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modulating macrophage
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Background: The treatment of infected burns is a major clinical challenge.
Platelet-rich fibrin produced via horizontal centrifugation (H-PRF) has been
characterized with antimicrobial and tissue regenerative properties.
Noteworthy, its lyophilized form (Ly-H-PRF), which can be conveniently
preserved, may also have similar regenerative potential for the treatment of
infected burns. The aim of this study was to investigate whether Ly-H-PRF
could promote wound healing and its regulatory mechanism in various in vitro
and in vivo models simulating infected burns/wounds.

Methods: Venous blood of healthy volunteers was drawn, horizontally
centrifuged at 700 RCF for 8 min, and lyophilized to obtain Ly-H-PRF. Ly-H-
PRF was dissolved in culture medium, and its antimicrobial effects were evaluated
on Staphylococcus aureus (S.a) and Escherichia coli (E.c) by the poured-plate
method. Furthermore, the effects of Ly-H-PRF on the cell cycle and polarization
of macrophages after lipopolysaccharide (LPS) stimulation were also investigated
by fluorescence staining and flow cytometry. The effects of Ly-H-PRF on skin
fibroblasts after LPS culture were also tested by flow cytometry, a transwell assay,
and a scratch assay. Lastly, a mouse second-degree burn model was used with
four groups, including 1) PBS, 2) S.a infection, 3) S.a infection + burn ointment, and
4) S.a infection + Ly-H-PRF. Histological assessment was used to investigate the
healing of the burn wound tissues, inflammatory cell infiltration, neo-collagenous
tissues, and macrophage polarization after 5 days.

Results: Ly-H-PRF effectively inhibited the growth of S.a and E.c. It also protected
macrophages from LPS-stimulated apoptosis and reduced LPS-induced
macrophage M1 polarization and promoted M2 polarization. Ly-H-PRF further
protected fibroblasts from LPS-stimulated apoptosis and facilitated fibroblasts
migration. In the in vivo burn wound model, S.a infections led to a greater wound
enlargement and ulceration at 5 days post-op, and routine use of burn ointment
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was less effective than treatment of infected wounds with Ly-H-PRF. Noteworthy,
the Ly-H-PRF promoted wound healing, reduced inflammatory cell infiltration, and
increased collagen synthesis.

Conclusion: The present study demonstrated that Ly-H-PRF promoted the healing
of infected burn wounds by exerting an antibacterial effect, requlating macrophage
polarization, and promoting skin fibroblast migration. Our results provide a pre-
theoretical basis for the clinical application of Ly-H-PRF as an economical and
convenient treatment for infection control and to promote tissue healing in
infected burn wounds.

KEYWORDS

lyophilized, horizontal centrifugation, platelet rich fibrin, infected burned wound,

macrophage

1 Introduction

Burns are caused by various factors, including flames caused
by fire, hot liquids, metals, chemicals, electric shocks, and
radiation (Jeschke et al., 2020). They can lead to mortality or
disability, dramatically reducing the patient’s wellbeing and
quality of life (Behera et al., 2025). According to a report by
the World Health Organization, approximately 300,000 people
die from burns worldwide each year (Peck, 2011; G et al., 2022).
Burns compromise the skin barrier, facilitating bacterial
invasion. Staphylococcus aureus (S.a) is a common skin
bacterium that can quickly colonize burn wounds and
potentially develop into an infection (Hernandez et al., 2021).
S.a is also one of the primary pathogens in hospital-acquired
infections. In burn units, the risk of infection has been shown to
increase during prolonged hospital stays, and when antibiotics
are over-prescribed (Liu et al., 2022). If burn wounds become
infected, immune dysregulation will subsequently occur, which
has been shown to roughly double the mortality rate among
patients (Lachiewicz et al., 2017). The key to managing burn
wounds is to achieve complete repair and regeneration as quickly
as possible, while minimizing infection, contracture, and scar
formation (Wang et al., 2018). Common clinical treatments such
as wound dressing care, negative pressure wound therapy,
debridement, and skin grafting have often been applied to
accelerate wound healing, though they can also lead to
sequelae such as scar hyperplasia and recurrent ulceration
(Shu et al., 2021; Wang et al., 2018).

