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The Polygonaceae family comprises numerous traditional Chinese medicinal
herbs and serves as a significant source of natural products with bioactive
properties. Endophytes, which colonize the internal tissues of plants, have
various beneficial effects on their hosts. The diverse communities of
endophytes within Polygonaceae plants can promote host growth and
enhance stress resistance by producing plant hormones and improving the
metabolic levels of host cells. Additionally, endophytes can induce the
accumulation of secondary metabolites in host plants. Furthermore,
endophytes possess the capability to produce a variety of bioactive
compounds, which can be further utilized in the biosynthesis of natural
pharmaceuticals. Although research on endophytes of Polygonaceae plants
has made notable progress, it has been rarely reviewed comprehensively. This
review focuses on the diversity of endophytes and their effects on host plants in
four representative genera of Chinese medicinal Polygonaceae: Reynoutria,
Fagopyrum, Rheum, and Rumex. We also discuss the application of bioactive
metabolites produced by these endophytes and summarize recent advances in
their biosynthesis in microbial cell factories. The review aims to provide insights
into the identification and application of endophytic microbial resources from
Polygonaceae plants.
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1 Introduction

The Polygonaceae family, a prominent taxonomic group of medicinal plants primarily
found in the temperate zones of northern hemisphere, comprises approximately
1,200 species systematically classified into 46 genera (Zhang et al., 2022a). Several
species within the Polygonaceae family, including Rheum palmatum, Reynoutria
japonica (also known as Fallopia japonica or Polygonum cuspidatum), and Fagopyrum
dibotrys, are recognized as traditional Chinese medicinal herbs or ethnopharmacological
resources, with these representative species officially listed in the Pharmacopoeia of the
People’s Republic of China: Volume I (National Pharmacopoeia Commission, 2020).
Currently, a range of bioactive compounds have been identified from Polygonaceae
plants, such as emodin, polydatin, resveratrol, and quercetin, which exhibit antioxidant,
antibacterial, anti-inflammatory, and anticancer activities (Vasas et al., 2015; Jing et al.,
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2016; Mitra et al., 2022; Ke et al., 2023). In recent years, the
continuous expansion of the global traditional Chinese medicine
market has led to dramatic declines in wild populations of many
medicinal Polygonaceae plants due to unsustainable harvesting
practices and ecosystem degradation. The traditional medicinal
herb F. dibotrys has been officially included in the List of
National Key Protected Wild Plants. Additionally, several Rheum
species have been listed in the China Biodiversity Red List—Higher
Plants Volume, with Rheum globulosum classified as endangered and
Rheum subacaule designated a critically endangered. Therefore, it is
urgent to find a balance between the conservation and utilization of
plant resources. Fortunately, plant microbial communities, such as
endophytes, have been extensively studied for their capacity to
produce secondary metabolites, making them crucial for the
conservation of plant resources and the production of natural
medicines (Yan et al., 2019; Gupta et al., 2020).

Plant endophytes, primarily bacteria and fungi, are
microorganisms that colonize within plant tissues without
causing apparent disease symptoms in the host plant (Tiwari
et al., 2023). Research has demonstrated that plant endophytes
can enhance the growth and stress tolerance of host plants,
stimulate the accumulation of secondary metabolites, and have
the potential to be developed as biocontrol agents (Li et al., 2023;
Watts et al., 2023; Gowtham et al., 2024; Qin et al., 2024).
Furthermore, plant endophytes represent a promising source of
novel bioactive compounds, which have significant biotechnological
potential in sustainable agriculture and pharmacognosy (Nazir et al.,
2024; Zotchev, 2024). Therefore, screening endophytes from

Polygonaceae plants that can enhance the growth and quality of
host plants or produce medicinal active compounds is crucial for the
conservation of Polygonaceae plants and the pharmaceutical
industry. Previously, the diversity of endophytes in Rumex plants
and the pharmacological activities of their metabolites have been
reviewed (Ntemafack et al., 2023). However, it lacks an introduction
to the biosynthetic pathways of the metabolites and the discussion of
the effects of endophytes on their host plants. Notably, significant
progress has been made on endophytes in many Polygonaceae
plants, particularly in the representative medicinal genera
Reynoutria, Rheum, and Fagopyrum, yet the progress has not
been comprehensively summarized. This review focuses on the
endophytes in plants from the genera Reynoutria, Fagopyrum,
Rheum, and Rumex of the Polygonaceae family, summarizing
their diversity, effects on host plants, biological activities of their
secondary metabolites, and the microbial biosynthesis of these
metabolites.

2 Diversity of endophytes in medicinal
Polygonaceae plants

Within the family Polygonaceae, culturable and non-culturable
endophytic communities from various genera have been
investigated using microbial culture-based methods and high-
throughput sequencing techniques. The diversity of endophytic
communities is influenced by plant age, season, growth
environments, and the specific plant tissues colonized by

TABLE 1 Culturable endophytic fungi of Polygonaceae plants.

