver et al., 2020).

However, the findings also highlight that not all AI-assisted
interventions are equally effective across all domains. For example,
while Gamified Exergaming excels in improving functional
outcomes, it may not be as effective in improving ROM, which
requires more targeted, joint-specific interventions. Similarly, AI-
Feedback Motion Training and Single-Joint Rehab Robot are highly
effective for ROM but may not address the broader aspects of
functional recovery in the same way as Gamified Exergaming
(Lashkari et al., 2010; Zhang et al., 2018; Krakauer et al., 2012).

This underscores the importance of tailoring rehabilitation
programs to the specific needs of individual patients. For
instance, a patient with significant ROM limitations may benefit
most from Single-Joint Rehab Robots or AI-Feedback Motion
Training, while a patient seeking functional recovery and
improved engagement may find Gamified Exergaming to be the
most beneficial. Personalized rehabilitation plans that combine
multiple interventions, leveraging the strengths of each
technology, may provide the best outcomes for patients with
MSDs (Guyatt et al., 2008; Brignardello-Petersen et al., 2018;
Kwakkel et al., 2008).

Building on these findings, scenario-based guidance may help
clinicians optimize intervention selection. For example, patients
with pronounced ROM limitations (e.g., post-arthroplasty or
joint contracture) may benefit most from Single-Joint Rehab
Robots or AI-Feedback Motion Training, which deliver targeted,
high-precision exercises. In contrast, patients struggling with
adherence or motivation may respond better to Gamified
Exergaming, where the integration of rewards and competition
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enhances engagement and supports functional recovery. Similarly,
individuals with severe mobility impairments may require the
mechanical support of Robotic Exoskeletons, while those seeking
accessible, home-based options could benefit from synchronous or
asynchronous telerehabilitation. Such scenario-specific
recommendations underscore the potential of AI-assisted
rehabilitation to provide not only effective but also personalized
therapeutic strategies tailored to patient needs and clinical contexts.

Furthermore, the subgroup analyses provide preliminary
evidence that age, baseline disease severity, and clinical condition
may act as important moderators of treatment response. Specifically,
younger and mild-to-moderate patients, as well as those in the acute
postoperative stage, appeared to experience greater short-term
benefits from AI-assisted rehabilitation, whereas evidence for
long-term effects in older or more severe patients remains limited.

Importantly, while the present evidence demonstrates clear
short-term improvements in pain, function, and ROM, it remains
uncertain whether these benefits persist in the long term. Sustained
rehabilitation outcomes likely depend on continuous patient
engagement, integration of AI tools into daily self-management,
and adherence over months or years. Only a few included RCTs
extended beyond 6–12 months, and their findings suggest that early
gains may attenuate without ongoing reinforcement. Thus, the
translation of short-term benefits into durable functional
recovery should be interpreted cautiously.

4.3 Limitations

While this study provides comprehensive insights, several
limitations must be acknowledged. First, the included studies varied
in terms of sample sizes, intervention durations, and outcomemeasures,
which could introduce heterogeneity into the analysis. Although the
NMAmethodology accounts for these differences, further research with
more standardized protocols is needed to enhance the reliability of the
findings (Wang et al., 2022). Additionally, the majority of included
studies were short-term, and thus the long-term effects of AI-assisted
rehabilitation interventions remain unclear. Future studies with
extended follow-up periods are essential to assess the sustainability
of the observed benefits (Taylor et al., 2017). Notably, the rehabilitation
protocols of included RCTs varied substantially in frequency, session
duration, supervision, setting, which may have influenced the observed
outcomes. Future trials should standardize and transparently report
these protocol elements to facilitate cross-study comparisons.

In addition, it should be noted that the credibility assessment
revealed major concerns for heterogeneity and incoherence in
several comparisons. This indicates that between-study variability
and potential inconsistency across direct and indirect evidence may
have influenced some treatment effect estimates. Consequently,
although SUCRA rankings provide a useful overview of relative
performance, the confidence in these rankings is tempered by these
methodological limitations. These issues highlight the need for
cautious interpretation of our findings and underscore the
importance of conducting further high-quality, standardized
RCTs to reduce heterogeneity and improve network consistency.