In recent years, clinical researchers have increasingly
recognized the critical importance of growth factor delivery in
promoting wound healing in burn areas (Legrand and Martino,
2022). Platelet concentrates derived from the patient’s own blood
represent a more cost-effective option compared to using
recombinant growth factors. When applied to wounds, it
releases growth factors such as platelet-derived growth factor
(PDGF), transforming growth factor beta (TGF-p), and vascular
endothelial growth factor (VEGF), promoting vascularization
and tissue regeneration (Miron et al.,, 2025; Farshidfar et al,
2025a). Currently, platelet-rich fibrin (PRF), a second-generation
platelet concentrate, has gained widespread attention for its
significant benefits in the treatment of burns and various
acute/chronic wounds (Bai et al., 2023; Miron et al., 2017;
Farshidfar et al., 2025b; Pinto et al., 2000; Bilgen et al., 2021).
Results have demonstrated that PRF can improve infected
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wounds in an animal model (Silveira et al., 2023). PRF has
also exhibited strong anti-inflammatory properties, which can
help modulate inflammatory response and further support tissue
regeneration and healing (Strauss et al., 2020; Kargarpour et al.,
2021; Kargarpour et al, 2022). Additionally, PRF possesses
promising antimicrobial activity, which could potentially
reduce the risk of infection (Moraschini et al., 2000). Research
has further demonstrated that platelet extracts alone are even
capable of accelerating tissue formation, enhancing wound
thereby
shortening the recovery time and reducing the potential for

healing, and improving burn wound closure,
scarring caused by burns (Farshidfar et al, 2025b; Pinto
et al., 2000).

In recent years, it was shown that a novel preparation of PRF
using horizontal centrifugation (H-PRF) leads to a more favorable
way to optimize platelet counts and growth factor accumulation
(Miron et al., 2019; Miron et al., 2000; Qiu et al., 2023; Quirynen
et al., 2000; Farshidfar et al., 2000). This method, by employing
horizontal rather than fixed-angle centrifugation, yields a more
uniform distribution of viable cells with enhanced activity (Miron
et al., 2000; Farshidfar et al., 2000; Fujioka-Kobayashi et al., 2021).
Additionally, H-PRF has demonstrated a significantly stronger
antibacterial effect compared to fixed-angle PRF (Feng et al., 2020),
and the literature has also confirmed its anti-inflammatory
properties (Nasirzade et al.,, 2020).On the other hand, while the
use of PRF membranes has shown efficacy in treating burns, it
requires an immediate blood draw, which may not always be
possible or so readily available in fresh burn victims.
Additionally, it can be challenging to obtain the necessary
volume of blood in a single session for larger wounds.
Lyophilized PRF (Ly-PRF), prepared through freeze-drying, can
be stored at various temperatures for extended periods, both with
and even without refrigeration. It is conveniently rehydrated with
saline or another isotonic solution when needed, making it highly
practical. Freeze-drying technology allows PRF to have an
extended service life that is no longer limited to the short-term
use requirements of fresh PRF, thereby increasing its flexibility of
use (Zhang et al.,, 2017; Liu et al., 2019).

Therefore, the aim of this study was to explore the therapeutic
efficacy of a lyophilized H-PRF (Ly-H-PRF) in a co-infected burn
model, mainly by exploring its immunomodulatory -effecton
macrophages through in vitro assays, and its repairing effecton
scald wounds through murine infected burn wound models
(Scheme 1).
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The overall structure of the article includes: material preparation, in vitro validation, and in vivo validation.