Host species Tissue of
isolation

Fungal genus Reference

Reynoutria japonica Root Cladosporium, Penicillium Liu et al. (2020b)

Reynoutria japonica Root Aspergillus, Cladosporium, Cunninghamella, Fusarium, Paecilomyces, Penicillium, Termitomyces,
Trematosphaeria, Trichoderma

Xu et al. (2020)

Reynoutria japonica Root, stem Alternaria, Cephalosporium, Geotrichum, Mucor Shi et al. (2012)

Reynoutria japonica Leaf Alternaria, Colletotrichum, Pestalotiopsis, Phoma, Phomopsis Kurose et al. (2012)

Fagopyrum dibotrys Root, stem, leaf Alternaria, Colletotrichum, Fusarium Xie et al. (2024)

Fagopyrum
esculentum

Seed Alternaria, Aureobasidium, Botryotinia, Epicoccum, Fusarium, Stereum Kovačec et al. (2016)

Rheum palmatum Root Fusarium You et al. (2013)

Rheum officinale Root Mucor Zhang et al. (2018)

Rheum spiciforme Leaf Aureobasidium, Fusarium Khan et al. (2023)

Rumex acetosa Root, leaf Acremonium, Alternaria, Arthrinium, Aspergillus, Aureobasidium, Cladosporium, Clonostachys,
Coniothyrium, Cylindrocarpon, Fusarium, Geniculosporium, Gonatobotrys, Helicosporium, Humicola,
Microspheropsis, Mucor, Penicillium, Phoma, Septofusidium, Sterile, Trichocladium, Trichoderma,
Zygorhynchus

Wearn et al. (2012)

Rumex acetosa Pollen, seed, leaf Acremonium, Alternaria, Aspergillus, Cladosporium, Epicoccum, Fusarium, Mucor, Phialophora,
Tricothecium

Hodgson et al.
(2014)

Rumex hastatus Root Anguillospora, Beltrania, Cylindrocarpon, Helicosporium, Seiridium, Setosynnema Sati and Pathak
(2017)

Rumex nervosus Leaf Penicillium Hassane et al. (2022)

Rumex madaio Root, leaf Colletotrichum, Fusarium Bai et al. (2019)
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endophytes. Here, we review the findings regarding endophytic
fungi (Table 1) and bacteria (Table 2) of four genera within the
Polygonaceae family, Reynoutria, Fagopyrum, Rumex, Rheum.

2.1 Diversity of endophytic fungi in
Polygonaceae

Fungal endophytes are widely distributed in plants and exhibit
significant diversity in species (Hodgson et al., 2014). Within the
genus Reynoutria, R. japonica is known for its adaptability and
medicinal properties, making it a subject of extensive research (Ke
et al., 2023). The root, stem, and leaf of R. japonica are commonly
used in endophyte studies. Seventeen fungal genera were identified,
in which, Alternaria, Cladosporium and Penicillium, were identified
twice in different studies (Table 1). Plants of the genus Fagopyrum
have a long history of medicinal and edible applications and possess
considerable medicinal potential (Jing et al., 2016). Endophytic fungi
from three genera were isolated from the roots, stems, and leaves of
F. dibotrys, while six genera were identified from the seeds of
Fagopyrum esculentum (Kovačec et al., 2016; Xie et al., 2024).
The strains isolated in both studies belong to the genera
Alternaria and Fusarium. Plants in the genus Rheum are widely
recognized for their medicinal properties (Zhuang et al., 2020).
However, the number of endophytes isolated from Rheum is
relatively low, Fusarium and Mucor were identified from the
roots of R. palmatum and Rheum officinale, respectively (You
et al., 2013; Zhang et al., 2018). Two fungal genera
Aureobasidium and Fusarium were identified from the leaves of
Rheum spiciforme (Khan et al., 2023). The genus Rumex
encompasses numerous medicinal plants, and studies on
endophytes in Rumex are prevalent than those in the other three
genera (Ntemafack et al., 2023). The diversity of endophytic fungi in
Rumex acetosa has been shown to be high, with strains belonging to
23 genera isolated from the roots and leaves (Wearn et al., 2012). In

another study, nine genera were identified from pollen, seeds and
leaves, six of which overlapped with the previous study (Hodgson
et al., 2014). Endophytes in other species of Rumex, such as Rumex
hastatus, Rumex nervosus and Rumex madaio, have also been
investigated. Six genera were identified from the roots of R.
hastatus, with four genera being unique to this species, apart
from Cylindrocarpon and Helicosporium (Sati and Pathak, 2017).
Penicillium was identified in the leaves of R. nervosus (Hassane et al.,
2022), while Colletotrichum and Fusarium were detected in both the
roots and leaves of R. madaio (Bai et al., 2019).

As shown in Table 1, Fusarium emerges as the most prevalent
genus of endophytic fungi within the culturable range, identified
across many species of the four genera. Alternaria, Aureobasidium,
Colletotrichum, and Mucor were found in three genera. Aspergillus,
Cladosporium, Phoma, and Penicilliumwere identified in Reynoutria
and Rumex, while Epicoccum was identified in both Fagopyrum and
Rumex. Although limited studies have been conducted on the
endophytes of Fagopyrum plants, two unique fungal genera,
Stereum and Botryotinia, were identified within this genus.

Culture-independent methods, such as high-throughput
sequencing, enable researchers to gain a more comprehensive
understanding of the plant endophytic community. The diversity
of endophytes can be influenced by the tissues and ages of host
plants. Aleynova et al. (2024) investigated the diversity of
endophytic fungi in the roots, stems, leaves, flowers and seeds of
R. japonica using next-generation sequencing. The root, stem, and
leaf exhibited greater diversity of endophytic fungi compared to the
flower and seed. Furthermore, the relative abundance of endophytic
fungi varied across different tissues of R. japonica. For example,
Alternaria was the dominant genus in seeds, while
Microcyclosporella was predominant in stems and flowers, with
relative abundances of 18.11% and 50.18%, respectively
(Aleynova et al., 2024). Chen et al. (2023) investigated the
endophyte diversity of R. palmatum across different tissues,
namely, root, stem, and leaf, as well as different plant ages,

TABLE 2 Culturable endophytic bacteria of Polygonaceae plants.

