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Introduction: Dual-energy X-ray absorptiometry (DXA) is the gold standard for
diagnosing osteoporosis. Advances in 2D-3D modelling to generate patient-
specific 3D-DXA models out of DXA images enable accurate volumetric
representations of the femur, with potential for fracture risk prediction when
combined with finite element (FE) analyses. This study evaluates the ability of 3D-
DXA-based FE models to discriminate hip fractures under side-fall loading.
Methods: We used a retrospective case-control study including 128 women, 64
of whom suffered a hip fracture. Mechanical descriptors, including strength,
nonlinear deformation, residual displacement, and energy absorption under
elastic-plastic assumptions, were derived from force-displacement curves.
Results: The area under the receiver operating characteristic curve (AUROC)
showed that strength and trabecular volumetric bone mineral density (vBMD)
equally discriminated between fracture and control subjects. Residual
displacement due to plastic strain accumulation at failure emerged as a key
descriptor which, when combined with strength, significantly improved fracture
discrimination (AAUROC = 0.11vs. areal bone mineral density (aBMD); AAUROC =
0.08 vs. trabecular vBMD).

Discussion: These findings highlight the potential of 3D-DXA and FE modelling to
improve fracture assessment within current DXA-based clinical workflows.

biomechanics, osteoporosis, hip fracture discrimination, 3D-DXA, finite element
1 Introduction

Osteoporosis is identified by a loss of bone mass leading to bone strength reduction. It
evolves silently, and its late diagnosis and/or lack of prevention may lead to fragile fractures,
loss of life quality, as well as a significant excess of mortality for the patients (Kanis
et al,, 2021).

Osteoporosis is currently diagnosed by using the areal bone mineral density (aBMD)
computed from 2D dual-energy X-ray absorptiometry (DXA) images of the proximal femur
and lumbar spine (Stone et al., 2003). However, aBMD is an insufficient metric to estimate
the risk of a fragile fracture since it captures neither the distribution of volumetric bone
mineral density (VBMD) nor other important factors that control the concentration of
mechanical loads in bone tissues, such as bone geometry or external loads. Predictive tools
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such as FRAX and Garvan (Adler, 2014; Watts et al, 2009;
McCloskey et al., 2012) were proposed to estimate the fracture
risk, considering different clinical risk factors (age, weight, height,
sex, BMI, current smoking status, etc.) combined with aBMD or
alone. Although these tools consider multiple risk factors for
fracture assessment, they still do not account for bone geometry,
spatial distribution of bone density, and mechanical loads.
Developing accurate measures of bone strength and mechanical
behavior is an essential step toward enhancing fracture risk
prediction tools.

In recent studies, subject-specific finite element (FE) models
based on quantitative computed tomography (QCT) or DXA scans
were proposed, as promising tools to improve fracture risk
evaluation, as they allow bone strength estimations by integrating
physics-based rationales (Cody et al, 1999). Mechanical
experimental models of the proximal femur load and fracture
under side-way fall conditions (Dragomir-Daescu et al., 2011;
Kok et al, 2021; Courtney et al, 1995; Grassi et al, 2012;
Dall’Ara et al, 2016) were to validate the
aforementioned FE models.

developed

QCT-based subject-specific FE models led to improved fracture
risk evaluation compared to aBMD in different studies (Schileo and
Taddei, 2021; Fleps and Morgan, 2022). Fleps et al. (2022) used
nonlinear QCT-based FE models to assess the fracture risk of the
proximal femur under multiple loading conditions by developing an
FE modeling pipeline previously established by Enns-Bray et al.
(2019). They used nonlinear and linear material models in their
study. The results demonstrate that the non-linear FE model was a
better approach to discriminate the fracture risk compared to linear
FE models. Loading mechanisms with low adduction and internal
rotation were found to be more suitable for fracture classification.
Cao et al. (2024) presented a QCT-based FE model and computed
the yielding load, strength, and energy to failure. They combined the
FE parameters with aBMD and six demographical and clinical
parameters to develop an FE-based fracture risk index using four
loading mechanisms. The results showed that mechanical
enrichment of aBMD information through FE parameters
improved femoral fracture risk assessment compared to aBMD
adjusted for six covariates. Yet, the high cost and radiation dose
of QCT limit the clinical applicability of QCT-based FE approaches.