2 Materials and methods

2.1 Preparation of ly-H-PRF

This research was carried out with the explicit consent
obtained from the School and Hospital of Stomatology, Wuhan
University (MRI2023-LACA14, WDKQ 2024A28). Peripheral
blood was obtained from six healthy volunteers (aged
25-40 years) in glass blood collection tubes (Plasmatrident,
Weiyin Technology Co., Ltd., Wuhan, China). The collected
peripheral blood was subjected to centrifugation in a horizontal
centrifuge with the centrifugation parameters of 700 g for 8 min,
and the upper plasma layer was collected, and the volume was
recorded after centrifugation. Then the liquid H-PRF was rapidly
frozen and thawed 5 times in liquid nitrogen and in a 37 °C water
bath, and then freeze-dried after centrifugation to remove cellular
residues. Then, the Ly-H-PRF was obtained in its solid state as
previously described (Qian et al., 2022). 5% of the Ly-H-PRF was
dissolved in the same volume as the original volume and used for
the experiments before the in vitro experiments, then photos were
taken (Ngah et al,, 2021). Scanning electron microscopy (SEM;
Tescan MIRA, Czech Republic) was used to observe Ly-H-PRF at

different magnifications.
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2.2 In vitro antibacterial activity

The antimicrobial activity of Ly-H-PRF was determined by
the poured-plate method as previously described (Terrones-
Fernandez et al, 2023). 20 pL Ly-H-PRF solution was
incubated with 180 pL S.a or Escherichia coli (E.c) suspensions
(107 CFU/mL) for 24 h, then the absorbance at OD = 600 nm at
0 and 24 h was recorded. After incubation, a 20 pL mixture of Ly-
H-PRF and bacterial solution was diluted 100 times using BHI
broth and then spreaded onto BHI agar plates. After culturing for
24 h at 37 °C, the bacterial colonies were photographed and
counted. The remaining bacterial suspension was stained with
STYOY/PI Live and Dead Bacteria Stain Kit (Bingene, China) and
analyzed by fluorescence microscopy.

2.3 Cell culture

RAW 264.7 macrophage cells and 1.929 fibroblasts were cultured in
high-glucose DMEM medium (HyClone, United States) supplemented
with 10% fetal bovine serum (FBS) (Sigma, United States) and 1%
penicillin/streptomycin (HyClone, United States). The cells were
cultured at 37 °C in a humidified atmosphere containing 5% CO,.
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Upon reaching 80%-90% confluence, the cells were passaged by
washing with 0.25% trypsin-EDTA solution.

2.4 Live/dead assay of macrophages

RAW 264.7 Cells were seeded in a 12-well plate with 15 mm
diameter coverslips (NEST, United States) at a density of 1 x 10° cells
per well. The cells were treated with LPS (InvivoGen, 6 ug/mL)
(Gibson and Walters, 2020) with or without 5% Ly-H-PRF for
24 h. After treatment, the cells were washed three times with PBS
and stained with Calcein/PI cell viability and cytotoxicity assay kit
(Beyotime C2015S-1, China). The staining was performed by
incubating the cells at 37 °C for 30 min, followed by three washes
with PBS. Coverslips were then mounted, and images were captured
using confocal microscopy (Zeiss LSM880, Germany).

2.5 Flow cytometry analysis of macrophages
and fibroblasts

RAW 264.7 Cells and 1929 cells were seeded in a 12-well plate
and treated with LPS (InvivoGen, 6 ug/mL) with or without 5% Ly-
H-PREF for 24 h. Then the cells were trypsinized and washed three
times with PBS before being centrifuged at 4,000 rpm for 5 min. The
cells were then stained using the Calcein/PI cell viability and
cytotoxicity assay kit (Beyotime) and incubated at 37 °C for
30 min. After incubation, cells were washed three times with PBS
and resuspended in PBS for flow cytometric analysis using a BD
Fortessa™ X-20 instrument (LSRFortessaX-20, BD). Data were
analyzed using FlowJo 10.8.1.

For cell cycle analysis, RAW 264.7 cells were seeded in a 12-
well plate at a density of 1 x 10° cells per well and treated with LPS
(InvivoGen, 6 ug/mL) with or without 5% Ly-H-PRF for 24 h.
Subsequently, the cells were incubated in medium containing
Hoechst 33342 (Thermo Fisher) for 90 min. After incubation,
cells were washed three times with PBS, resuspended in PBS, and
subjected to flow cytometric analysis.

For the apoptosis assay, RAW 264.7 cells and L929 cells were
seeded in a 12-well plate and treated with LPS (InvivoGen, 6 pg/
mL) with or without 5% Ly-H-PRF for 24 h Stained using the
APC-Annexin V/PI apoptosis kit (Elabscience, China) and
incubated at 4 °C for 30 min. After staining, cells were washed
three times with PBS, resuspended in PBS, and subjected to flow
cytometric analysis.