Host species Tissue of
isolation

Bacterial genus Reference

Reynoutria
japonica

Root Bacillus Liu et al. (2020b)

Reynoutria
japonica

Root Streptomyces Wang et al. (2016)

Rumex acetosa Root, stem Arthrobacter, Bacillus, Curtobacterium, Enterobacter, Nocardioides, Pantoea, Plantibacter,
Pseudomonas, Rhizobium

He et al. (2018)

Rumex acetosa Root, stem, leaf Microbacterium, Plantibacter, Pseudomonas Burges et al. (2017)

Rumex acetosa Leaf Bacillus Zhang et al. (2023)

Rumex acetosa Root Bacillus Xu et al. (2022)

Rumex dentatus Leaf Bacillus Ntemafack et al.
(2022b)

Rumex dentatus Root, stem Streptomyces Qiu et al. (2015)

Rumex dentatus Root Streptomyces Ntemafack et al.
(2022a)
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specifically 1-, 2-, and 3-year-old plants. They found that the
dominant genera in root, stem, and leaf were Dactylonectria
(71.95%), Cladosporium (39.56%), and Russula (25.54%),
respectively. Notably, Dactylonectria was the predominant genus
across samples of different ages, although its relative abundance
decreased from 91.49% to 3.43% as the age of the plants increased
(Chen et al., 2023). External factors, such as the cultivation area of
the host plant and the season in which the samples were collected,
can also influence endophytic microbial communities. Zhong et al.
(2024) identified 119 genera of endophytic fungi from the seeds of F.
tataricum and F. esculentum using a high-throughput sequencing
method, with Alternaria being the dominant genus, exhibiting over
50% relative abundance in every sample. Other highly abundant
genera included Botrytis, Cladosporium, Epicocum, Filobasidium,
and Stemphylium (Zhong et al., 2024). Conversely, another study
reported that Cryptococcus, Aureobasidium, Botrytis, Acremonium,
and Didymella were the dominant genera in the seeds of F.
esculentum (Li et al., 2021). In R. palmatum, endophytic fungi
belonging to 265 genera were identified, with the dominant
genera being Dactylonectria, Clonostachys, Leptosphaeria,
Chaetomium, Fusarium, and Aspergillus across different
geographical areas (Chen et al., 2021). The diversity of
endophytic fungi in the roots of R. palmatum varied across the
seasons, with Phialophora dominating in Spring and Summer, and
Nothodactylaria in Autumn (Li et al., 2024). In addition,
anthropogenic factors also affect the endophytes communities,
for example, low-pressure cold plasma treatment has been shown
to alter the fungal community structure in Fagopyrum (Mravlje
et al., 2021).

2.2 Diversity of endophytic bacteria in
Polygonaceae

Endophytic bacteria are widely colonized in plants, and many
have garnered considerable attention due to their plant growth-
promoting properties (Santoyo et al., 2016). Compared to
endophytic fungi in Polygonaceae plants, endophytic bacteria
have been studied less frequently, yet they still exhibit notable
diversity. Within the culturable range, Bacillus and Streptomyces
are commonly found in the genera Reynoutria and Rumex. As
shown in Table 2, only one genus, either Bacillus or Streptomyces
was identified in most studies. Burges et al. (2017) isolated strains
belonging to Microbacterium, Plantibacter, and Pseudomonas from
the roots, stems, and leaves of R. acetosa. No strains belonging to
Bacillus or Streptomyces were reported in this study, which may be
attributed to the goal of isolating strains with plant growth-
promoting activities. In another study, strains from nine bacterial
genera were identified from the roots and stems of R. acetosa (He
et al., 2018).

In addition to culture-based methods, high-throughput
sequencing was employed to study the diversity of endophytic
bacteria in Polygonaceae plants. The endophyte diversity among
different R. palmatum samples was comprehensively analyzed. The
dominant bacterial phylum in all samples was Proteobacteria, while
at the genus level, the dominant genus varied across different areas
(Chen et al., 2021), tissues and ages (Chen et al., 2023), as well as
seasons (Li et al., 2024). For instance, in samples from 2-year-old R.

palmatum, the dominant bacterial genera of roots, stems and leaves
wereMicrobacterium, Rahnella, andMethylobacterium, respectively
(Chen et al., 2023). The relative abundance of the dominant bacterial
genera of R. palmatum gradually increased from Spring to Autumn
(Li et al., 2024).

In summary, the composition and diversity of endophytic
communities in Polygonaceae plants are significantly influenced
by regional environments, seasonal variations, host plant tissues,
and plant ages. The root tissue is the most commonly studied among
Reynoutria, Fagopyrum, Rheum, and Rumex, followed by leaf and
stem tissues. While seeds and pollen have been used to isolate
endophytic fungi, reports on endophytic bacteria in these two tissues
of Polygonaceae plants remain scarce. Among the endophytes
isolated from these plants, fungi constitute the majority, whereas
bacteria are considerably less abundant. Endophytic fungi from the
genera Fusarium and Alternaria are the most frequently isolated,
with strains from Cladosporium, Mucor and Penicillium also being
frequently isolated. Bacillus and Streptomyces are the most
frequently reported genera of endophytic bacteria. Furthermore,
studies have demonstrated significant correlations between the
endophyte diversity, particularly endophytic fungi, and the
accumulation of bioactive compounds in Polygonaceae species
(Chen et al., 2021; Li et al., 2024; Zhong et al., 2024). In
addition, endophytes associated with Polygonaceae plants exhibit
growth-promoting potential in their hosts (Qu et al., 2023; Chen
et al., 2024). Therefore, Polygonaceae plants harbor diverse
endophytic communities, rendering them valuable systems for
investigating the mechanisms of host-microbe interactions.