Since DXA is the current clinical standard for osteoporosis
management, DXA-based 2D FE models were proposed to
predict bone strength (Dall’Ara et al., 2016) and fracture risk in
clinical cohorts (Terzini et al., 2019; Leslie et al., 2019; Yang et al.,
2018). Dall’Ara et al. (2016) combined experimental investigation on
the proximal femur in a standing configuration and a fall onto the
greater trochanter, with subject-specific DXA-based 2D linear FE
models predicting the bone strength and failure criteria in good
agreement with the experimental results. Ulivieri and Rinaudo
(2022) introduced the Bone Strain Index (BSI) as a metric for
assessing the load resistance of the femur and lumbar spine using
DXA-based 2D FE models. Their approach employed linear elastic
FE models, where the forces acting on the greater trochanter were
determined by the patient’s weight and height. The BSI values
represent the average bone strain at the analyzed site (neck BSI
and total hip BSI), with higher BSI values indicating increased bone
strain and, consequently, a higher fracture risk. Since 2018, several
clinical studies have explored the clinical utility of BSI in identifying
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osteoporotic patient subgroups having a particular tendency to
fragility fractures (Rinaudo et al., 2024; Ulivieri et al, 2022;
Sornay-Rendu et al, 2022). Naylor et al. (2013) used a DXA-
based 2D FE model to assess hip fractures in 728 female subjects.
The area under the receiver operating characteristic curve (AUROC)
calculated using the load-to-strength ratio (LSR) combined with
femoral neck (FN) aBMD was significantly greater compared to FN
aBMD alone. Although DXA-based 2D FE simulations could reflect
mechanical behaviors (Dall’Ara et al, 2016), their ability for
osteoporosis fracture classification remains limited (Naylor et al.,
2013). One of the limitations of the DXA-based 2D FE method is the
inability to simulate sideways fall models using different loading
configurations (Falcinelli et al., 2014). Moreover, in these DXA-
based 2D FE models, the volumetric information is missing, and
planar information may not sufficiently encompass the out-of-plane
distribution of shapes and bone mineral density, depending on the
specific characteristics of a patient’s femur.

3D-DXA-based FE models have the potential to overcome the
limitations of DXA-based 2D FE models (Thevenot et al., 2014;
Viininen et al., 2015; Grassi et al., 2017; Grassi et al., 2021; Wills
etal, 2019). Grassi et al. employed statistical shape and appearance
models (SSAM) to reconstruct the three-dimensional anatomy of
individual femurs from DXA images, subsequently conducting 3D
FE simulations (Grassi et al., 2023). The AUROC values computed
using bone strength values normalized to the subject’s weight in
10 different side fall
improvement compared to aBMD + body mass index (BMI)

configurations revealed significant
criteria for hip fracture discrimination (Grassi et al., 2023; Grassi
et al., 2025). Although most QCT- and 3D-DXA-based FE models
improved fracture risk discrimination compared to aBMD, their
implementation in clinical practices remains challenging due to high
FE simulation cost, lack of automation (Viceconti et al., 2018), or
absence of regulatory approval for use in clinical practice (Grassi
et al,, 2023). Moreover, assessing a robust mechanical criterion that
incorporates the effective mechanical parameters associated with
femur fracture could enhance the discrimination of hip fractures in a
case-control study.