2.6 Macrophage polarization assay

RAW 264.7 cells were seeded in a 24-well plate at a density of
1 x 10° cells per well and treated with LPS (InvivoGen, 6 pg/mL)
with or without 5% Ly-H-PREF for 24 h. Following treatment, cells
were collected and washed three times with PBS. Subsequently,
cells were stained with PE anti-mouse CD206 (clone C068C2, 1:
100, BioLegend) and FITC anti-mouse CD86 (clone C105005, 1:
100, BioLegend) antibodies, and then incubated at 4 °C for
30 min. After incubation, cells were washed three times with
PBS, resuspended in PBS, and subjected to flow cytometric
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analysis using a BD Fortessa™ X-20 instrument. Flow]Jo
10.8.1 software was used for data analysis.

2.7 Transwell assay

L1929 cells were starved for 12 h, collected, and seeded into the upper
chambers of transwell plates (Corning, 24-well plate, 8 um pore size) at
a density of 5 x 10* cells per well. LPS (InvivoGen, 6 pg/mL) with or
without 5% Ly-H-PRF was added to the wells of the 24-well transwell
plates. After 12 h, the upper chamber was taken out, and the cells were
fixed with 4% formaldehyde. Cotton swabs were used to remove non-
migrated cells from the upper surface of the upper chamber. The cells
were then stained with 0.5% crystal violet (Sigma, United States) for
30 min, washed three times with PBS, and the migrated cells on the
lower surface of the upper chamber were recorded and counted under
an optical microscope (Nikon NI-SS, Japan) for statistical analysis.

2.8 Scratch wound healing assay

L1929 cells were seeded in 6-well plates at a density of 3 x 10° cells
per well. After 24 h, a scratch was made using a sterile 3 mm
diameter pipette tip. Images were captured under an optical
microscope (Nikon DS-Qi2, Japan) immediately after scratching
(0 h). The cells were then treated with LPS (InvivoGen, 6 ug/mL)
with or without 5% Ly-H-PRF for 12 h, and images were captured
again. The migration rate was calculated as follows:

(Scratch width at 0 hour) — (Scratch width at 12 hours)

100%
Scratch width at 0 hours x ?

2.9 In vivo infected burn wound model

The experimental protocol was approved by the Ethics Committee
of Wuhan University, ensuring that the experiment complies with
ethical standards. Infected burn wound model was created on the dorsal
spine of mice (C57BL/6). Mice were anesthetized via intraperitoneal
injection of pentobarbital solution (4%)and then depilated and
disinfected. Two scald wounds were made on each side of the dorsal
spine using a circular probe with a diameter of 1.5 cm, heated in hot
water to 100 “C, and applied to the depilated and disinfected skin tissue
for 10 s. After 24 h, the scabs were removed. S.a bacterial liquid was
prepared in advance and diluted to 1 x 107 colony-forming units (cfu)/
ml. Mice were randomly divided into four groups: PBS group (Burn
wound with PBS), S.a group (Burn wound with S.a), S.a+BO group
(Burn wound with S.a and Burn Ointment), and S.a+ Ly-H-PRF group
(Burn wound with S.a and Ly-H-PRF), with six wounds in each group.

In the PBS group, the burn wounds were covered with sterile
gauze soaked in physiological saline and then wrapped with
bandages. In the S.a group, sterile gauze cut to the size of the
wound was placed on the wound, and then 10 pL of prepared
bacterial liquid was dropped onto the gauze before wrapping with
bandages. In the S.a+BO group, after applying the bacterial liquid,
burn ointment (Jingwanhong, Tianjin, China) was applied to the
gauze before wrapping with bandages. In the S.a+ Ly-H-PRF group,
after applying the bacterial liquid, 10 pg of PRF lyophilized powder
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FIGURE 1
Photos, microscopic morphology, and solubility of the materials. (A—C) The scanning electron microscope (SEM) image of Ly-H-PRF at

magnifications of X300, 5,000 X, and 30,000; (D) The typical sizes of materials used in applications; (E) Ly-H-PRF can be fully handled or picked up; (F)
The solubility of the material in PBS (phosphate-buffered saline).

was added to the gauze before wrapping with bandages. After wound
formation, the wounds were cleaned with sterile physiological saline
every 2 days, disinfected with povidone-iodine, and then new
dressings were applied. The healing rate was calculated as
follows: Healing rate = ((wound area on day 1) - (wound area on
day 5))/(wound area on day 1) x 100%.