3 Effects of endophytes on
Polygonaceae plants

Endophytes reside within plants and influence their growth,
development, andmetabolism (Yan et al., 2019; Mushtaq et al., 2022;
Qin et al., 2024). Endophytes associated with the Polygonaceae
family exhibit a variety of beneficial effects on host plants, including

FIGURE 1
An overview of the effects of endophytes on Polygonaceae
plants (GH: growth hormone).
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the promotion of growth and development, enhancement of stress
tolerance, and stimulation of secondary metabolite accumulation
(Figure 1). In recent years, researchers have increasingly investigated
the mechanisms underlying the effects of endophytes on their hosts.

3.1 Promotion of growth and development

Chemical fertilizers play a crucial role in enhancing crop yields,
however, their excessive use raises significant environmental
concerns (Atieno et al., 2020). The development and application
of biofertilizers are regarded as viable methods to mitigate
environmental pollution. Endophytes, in particular, present
promising biofertilizer options due to their beneficial effects on
plant growth. Research has demonstrated that endophytes from
Polygonaceae plants can promote host growth, with the underlying
mechanisms being primarily investigated. For instance, the
endophytic fungus Trichoderma citrinoviride HT-1 has been
shown to enhance the growth of R. palmatum by upregulating
the expression of the host’s Gretchen Hagen 3 (GH3) and ethylene
response factor (ERF) genes, thereby improving the host’s
response to auxin and ethylene (Chen et al., 2022b). Similarly,
Plectosphaerella cucumerina J-G upregulated the expression of
hormone-responsive genes in Rumex gmelinii, further
enhancing the host’s response to auxin and cytokinin (Ding
et al., 2022). In addition, the expression of genes involved in
amino acid metabolism and carbohydrate synthesis in R.
gmelinii was enhanced by P. cucumerina J-G, thereby increasing
the substrate and energy pool available to the host. Furthermore,
colonization by Serendipita indica led to an increase in indole-3-
acetic acid (IAA) content in F. tataricum by upregulating the
expression of genes encoding key enzymes in the indole-3-pyruvic
acid (IPyA) pathway (Zheng et al., 2023). Beyond the strains
themselves, treating F. tataricum sprouts with mycelial extracts
and polysaccharides from endophytic fungi as growth inducers has
also been shown to promote their growth (Zhao et al., 2014; Zhong
et al., 2016).

3.2 Enhancement of stress tolerance

The cultivation of plants faces challenges such as low soil
fertility, drought, and salt stress (Nawaz et al., 2023). Additionally,
plant diseases caused by pathogens can adversely affect the growth,
development, and quality of plants (Park et al., 2019). Fortunately,
studies have shown that endophytes enhance host stress tolerance
against both environmental and biotic factors (Watts et al., 2023;
Gowtham et al., 2024). Inoculation of endophytic bacteria
belonging to the genera Pseudomonas, Microbacterium, and
Plantibacter significantly increased the contents of chlorophylls
and carotenoids in R. acetosa, thereby reducing the stress level of
the plant (Burges et al., 2017). Furthermore, this endophyte
inoculation enhanced the activity of acid phosphatase in the
soil microbial communities associated with R. acetosa, thereby
improving nutrient cycling. Similarly, endophytic fungi such as
Bionectria sp. Fat6 and S. indica from F. tataricum demonstrated
the ability to increase the chlorophyll content of the host (Xiang
et al., 2021; Zheng et al., 2023). In another study, endophytic

bacteria exhibiting efficient siderophore production and mineral
weathering capabilities were isolated from R. acetosa, which may
assist the host plant in adapting to nutrient-deficient and rocky soil
environments (He et al., 2018). Transcriptomic analysis indicated
that the inoculation of endophytic fungi in R. gmelinii upregulated
the expression of gene encoding phenylalanine ammonia lyase
(PAL), a key enzyme in the synthesis of secondary metabolites
involved in stress resistance, thereby enhancing the host’s
resistance (Ding et al., 2022).

3.3 Stimulation of secondary metabolite
accumulation

Endophytes can influence the accumulation of host
metabolites by regulating the metabolic pathway of hosts or
synthesizing the metabolites (Yang et al., 2016; Xu et al., 2023).
Endophytes have been shown to enhance the accumulation of
anthraquinones in R. palmatum by upregulating genes that encode
key enzymes in the polyketide pathway, including acetolactate
synthase, chalcone synthase (CHS), and beta-amyrin synthase
(Chen et al., 2022b). Similarly, endophytes derived from R.
gmelinii promoted the accumulation of resveratrol and
polydatin in the host by upregulating the expression of the PAL
gene while downregulating the expression of cinnamoyl-CoA
reductase and shikimic acid O-hydroxycinnamoyl transferase
genes (Ding et al., 2022). Furthermore, the mycelial
polysaccharides from endophytes associated with F. tataricum
stimulated the phenylpropanoid pathway in the host, thereby
increasing flavonoid content (Zhong et al., 2016). Endophytes
can also enhance the accumulation of secondary metabolites in
the host by promoting the production of plant hormones. For
instance, the endophytic fungus S. indica can stimulate the
biosynthesis of anthocyanins in F. tataricum by elevating the
levels of jasmonic acid and abscisic acid in the host (Zheng
et al., 2023). Additionally, endophytes can directly regulate the
chemical composition of plants through biosynthesis. Secondary
metabolites commonly found in Polygonaceae plants, such as
emodin, rutin, and resveratrol, can be synthesized directly by
endophytes (Shi et al., 2012; You et al., 2013; Hassane et al.,
2022). Moreover, endophytes possess the capability to convert
polydatin, which is abundant in R. japonica, into resveratrol (Liu
et al., 2020b). The microbial production of these secondary
metabolites significantly contributes to their accumulation
within the host.