3D-Shaper” is a software solution that implements the 3D-DXA
technology and has obtained regulatory approvals for clinical use
(Humbert et al., 2016). Hip DXA scans are analyzed automatically to
provide a 3D analysis of the cortical and trabecular compartments. A
3D-DXA-based FE pipeline by using the 3D-Shaper software was
used in our previous study (Wills et al., 2019) in which a static peak
load that depended on patient mass and height was applied to the
femur head. Discrimination of fracture subjects through the local
mechanical descriptors was performed in the study, which showed
that the major principal stress was a better discriminator compared
to the vBMD measured at the same region of interest. Moreover,
high correlations were reported between femur strength estimated
using the 3D-DXA-based FE model and QCT-based FE models
(Dudle et al., 2023; Qasim et al., 2024). The mean computation time
per subject for the 3D-DXA algorithm was 1 min 30 s (Humbert
et al., 2016) and 15 min for the FE simulation (Qasim et al., 2024),
making this approach potentially suitable for use in clinical settings,
compared to the other 3D-DXA-based FE algorithms (Grassi
et al.,, 2023).

In the current study, this 3D-DXA-based nonlinear FE model
(Qasim et al., 2024) is used to assess the ability of global mechanical
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TABLE 1 Mean + standard deviation characteristics in control and hip fracture groups (Humbert et al., 2020).

Characteristics Control (n = 64)

Hip fractures (n = 64)

Age (Years) 689 +9.0 68.8 + 8.9 0.975
Height (cm) 1532 + 6.4 1534 + 7.3 0.892
Weight (kg) 62.6 +7.9 632 + 112 0.722
BMI (%) 26.7 + 3.3 269 + 4.6 0.781

*P—values from an unpaired two—sample t—test.

descriptors to discriminate between hip fractures and controls.
These descriptors integrate the effects of organ geometry,
distribution of bone mineral density and mechanical properties,
and tissue-dependent organ structure, in 3D patient-specific
representations of the proximal femur.

2 Materials and methods

2.1 Cohort and DXA images

We used data from a retrospective clinical cohort collected in a
previous study (Humbert et al, 2020). The retrospective clinical
cohort study was performed at CETIR Group Medic (Barcelona,
Spain) and included 64 subjects with incident hip fractures and
64 controls. The study was conducted under the latest version of
the Declaration of Helsinki. Ethical approval was granted by the
CETIR Group Medic Scientific Committee. Informed consent was
obtained from all participants. Subject anonymity was maintained by
assigning subject-specific numeric codes to all records. The cohort
comprised Caucasian post-menopausal women with baseline visits
between 2000 and 2011. Subjects with any prior osteoporotic fractures
or diseases other than osteoporosis that affect bone metabolism were
excluded from the study. Hip fracture was diagnosed through clinical
history or a phone call in case of missing clinical information. A
review of clinical history and DXA scans of subjects confirmed the
absence of fracture at the baseline and follow-up period in sex- and
age-matched subjects in the control group. There was no significant
difference (P-value >0.05) between age, height, weight, and body mass
index (BMI) between subjects in the hip fracture and control
groups (Table 1).

DXA scans were conducted using a Prodigy scanner (GE
Healthcare, Madison, WI, USA) following the recommendations
provided by the manufacturer. aBMD (g/cm?), bone mineral
content (g), and the area (cm?), were measured for the entire
scanned region of the proximal femur by a trained radiologist
using enCORE software v14.10 (GE Healthcare) (Humbert
et al., 2020).

2.2 3D-DXA analysis

3D-Shaper software v2.14 (3D-Shaper Medical, Barcelona,
Spain) was used to analyze the DXA scan and provide patient-
specific 3D-DXA geometrical and bone density models. In brief, the
software uses an SSAM of the proximal femur, built out of a database
of QCT images and registered onto the DXA scan, to estimate a
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patient-specific 3D femur shape and volumetric density distribution
(appearance) (Humbert et al., 2016). This approach allows for
representation of both the cortical and trabecular compartments
(Humbert et al., 2020), which were subsequently used to generate FE
structural meshes with vBMD-based material properties specific to
each tissue (Qasim et al., 2024).