2.10 Histological analysis

On the fifth day, full-thickness tissue samples of the wound were
collected from each mouse (n = 6 mice per group), fixed in neutral
buffered formalin for 48 h, and embedded in paraffin. One
representative wound tissue block per mouse were sectioned to
prepare 5 pm sections. Hematoxylin and eosin (HE) staining was
performed to observe the re-epithelization and wound healing (one
analysis per mouse). Masson’s trichrome staining was performed to
observe the deposition of collagen fibers at the wound site (one
analysis per mouse). Immunofluorescence staining was conducted
to compare the polarization of macrophages at the wound site
among different groups. For immunofluorescence staining, the
slides were blocked with 1% bovine serum albumin. PE anti-
mouse CD206 (clone C068C2, 1:100, BioLegend) and FITC anti-
mouse CD86 (clone C105005, 1:100, BioLegend) were applied at4 °C
overnight. Images were captured using a fluorescent microscope
(Zeiss LSM880 with Airyscan, Germany). Multiple fields of view
were analyzed per immunofluorescence section to assess
macrophage polarization within the single wound sample from

each mouse.
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2.11 Statistical analysis

All the experiments were analyzed using a two-way Student’s
t-test. For the comparison of different specimens, the unpaired t-test
was used. For the comparison of different treatments within the
same specimen, the paired t-test was used. P values of less than
0.05 were considered statistically significant. In the figures, asterisks
indicate *P < 0.05, **P < 0.01, and ***P < 0.001, ***P < 0.0001, and
ns = not significant.

3 Results

3.1 Photos, microscopic morphology, and
solubility of the materials

As shown in Figure 1, after lyophilization, the material forms
sheet-like structures that can be easily handled and used. The
exhibits  a
at x30,000 magnification in SEM observation. It can be easily

material sponge-like ~ porous  structure

handled as a whole and readily dissolves in PBS.

3.2 Antibacterial effect of ly-H-PRF

As shown in Figure 2A, after 24 h of incubation with a 10% Ly-
H-PRF mixture in the bacterial suspension, the number of bacterial
colonies on the agar plates was significantly lower compared to the
control group, for both E.cc and S.a. Additionally, the absorbance
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FIGURE 2

In vitro antibacterial activity of Ly-H-PRF. (A) Representative optical images of colony-forming units for Staphylococcus aureus suspensions and
Escherichia coli suspensions treated with or without Ly-H-PRF. (B) Quantitative analysis of OD600 of Staphylococcus aureus and Escherichia coli treated

with or without Ly-H-PRF; (C) Fl
appearing red

values of the bacterial suspensions measured after 24 h of incubation
showed the same trend, with the suspensions treated with 10% Ly-
H-PRF appearing noticeably clearer, indicating reduced bacterial
growth, a difference that was statistically significant (Figure 2B). The
results of the live/dead bacterial staining further confirmed this,
showing a large number of dead bacteria in the 10% Ly-H-PREF-
treated group, with fewer live bacteria. The dead bacteria appeared
to aggregate and form clusters (Figure 2C).
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uorescence images show the results of the live/dead staining, with viable bacteria appearing green and dead bacteria

3.3 The effect of ly-H-PRF on LPS-induced
apoptosis of macrophages and
macrophages cell cycle

From the fluorescent and flow cytometry images in Figure 3, it
was observed that the number of dead macrophages was
significantly higher in the LPS group when compared to the
control group. However, the addition of Ly-H-PRF was found to
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FIGURE 3