In summary, endophytes in Polygonaceae plants promote host
growth by enhancing the response to growth hormones and auxin
synthesis, as well as the increasing the metabolic levels of plant cells.
These endophytes enhance the adaptability of Polygonaceae plants
to stress conditions. Furthermore, endophytes from Polygonaceae
plants have potential applications in crop cultivation. For instance,
the endophytic Streptomyces isolated from R. dentatus has been
shown to effectively promote the growth of rice (Ntemafack et al.,
2022a). Similarly, the endophytic Bacillus from R. dentatus can
mitigate the damage caused by the pathogenic Fusarium oxysporum
to potato tubers (Ntemafack et al., 2022b). Endophytes facilitate the
accumulation of secondary metabolites in Polygonaceae plants by
enhancing the expression of genes encoding key enzymes in the
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synthetic pathways of these metabolites or by directly producing the
metabolites themselves. The ability of endophytes to increase the
metabolite content in hosts and synthesize metabolites identical to
those of their hosts offers viable strategies for enhancing the
production of bioactive compounds from Polygonaceae species.
For example, co-culturing the host with endophytes to promote
metabolite production, and heterologously expressing the synthetic
pathway of endophyte metabolites in microbial cell factories are
effective strategies, which are beneficial for the sustainability of
medicinal Polygonaceae plants. Moreover, endophytes produce
novel bioactive metabolites with medicinal value, and
investigating their metabolic products represents a promising
avenue for natural drug discovery.

4 Biological activity of Polygonaceae
endophytes and their secondary
metabolites

Medicinal plants are critical sources for the development of
novel therapeutic agents due to their abundance of natural bioactive
compounds (Gómez and Luiz, 2018). However, the yield and quality
of these plants are susceptible to environmental factors.
Additionally, the extraction efficiency of bioactive compounds
remains suboptimal (Milke et al., 2018; Abo-Kadoum et al.,
2022). Endophytes of plants produce diverse secondary
metabolites that exhibit biological activities comparable to those
derived from their host plants, acting as reservoirs of natural

FIGURE 2
Secondary metabolites of endophytes from Polygonaceae plants and their applications.

Frontiers in Bioengineering and Biotechnology frontiersin.org06

Chen and Tang 10.3389/fbioe.2025.1666908

mailto:Image of FBIOE_fbioe-2025-1666908_wc_f2|tif
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1666908


bioactive compounds (Ancheeva et al., 2020). Secondary metabolites
of endophytes from Polygonaceae plants demonstrate potential in
anticancer, antioxidant, and antimicrobial applications (Figure 2).

4.1 Antimicrobial activity of endophytes

Root rot, caused by plant pathogens such as F. oxysporum,
significantly reduces crop yields and compromises the quality of
medicinal plants (Pandey et al., 2021). Endophytes exhibit
antagonistic capabilities against these pathogens (Pal et al., 2021),
and various secondary metabolites produced by them exhibit anti-
pathogenic activity (Waqar et al., 2024). The ethyl acetate extract of
Alternaria alstroemeriae, an endophyte derived from F. dibotrys,
contains antimicrobial compounds including caffeic acid (I), 3-
phenyllactic acid (II), and norlichexanthone (III) (Xie et al.,
2024). Caffeic acid inhibits pathogenic microorganisms by
disrupting the integrity of cell membranes and hindering
mycelial growth (Khan et al., 2021). Both 3-phenyllactic acid and
norlichexanthone can inhibit the expression of bacterial virulence
factors and the biofilm formation by competitively binding to
quorum-sensing factors in bacteria (Baldry et al., 2016; Wu et al.,
2023). The endophyte Streptomyces sp. A0916 from R. japonica
produced the antibacterial substance dehydroacetic acid (IV) (Wang
et al., 2016), which exerts inhibitory effect on fungi such as Botrytis
cinerea and Sclerotinia sclerotiorum (Huang et al., 2024). The
endophytic bacterium Bacillus sp. KL5 from R. dentatus and the
fungus T. citrinoviride HT-1 from R. palmatum have demonstrated
inhibitory activity against the common plant pathogen F. oxysporum
(Chen et al., 2022a; Ntemafack et al., 2022b). Bacillus sp. KL5 can
produce 2,4-di-tert-butylphenol (V), an effective antibacterial agent
that capable of inhibiting pathogenic fungi (Ntemafack
et al., 2022b).

4.2 Antioxidant activity of endophytes

Endophytes are promising sources of antioxidant
compounds, particularly polyphenols and flavonoids (Rai
et al., 2021; Shen et al., 2022). Quercetin (VI), a flavonoid
known for its exceptional antioxidant capacity, is commonly
found in plants belonging to the Polygonaceae family. Xie
et al. (2024) reported that the endophytic fungus A.
alstroemeriae isolated from F. dibotrys, exhibited the ability to
produce quercetin. Numerous common secondary metabolites in
plants, such as rutin (VII), epicatechin (VIII), gallic acid (IX),
ellagic acid (X), apigenin (XI), and luteolin (XII), have been
shown to be produced by Penicillium isolated from R. nervosus
(Hassane et al., 2022). Among these compounds, rutin,
epicatechin, apigenin, and luteolin are flavonoids that
have demonstrated potent antioxidant properties (Shen
et al., 2022).