Integral vBMD (mg/cm®) was calculated as the mean vBMD of
the cortical and trabecular compartments in the total hip (TH).
Trabecular vBMD (mg/cm?), was calculated as the average vBMD
of the trabecular compartment at the TH (Humbert et al., 2016).
Cortical surface BMD (sBMD) (mg/cm?), was computed as the
multiplication of the cortical vBMD by the cortical thickness, both
averaged over the TH region of interest. The accuracy of the 3D-
Shaper modeling methods was evaluated in different studies
(Humbert et al., 2016; Dudle et al., 2023). It is noteworthy that
in 3D-DXA analyses, the proximal femur, excluding the pelvis and
surrounding structures, was considered as the primary region of
interest, as it more directly corresponds to the anatomical site
relevant for hip fracture risk assessment.

2.3 3D-DXA-based nonlinear FE modeling

A 3D-DXA-based nonlinear FE model previously described
(Qasim et al., 2024) was utilized to simulate the mechanical
behavior of the femur under sideways fall. In brief, the 3D
proximal femur anatomy derived from the 3D-Shaper software
(Humbert et al., 2016) served for the automatic personalization
of FE models. A generic structural FE mesh was morphed into the
subject-specific femur shape using thin-plate splines (TPS)
transformations. The TPS transformations ensured that separate
FE mesh components were consistently morphed into the cortical
and trabecular compartments of each subject-specific model. Linear
hexahedral eight-node brick elements were used in the FE model.

Using linear interpolations of the bone density values in the image
provided by the 3D-Shaper software, the subject-specific bone densities
were mapped onto the FE meshed model. In each tissue compartment,
the elastic modulus of each element was determined by using the
density-elasticity relationships (Ho et al., 1992; Keller, 1994) presented
in Equation 1 where the elastic modulus (E) was in MPa, the ash
density (p,,) in L, and the apparent density (Papp) In %.

Errapecutar = 0.003715 % (Papp)1l96’ECorticul = 10200 x (pash)zm (1)
The Poisson’s ratio was assumed to be 0.3. The ash density of the

bone, in %, was calculated as follows (Equation 2) (Schileo
et al., 2008a):
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Pash = 0.87pocr +0.079 )

where (pocr) refers to the radiological density, which was calculated
g
cm?
process. To access the apparent density in Equation 1, we assumed
Pt ratio of 0.6, in the range of values (0.55-0.63) provided by
a\I/);ilable studies, where both p,, and p, pp WeTe in % (Schileo et al.,
2008a; Goulet et al., 1994; Keyak et al., 1994).

To simulate the nonlinear behavior of bone, an elastic-perfect

using the vBMD values (%) derived from the 3D-Shaper modeling

plastic model was applied (Johannesdottir et al., 2017; Bayraktar
et al., 2004; Bevill et al., 2007; Morgan and Keaveny, 2001):

1.48
O y¢ (Trabecular) = 38.5 x (papp) N

1.26
Oyt (Trabecular) = 22.6 x (papp)

Uyc(Cortical) = —-041 + 0.0062 x Ecartical:

Gyt(Curticul) =0.33 +.0039 x Ecortical

where 0y, and 0,; represent the compressive and tensile yield stress,
respectively.

Boundary conditions that mimic a state-of-the-art experimental
model of lateral fall with femur cadaveric experiments (Dragomir-
Daescu et al., 2011; Kok et al.,, 2021; Courtney et al., 1995; Grassi
etal, 2012; Dall’Ara et al., 2016), recurrently used in FE models for
femur strength calculation (Grassi et al., 2012; Grassi et al.,, 2023;
Abe et al, 2022) were employed in the 3D-DXA-based FE
simulations. The end of the modelled shaft region was fully
constrained, and the surface of the greater trochanter was fixed
only in the fall direction (Figure la). A rigid-body constraint
imposed a displacement on the femur head through a reference
point (RP), until the reaction force started to drop with increasing
displacements. Such a drop was considered as a surrogate of
mechanical failure, following the nonlinear apparent elastic-
The RP and the
corresponding slave nodes on the femur head are shown in

plastic response of the femur model.