Live/dead assay of RAWs treated with/without LPS and Ly-H-PRF at 24 h. (A) Fluorescence images show the results of the live/dead staining with
viable cells appear green and dead cells (white arrow) appear red. Scale bars = 20 ym; (B) Representative images and quantitative analysis of dead cells
measured by flow cytometry; (C) Representative images and quantitative analysis of live cells measured by flow cytometry

significantly decrease the number of these dead cells caused by LPS,  stimulation also significantly increased the number of viable
suggesting that Ly-H-PRF could rescue macrophage apoptosis = macrophages, possibly due to the growth factors present in Ly-
induced by bacterial endotoxins. Additionally, Ly-H-PRF  H-PRF found to stimulate cell proliferation.
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FIGURE 4

Cell cycle and apoptosis of RAWSs treated with/without LPS and Ly-H-PRF at 24 h (A) Diagram and statistical analysis of cell cycle analysis in RAW
264.7 cells by flow cytometry. (B) Representative images and statistical analysis of apoptosis analysis in RAW 264.7 cells by flow cytometry. (C)
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Effect of PRF on polarization of RAW treated with LPS and Ly-H-PRF at 24 h. (A) Representative images and ratio of CD86" cells measured by flow
cytometry. (B) Representative images and ratio of CD206+ cells measured by flow cytometry.

3.4 Cell cycle and apoptosis of RAWs treated
with/without LPS and Ly-H-PRF at 24 h

In Figure 4A, it was observed that compared with the control
group, both the LPS group and the LPS + Ly-H-PRF group
promoted the transition of macrophages from the G0-G1 phase
to the G2-M phase. Figure 4B demonstrates that the LPS group
exhibited a significant increase in apoptosis compared to the control
group, while the LPS + Ly-H-PRF group showed a significant
decrease in apoptosis compared to the LPS group. This further
confirms the protective effect of Ly-H-PRF on LPS-induced
macrophage apoptosis. Cellular morphology staining showed no
differences in the cytoskeletal morphology of the three groups of
cells at 24 h (Figure 4C).

3.5 The effect of ly-H-PRF on macrophage
polarization

The effect of Ly-H-PRF on macrophage polarization was assessed
using flow cytometry to detect macrophage surface polarization
markers. It was found that after LPS stimulation, the M1 marker
CD86 on macrophages was significantly increased, while the addition
of Ly-H-PRF significantly decreased its level, restoring it to the levels
similar to those observed in the control group (Figure 5A). Flow
cytometry results also showed that LPS treatment did not affect the
expression of the M2 marker CD206 on macrophages, but Ly-H-PRF
treatment significantly increased the expression of this marker
compared to LPS and control groups (Figure 5B). This suggests
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that PRF treatment may assist in the formation of an immune
microenvironment that promotes wound healing by promoting
M2 macrophage polarization.

3.6 The effect of ly-H-PRF on LPS-induced
apoptosis and migration of fibroblasts

Flow cytometry was further used to assess apoptosis of L929 cells
after 24 h of LPS stimulation. It was found that apoptosis rate of
fibroblasts significantly increased and doubled after LPS treatment
compared to the control group, while treatment with Ly-H-PRF
significantly decreased this rate, restoring it to nearly pre-treatment
levels (Figure 6A). Transwell experiments demonstrated that after LPS
treatment, the migration ability of L929 cells significantly decreased,
whereas Ly-H-PRF treatment not only significantly rescued their
migration ability but also significantly increased it to levels higher
than those observed prior to treatment (Figures 6B,C). Results from
scratch assays were similar to those from Transwell experiments
(Figures 6D,E), indicating that LPS inhibited the migration ability
of fibroblasts, while Ly-H-PRF restored the impaired migration ability
caused by LPS and even further enhanced it.

3.7 The effect of ly-H-PRF on the healing of
infected burn wounds

In the mouse infected, burn wound model, it was observed that
without any treatment after burn wound creation, there was a slight
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and quantitative analysis of scratch assay in L929 cells.