4.3 Anticancer activity of endophytes

Endophytes can produce a variety of anticancer compounds.
Emodin (XIII), an anthraquinone, has demonstrated promising

anticancer properties against various cancers and has been
reported to be produced by two endophytic fungi Fusarium
solani and Polyporales sp. Isolated from plants of the genus
Rheum (You et al., 2013; Dar et al., 2017). Moreover, F. solani is
capable of producing another anthraquinone compound rhein
(XIV), which also exhibits significant anticancer activity (You
et al., 2013). Additionally, resveratrol (XV), an effective
anticancer compound against various tumor cell types, was
produced by Alternaria sp. HG6 isolated from R. japonica (Shi
et al., 2012). Furthermore, endophytes from R. japonica have been
shown to transform resveratrol into its derivatives which exhibit
improved stability and bioavailability. Specifically, Streptomyces
sp. A12 and Penicillium sp. F5 transformed resveratrol into
3,5,4′-trimethoxy-trans-stilbene (XVI) and pterostilbene (XVII),
respectively (Tian et al., 2018; Xu et al., 2020).

In summary, endophytes and their metabolites in Polygonaceae
plants exhibit a broad spectrum of antimicrobial activity, effectively
inhibiting several common plant pathogens and showing promise as
biological control agents. Furthermore, like their hosts, endophytes
can synthesize phenolic compounds and flavonoids, positioning
them as a potential source of antioxidant substances.
Additionally, certain metabolites produced by endophytes in
Polygonaceae exhibit anticancer activity, capable of directly
inhibiting tumor cell proliferation or aiding chemotherapeutic
drugs in cancer treatment. The potential of endophytes and their
metabolites in Polygonaceae plants extends to both agricultural
cultivation and drug development. Investigating the functional
characteristics of these endophytes and pursuing their
translational applications in agricultural and pharmaceutical
fields are important future research directions, that will promote
the conservation of medicinal plants and advance the natural
medicine industry.

5 Biosynthesis of metabolites of
endophytes from Polygonaceae plants

Various metabolites produced by endophytes from
Polygonaceae plants are also common natural products
extensively studied for their broad-spectrum biological
activities. To address the challenge of low yield and efficiency
in plant extraction, microbial synthesis of these metabolites has
received increasing attention. Here, we provide a concise
overview of the key enzymes involved in biosynthetic
pathways of these metabolites and their heterologous synthesis
in microorganisms.

5.1 Biosynthesis of resveratrol

Resveratrol is a significant medicinal component found in R.
japonica and other plants such as grapes and peanuts. Currently,
plant extraction is the main source of commercial resveratrol,
however, this method is highly dependent on the availability of
plants and is often inefficient. Consequently, microorganisms have
been employed to develop synthetic methods for resveratrol
production. The key enzymes involved in the resveratrol
synthetic pathway include PAL/tyrosine ammonia lyase (TAL),
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trans-cinnamate 4-hydroxylase (C4H), 4-coumarate-CoA ligase
(4CL), stilbene synthase (STS), and resveratrol synthase (ST) or
CHS (Abo-Kadoum et al., 2022). The microbial production of
resveratrol was first reported 2 decades ago, where
Saccharomyces cerevisiae was used as a heterologous host for
the expression of plant-derived 4CL and ST, resulting in the
production of 1.45 μg/L of resveratrol glucoside (Becker et al.,
2003). Since then, the microbial synthesis of resveratrol has been
extensively studied and reported. In addition to the conventional
yeast S. cerevisiae, non-conventional yeasts such as Yarrowia
lipolytica and bacteria such as Escherichia coli have also been
utilized as hosts. Currently, the titers of resveratrol achieved are
2.3 g/L, 4.1 g/L, and 22.5 g/L in the three commonly used hosts
E. coli, S. cerevisiae, and Y. lipolytica, respectively (Lim et al., 2011;
Liu et al., 2022; Meng, et al., 2023). Lim et al. (2011) enhanced
resveratrol production by optimizing combinations of 4CL- and
STS-encoding genes from various sources, selecting appropriate
promoters for gene expression, and improving strain backgrounds,
as well as enhancing the intracellular supply of precursors. Meng
et al. (2023) reported the expression of genes encoding 4CL, STS,
and a bi-functional PAL/TAL in a S. cerevisiae strain, enabling the
strain to synthesize resveratrol using yeast extract peptone
dextrose (YPD) medium. By further increasing the copy
number of pathway genes, enhancing precursor supply, and
tailoring the engineered strain, a resveratrol titer of 4.1 g/L was
achieved using minimal medium through fed-batch fermentation.
Liu et al. (2022) constructed a basal resveratrol-producing strain by
expressing TAL, 4CL, and STS genes in Y. lipolytica. The
resveratrol titer was subsequently enhanced through multiple
strategies, including optimization of enzyme gene sources and
copy numbers, enhancement of precursor supply, and control of
cell morphology via process engineering. While the
aforementioned studies utilized genes from plants, Lu et al.
(2021) identified genes encoding 4CL and CHS from a
resveratrol-producing endophytic fungus derived from grape,
whose expression enabled S. cerevisiae to produce p-coumaroyl
CoA and resveratrol, respectively. Shi et al. (2012) isolated several
resveratrol-producing endophytic fungi from R. japonica,
however, the genetic information related to resveratrol synthesis
remains unexplored.