Another important limitation is that most included trials reported
only short-term outcomes, typically between 2 and 12 weeks. The lack of
long-term follow-up data restricts our ability to determine whether the

observed benefits of AI-assisted rehabilitation are sustained over time. As
a result, conclusions regarding the durability and clinical relevance of
these effects should be interpreted with caution. Future large-scale
studies with extended follow-up periods are essential to establish the
long-term efficacy, safety, and cost-effectiveness of these interventions.

4.4 Clinical implications

The results of this study have significant clinical implications.
Therapeutic Exergaming, Robotic Exoskeletons, and Gamified
Exergaming represent promising interventions that can enhance
patient outcomes in terms of pain relief and functional recovery.
Given their high patient engagement and potential for improving
adherence, these technologies could complement traditional
rehabilitation programs or even serve as standalone treatments in
outpatient or home settings. Clinicians should consider
incorporating these AI-assisted interventions into rehabilitation
programs for individuals with MSDs, particularly in settings where
traditional therapy may be limited by patient engagement or resource
constraints (Topol, 2019; Louie and Eng, 2016; Sánchez-Gil et al., 2025).

In terms of clinical applicability, the feasibility and scalability of AI-
assisted rehabilitation strategies should also be considered. Low-cost
and highly accessible approaches such as telerehabilitation, mobile
app–supported education/self-management, and exergaming are
feasible in routine care and home-based settings, with evidence
showing comparable effectiveness to conventional care and, in some
cases, lower short-termhealthcare costs (e.g., real-time telerehabilitation
for musculoskeletal conditions; randomized tele-rehab trials in knee
osteoarthritis; virtual in-home PT after total knee arthroplasty;
postoperative education apps) (Jirasakulsuk et al., 2022; Huo et al.,
2024; Prvu et al., 2020; Timmers et al., 2019). In contrast, robotics (e.g.,
electromechanical gait trainers, powered exoskeletons) can improve
selected outcomes but typically require substantial capital investment,
maintenance, trained personnel, and specialized space, which constrains
widespread deployment beyondwell-resourced centers (Mehrholz et al.,
2020; Li et al., 2021; Charette et al., 2023; Cano-de-la-Cuerda et al., 2024;
Postol et al., 2024). From a scalability perspective, mobile apps and tele-
platforms are attractive because they can be delivered remotely at
population scale, including to underserved regions, whereas robotics-
based interventions are less scalable at present due to budget impact and
implementation barriers despite growing evidence and emerging cost-
effectiveness analyses in specific health-system contexts (Timmers et al.,
2019; Pinto et al., 2020; Shankar et al., 2025). Addressing these practical
considerations is crucial for translating current evidence into real-world
rehabilitation practice.

4.5 Future research directions

This study highlights the need for further investigation into the
long-term effects of AI-assisted rehabilitation strategies. Future
research should focus on large-scale, multicenter trials that assess
the sustainability of the benefits observed in this NMA. Additionally,
studies exploring the combination of different AI-assisted
technologies (e.g., integrating AI-Feedback Motion Training with
Gamified Exergaming) may offer even more effective rehabilitation
solutions (Kapil et al., 2025; Alshami et al., 2025).

Frontiers in Bioengineering and Biotechnology frontiersin.org12

Luo et al. 10.3389/fbioe.2025.1660524

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1660524


Another important area for future research is the examination of
AI-assisted rehabilitation in diverse patient populations, including
those with different types of MSDs or comorbidities. Personalized
approaches that take into account individual patient characteristics,
such as severity of the condition, age, and functional status, are likely
to improve the efficacy of AI-assisted interventions (Topol, 2019;
Louie and Eng, 2016).

5 Conclusion

AI-assisted rehabilitation interventions, particularly
Therapeutic Exergaming, Robotic Exoskeletons, and Gamified
Exergaming, have shown significant potential in improving pain
relief, functional recovery, and ROM. These technologies offer
personalized, data-driven rehabilitation solutions that effectively
complement traditional treatment methods. However, further
research, especially long-term follow-up studies, is necessary to
assess the long-term effects of these interventions and to
optimize their integration into clinical practice.
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