decrease in wound area and a small amount of scab formation after
5 days. However, in the S.a group, the wound area significantly
increased due to the infection. In the group treated with
commercially available burn ointment (S.a+BO group) during
infection, there was no significant change in wound area, and
some necrotic tissue was observed. Conversely, simultaneous
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treatment with Ly-H-PRF during infection resulted in significant
scab formation, and the reduction in wound area was similar to that
of the uninfected group, further demonstrating that a protective
effect of Ly-H-PRF was observed on infected burn wounds (Figures
7A,B). HE staining and Masson’s trichrome staining both showed
abundant vacuolar structures in the burn tissue of the S.a group,
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Infected burn wound healing in different groups on day 0 and day 5. (A) Representative photographic images of the burn wounds in different groups

on day 0 and 5, respectively. The error bars represent SD (n = 6), and the statistics are determined by t-test (*P i 0.05). (B) Quantification of the wound
healing in each group on day 0 and 5. (C) H&E staining of wounds at day 5. High magnified view of the image shown in lower row. The scale bar are

1,000 pm (upper row) or 500 pum (lower row). (D) Masson's trichrome staining of wounds at day 5. High magnified view of the image shown in
lower row.
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possibly resulting from tissue damage caused by bacteria. In the
S.a+BO group, there were fewer vacuolar structures, and some newly
formed collagen tissue was observed. In the S.a+ Ly-H-PRF group,
there were abundant newly formed collagen fibers, with fewer
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observed  vacuolar  structures. Moderate infiltration  of

inflammatory cells was observed in the PBS group, while severe
infiltration of inflammatory cells was observed in the S.a
infiltration decreased after

group. However, inflammation
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treatment with burn ointment and especially in the Ly-H-PRF group
(Figures 7C,D).

3.8 Effect of Ly-H-PRF on macrophage
polarization in infected burn wound models

In the mouse infected burn wound model, it was observed that
after 5 days of infection in the S.a group, there was a increase in CD86-
positive cells in the burn tissue, indicating that infection led to
polarization of macrophages towards the M1 phenotype. The
number of M1 macrophages in the S.a+BO group was lower than
that in the S.a group, and further decreased in the S.a+ Ly-H-PRF
group (Figure 8A). On the other hand, M2 macrophages were
decreased in the burn tissue of the S.a group, while the number of
M2 macrophages in the S.a+BO group was increased compared to the
S.a group, and further increased in the S.a+Ly-H-PRF group. This
suggests that the use of Ly-H-PRF was able to reduce excessive
inflammatory responses and promote soft tissue healing (Figure 8B).

3.9 Ly-H-PRF promotes infected burn
wound epithelialization and vascular
regeneration

In the mouse infected burn wound model, we observed that after
5 days of infection in S.a group, the expression of E-cadherin, an
epithelialization marker in the wound tissue of S.a+BO group, was
higher than that of S.a group, while the expression of E-cadherin in
S.a+Ly-H-PRF group was significantly higher than that of S.a
group. This suggests that the use of Ly-H-PRF promotes
epithelialization of infected burn wounds (Figure 9A). On the
other hand, the expression of CD31 in wound tissue of S.a+BO
group was higher than that of S.a group, and the expression of
CD31 in S.a+Ly-H-PRF group was significantly higher than that of
S.a group, indicating that Ly-H-PRF could promote vascular
regeneration in infected burn wounds (Figure 9B).

4 Discussion

When a scald occurs, the skin barrier is compromised, making it
susceptible to the entry of exogenous pathogens, leading to
Studies that
approximately 42%-65% of burn-related deaths are associated

challenging-to-treat  infections. have shown
with infection (Lachiewicz et al, 2017). Therefore, developing
solutions for treating infected burn wounds is highly important.
Platelet concentrates are biological materials rich in growth
factors and viable cells, and they feature a three-dimensional
fibrin scaffold. Due to the variety of growth factors present, they
find extensive applications in skin regeneration, dental regeneration,
sports medicine, plastic surgery, and various burn cases, exhibiting
favorable outcomes (Lachiewicz et al., 2017; Tavousi et al., 2024).The
application of novel H-PRF in infected burn wounds has not yet
been reported. In this study, we utilized H-PRF and preserved it by
freeze-drying, offering the advantage of convenient usage.
Furthermore, it can be sampled multiple times for preparation,