5.2 Biosynthesis of emodin

Emodin is an anthraquinone compound synthesized through
the polyketide pathway, a metabolic route shared by bacteria, fungi,
and plants (Mund and Čellárová, 2023). It is primarily isolated from
Polygonaceae plants, particularly R. japonica (Zhang et al., 2022b).
However, the extraction process necessitates substantial quantities
of plant materials and is inefficient. Consequently, research has
shifted towards the microbial synthesis of emodin. Acetyl CoA and
malonyl CoA serve as precursors for the biosynthesis of emodin,
requiring various enzymes, including acetyl CoA carboxylase
(ACC1), polyketide synthase (PKS), metallo-β-lactamase-type
thiesterase (MβL-TE), and decarboxylase (DC) (Liu et al., 2020a;
Zhang et al., 2022b). Endophytic fungi from R. palmatum and
Rheum emodi have been reported to possess the capability of
producing emodin (You et al., 2013; Dar et al., 2017). However,

the key enzymes involved in their synthetic pathway remain to be
elucidated. Genes encoding enzymes related to the emodin synthetic
pathway in other fungi have been investigated and expressed in S.
cerevisiae. Sun et al. (2019) expressed a non-reducing PKS alongside
MβL-TE in S. cerevisiae, while simultaneously introducing DC,
resulting in an engineered strain with an emodin yield of
96.5 mg/L. Furthermore, the expression of ACC1 has been
shown to increase the content of malonyl-CoA. Thus, a double-
point mutant ACC1S659A, S1157A was introduced into the engineered
strain to further enhance emodin yield, resulting a strain with an
emodin yield of 253.2 mg/L (Sun et al., 2019). Biosynthetic
technology presents significant potential for the heterologous
synthesis of emodin, further exploration of the genes within its
biosynthetic pathway is necessary.

5.3 Biosynthesis of flavonoids

Flavonoids are prevalent bioactive secondary metabolites found
in plants of Polygonaceae family, as well as an important group of
metabolites produced by their endophytes (Hassane et al., 2022; Li
et al., 2022; Zou et al., 2023; Xie et al., 2024). Endophytes associated
with Polygonaceae plants have been reported to synthesize various
flavonoids, including quercetin, luteolin, apigenin, rutin, and
epicatechin. Traditional methods for flavonoid production, such
as plant extraction and chemical synthesis, have proven inefficient
for large-scale industrial applications (Tariq et al., 2023).
Consequently, there has been growing interest in the genetic
engineering of microorganisms for scalable flavonoid production
(Sheng et al., 2020). Naringenin and eriodictyol serve as key
precursor molecules in the biosynthesis of various flavonoids,
utilizing tyrosine as a substrate, with the process involving the
enzymes TAL, 4CL, CHS and chalcone isomerase (CHI)
(Dunstan et al., 2020). Yiakoumetti et al. (2023) expressed type II
FNS (FNS-II) from Lonicera japonica and cytochrome
P450 reductase (CPR) from Arabidopsis thaliana (AtCPR) in a
naringenin-producing E. coli, achieving apigenin yield of 128 mg/
L. Furthermore, the expression of FNS-II from Glycine max and
AtCPR in an eriodictyol-producing E. coli resulted in a strain that
produced 5.0 mg/L luteolin (Yiakoumetti et al., 2023). Notably, the
source of FNS-II significantly influenced the yields of apigenin and
luteolin. In another study, Rodriguez et al. (2017) constructed an
engineered E. coli strain that produced 20.38 mg/L quercetin by
overexpressing 4CL, CHS, CHI, flavanone 3-hydroxylase,
cytochrome P450 flavonoid monooxygenase, and flavonol
synthase. In summary, apigenin, luteolin and quercetin have been
successfully biosynthesized in microorganisms. Future
investigations into the biosynthetic pathways of these flavonoids
produced by Polygonaceae endophytes may enhance the yields of
flavonoids in engineered strains.

5.4 Biosynthesis of other metabolites

Endophytes derived from Polygonaceae plants produce
metabolites such as gallic acid, 3-phenyllactic acid, and caffeic
acid, which exhibit notable antioxidant and antimicrobial
properties. These compounds possess significant applications in
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the food, pharmaceutical, and cosmetic industries. In response to the
increasing demand, research efforts have concentrated on their
synthesis using engineered strains of E. coli or S. cerevisiae.

Key enzymes involved in the biosynthesis of gallic acid include
3-dehydroshikimate (3-DHS) dehydratase and 4-hydroxybenzoate
hydroxylase. The expression of 3-DHS dehydratase (quiC) and a
mutated variant of 4-hydroxybenzoate hydroxylase (pobA) in E. coli
has enabled the production of gallic acid (Guo et al., 2024).
Following the optimization of metabolic flux and enhancement of
the shikimate pathway, the engineered E. coli strain achieved a yield
of 51.57 g/L during fed-batch fermentation.

3-Phenyllactic acid can be synthesized by lactic acid bacteria
utilizing phenylalanine as a substrate, with the catalysis of
aminotransferase and dehydrogenase (Rajanikar et al., 2021).
During the production of 3-phenyllactic acid, dehydrogenase
consumes NADH, necessitating the addition of formate
dehydrogenase (FDH) for NADH regeneration (Zheng et al.,
2015). Zhao et al. (2018) expressed L-amino acid deaminase, D-
2-hydroxyisocaproate dehydrogenase, and FDH in E. coli, resulting
in a strain with a high conversion rate of 81.3% for the
transformation of L-phenylalanine into 3-phenyllactic acid (Zhao
et al., 2018). The yield of 3-phenyllactic acid reached 121 mM
(20.11 g/L).

The biosynthetic pathway of caffeic acid involves several key
enzymes, including PAL, TAL, C4H, CPR, coumarate 3-hydroxylase
(C3H), and 4-hydroxyphenylacetate 3-hydroxylase (4HPA3H) (Li
et al., 2020; 2025). Li et al. (2020) introduced C3H and CPR1 into S.
cerevisiae, resulting in a strain that produced caffeic acid at a yield of
18.131 mg/L. Liu et al. (2019) introduced the TAL and 4HPA3H
genes, hpaB and hpaC, into S. cerevisiae, enabling the strain to
produce 289.4 mg/L of caffeic acid. Recognizing the crucial role of
cofactors play crucial role in the synthesis of caffeic acid, Chen et al.
(2022c) engineered the recycling and supply of the cofactors
FADH2, S-adenosyl-L-methionine, and NADPH in S. cerevisiae,
resulting in a final yield of caffeic acid reaching 5.5 g/L. In E. coli,
Wang et al. (2023) constructed a strain expressing TAL and HpaBC,
achieving a caffeic acid yield of 234.7 mg/L. Furthermore, by
knocking out genes in competing pathways and overexpressing
the FAD synthesis gene and the transporter gene in the
engineered strain, the yield of caffeic acid reached 7.92 g/L
(Wang et al., 2023).

In summary, significant advancements have been made in the
microbial biosynthesis of active compounds with attractive
yields. Although these compounds can be produced by
endophytes from the Polygonaceae family, the pathway genes
expressed in heterologous microorganisms for constructing
engineered strains are rarely derived from Polygonaceae
endophytes. Current studies commonly utilized genes from
plants due to the limited understanding of synthetic pathways
in microorganisms. Since gene source is crucial for the
production of metabolites in heterologous hosts, and
endophytes are microorganisms whose pathway genes may
exhibit better compatibility to microbial hosts over plants.
Investigating the undeciphered biosynthesis pathways of
metabolites in endophytes from Polygonaceae plants will
provide promising avenues for the biosynthesis of secondary
metabolites or natural products in microbial cell factories, and
facilitate the utilization of natural resources.

6 Conclusion and perspectives

This article reviews the diversity of endophytes in Polygonaceae
plants, emphasizing their crucial roles in host plants, and summarizes
various biological activities and the heterologous production of
secondary metabolites derived from these endophytes. Among the
four genera of Polygonaceae reviewed, a greater number of
endophytic fungi were isolated and identified compared to
endophytic bacteria. The genus Fusarium was found to be the most
prevalent among the endophytic fungi, while Bacillus was identified as
the most common genus of endophytic bacteria. Endophytes exhibit
potential for enhancing yield and quality in cultivated Polygonaceae
species. Furthermore, endophytes in Polygonaceae plants can produce a
variety of high-value medicinal compounds with antimicrobial,
antioxidant, and anticancer activities. The ability to produce
bioactive substances indicates the presence of natural product
biosynthetic pathways in Polygonaceae endophytes. Consequently,
endophytes from Polygonaceae plants demonstrate promising
prospects for utilization in natural product biosynthesis.

The Polygonaceae family constitutes a large group of plants with
numerous genera. This review, however, is limited to a select subset of
species within four of these genera, and endophytes from other genera
are not addressed. For instance, plants belonging to the genus
Pleuropterus are crucial representatives of the Polygonaceae family
due to their pharmacological importance in traditional Chinese
medicine, yet their endophytic communities remain largely
unexplored. The underexplored endophytes in Polygonaceae plants
may possess unique functional potentials, necessitating future
investigation. Recent studies have increasingly focused on exploring
the molecular mechanisms underlying endophyte-host interactions
(Chen et al., 2022b; Ding et al., 2022), aiming to bridge the gap
regarding the influence of these interactions on the regulatory
mechanisms governing metabolite biosynthesis. Related studies have
explored the mechanisms underlying endophyte-mediated growth
promotion and stress tolerance enhancement in Polygonaceae plants.
A deeper understanding of the biosynthetic pathways of secondary
metabolites produced by endophytes in these plants should be pursued
through multi-omics and synthetic biology approaches.

Despite numerous studies on Polygonaceae endophytes,
practical applications continue to face persistent challenges
(Figure 3): The interactions between endophytes and plants, as
well as among microorganisms, critically influence endophytic
colonization and functionality within the host, however, the
mechanisms underlying these interactions remain poorly
understood. Although the diversity of endophyte species is
exceedingly high, relatively few methods exist for the efficient
isolation of endophytes with desired properties. A significant
number of endophytes have been identified using second-
generation sequencing technology, yet many remain unculturable
under laboratory conditions. While Polygonaceae plants can
produce a variety of natural products, their biosynthetic
pathways have not been elucidated further. Challenges such as
low yield and instability of production performance in
Polygonaceae endophytes remain unresolved.

To address these challenges, several strategies are proposed
(Figure 3). Using network analysis and experimental verification
using various well-established methods to elucidate the mechanisms
underlying the interactions between endophytes and plants, as well as
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with othermicroorganisms. A combined approach that utilizesmultiple
omics technologies should be developed to efficiently identify target
endophytes with specific characteristics. Additionally, innovative
culture methods for endophytes are essential for advancing their
applications. Therefore, refining culture methods is critical for
broadening the spectrum of culturable endophytes, which will
facilitate the comprehensive utilization of endophytic resources.
Furthermore, bioinformatics and genetic techniques will aid in
elucidating the natural product biosynthetic pathways in
Polygonaceae endophytes. Future efforts should focus on the
metabolic engineering of endophytes or the heterologous expression
of pathway genes to achieve high-level production of metabolites.
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FIGURE 3
Challenges and future research directions in Polygonaceae endophytes.
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