thus circumventing the issue of insufficient autograft sources.
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Macrophages play crucial roles in wound healing, host
immunity, and immune regulation. They can polarize into pro-
inflammatory Ml-type and pro-tissue regeneration M2-type
macrophages, regulating different tissue healing processes (Xiong
et al,, 2023; Kharaziha et al., 2021). During the burn wound healing
phase, if bacterial infection occurs in patients, it inhibits the
conversion of M1 to M2 macrophages, thereby impeding the
transition of the wound into tissue remodeling and regeneration
phases. Inducing the transformation of M1 cells into M2 cells in the
wound presents a challenge for burn healing (Wu et al., 2022;
Schwacha, 2003; Huang et al., 2023). In this study, LPS was used
to stimulate RAW 264.7 macrophage cells in vitro, simulating an
inflammatory environment in vivo (Shi et al., 2022). LPS stimulation
was found to induce apoptosis in macrophages and promote
M1 polarization, while the use of LY-H-PRF was shown to
reverse this phenotype and increase the quantity of M2 cells. The
mouse-infected burn wound model also validated these findings. In
a S.aureus-infected burn model, treatment with Ly-H-PRF reduced
the presence of M1 macrophages and increased M2 macrophages in
these infected burn wounds. This suggests that Ly-H-PRF was able
to improve the sustained inflammation in these burn wounds with
simultaneous Dbacterial infection, leading to difficult-to-heal
conditions. Corroborating our results, Nasirzadeh et al. also
showed that H-PRF can modulate the inflammatory response by
shifting macrophage polarization from the pro-inflammatory
M1 phenotype the
(Nasirzade et al, 2020). Fibroblast proliferation and migration

to anti-inflammatory M2  phenotype
also play significant roles in wound healing (Oryan et al., 2019)
and it was found that LPS stimulation induces apoptosis in
1929 cells in this study, whereas Ly-H-PRF powder could also
prevent cell death under these conditions. Furthermore, through
transwell and scratch assays, we discovered that Ly-H-PRF could
also promote fibroblast migration, further indicating its potential to
facilitate tissue healing in infected wounds.

In this experiment, we utilized a burn model infected with S.a, a
widely employed model for studying post-burn infections and
treatment efficacy. As previous studies have demonstrated,
without proper treatment, infected burn wounds may continue to
deteriorate and increase in size due to immune system dysregulation
(Shahriari-Khalaji et al., 2023). This immune dysregulation
manifests as dysfunction of local immune cells and exacerbation
of inflammatory responses, hindering the wound healing process.
We used a commercially available burn ointment containing a
combination of traditional Chinese medicine ingredients as the
positive control, which effectively alleviates post-burn infections
and accelerates wound healing. However, we found that treatment
with Ly-H-PRF powder yielded more significant results. This may be
attributed to the potent antimicrobial properties of H-PRF (Feng
et al, 2020; Moraschini et al, 2000), which also significantly
promotes wound healing.

Lastly, it remains crucially important to point out that the
centrifugation protocols, tube types utilized, and medical device
utilized for the production of PRF all matter significantly in order to
maximize the regenerative potential of PRF. In a recent study titled
“Optimization of Platelet Rich Fibrin”, a series of key features were
discussed to elevate clinical use of PRF in private practice (Miron
et al., 2000). One important feature that has been discussed was the
effect of PRF tubes on the final outcomes of PRF (Miron et al., 2000;
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Miron et al., 2022; Miron et al., 2021; Wei et al., 2024). Many PRF
tubes, though marketed as potentially being “chemical-free”, are
loaded with chemical additives such as silica or silicone, which may
negatively impact the final production of PRF (Miron et al., 2021;
Masuki et al., 2020; Tsujino et al., 2019a; Tsujino et al., 2019b).

5 Conclusion

The present study demonstrated that Ly-H-PRF is able to exert
antibacterial effects, modulate macrophage polarization from the
M1 to M2 phenotype, and enhance skin fibroblast migration. It also
showed promising efficacy in treating infected burn wounds by
promoting wound healing, reducing inflammatory cell infiltration,
and increasing collagen synthesis. These findings provide proof-of-
concept for the clinical use of Ly-H-PRF as a cost-effective and
convenient treatment for infection control and tissue regeneration in
infected burn wounds. However, its safety, efficacy, and long-term
outcomes require further investigation. This study also supports
further exploration of Ly-H-PRF in other regenerative medicine
applications.
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