Figure la. The strength (Fj) was defined as the corresponding

maximum force, and both F;, and the corresponding
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displacement, Dy, were used as the main output parameters of
the 3D-DXA-based nonlinear FE model (Figure 1b). Furthermore,
to account for variability in impact direction, different sideways fall
configurations covering 0°-30° of adduction and internal rotation
were also modeled in the study (Falcinelli et al, 2014; Grassi
et al.,, 2023).

Figure 2 provides a schematic representation of the conceptual
framework adopted in this study.

2.4 Mechanical descriptors for fracture and
non-fracture discrimination

The strength (F), displacement at failure (D,), and the
nonlinear energy up to the failure point (Figure 1b) were used as
nonlinear mechanical descriptors for fracture group discrimination.

To quantify the different characteristics of the elastic-plastic
behavior, the nonlinear FE-derived curves were post-processed
using an optimized piecewise linear method, described in detail
in the Supplementary Appendix A. The piece-wise approximation
provided a series of additional mechanical descriptors (Figure 3).
These included: the linear elastic force (F;); the linear elastic
displacement (D;); the area under the linear elastic region of the
bilinear curve (linear elastic energy); the nonlinear deformation (D)
(Figure 3a). A loading/unloading analysis was also conducted on the
nonlinear FE models to assess the mechanical energy dissipated by
the accumulated plastic deformations. Key parameters from this
analysis, including residual displacement (Ds), dissipated energy per
se, and residual energy (elastic energy), are illustrated in Figure 3b.
The full list of mechanical descriptors and combinations thereof,
used for the discrimination of fragile fracture in the cohort, is
provided in Table 2.

Among the analysed parameters, strength is the maximum load
sustained by the femur before global failure, reflecting overall bone
structural integrity. Displacement at maximum reaction force
denotes the volume fraction of elements that have transitioned
into the plastic region, indicating the bone’s capacity to deform
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prior to fracture. Nonlinear energy quantifies the total mechanical
energy absorbed up to failure, integrating elastic and plastic
contributions, and reflects intrinsic bone toughness. Greater
energy absorption is protective, as bone capable of dissipating
higher mechanical energy during a fall is less likely to fracture
under equivalent strength.

Within the elastic regime, linear elastic force corresponds to the
elastic mechanical energy of elements remaining in the elastic
region, whereas linear elastic displacement represents their
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initial and  functional  bone

deformability. These two parameters characterize bone stiffness;

displacement,  indicating
lower force at a given displacement, or greater displacement at a
given force, reflects reduced stiffness, linked to thinner cortices or
lower trabecular density. Linear elastic energy quantifies the fraction
of total mechanical energy absorbed elastically, highlighting the
bone’s capacity to resist loading prior to plastic deformation, and
reflects its ability to store reversible energy, closely associated with
stiffness and load-bearing capacity.
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TABLE 2 FE-based mechanical descriptors obtained by the nonlinear analysis, piecewise linear analysis, and their combination.

FE-Based Mechanical
Descriptors

Nonlinear FE Analysis

Piecewise Linear Linear Elastic- Based
Analysis

Nonlinear Plastic- Based

Combination of
Mechanical
Descriptors

Strength-Based- Descriptors

Linear Elastic Force- Based
Descriptors

Beyond the elastic region, nonlinear deformation, calculated as
the difference between maximum displacement at the failure point
and linear elastic displacement, represents the post-yield ductility of
the model, potentially mitigating fracture risk despite low bone
strength. Residual displacement serves as a surrogate for the
elements, i.e., the volume, that have undergone irreversible failure
or plastic deformation due to local stress concentrations. Dissipated
energy corresponds energy due to plastic
deformations. Residual energy, ie., the energy retained after

to mechanical

unloading, provided a quantification of how much mechanical
energy could remain at failure, according to the strength model.
The maximum load sustained by the femur, captured as strength
in the nonlinear analysis and as linear elastic force in the piecewise
linear analysis, was further combined with deformation- and
aimed to more

energy-based metrics. It represent a

comprehensive assessment of bone mechanical behaviour,
reflecting a personalised balance of stored and dissipated energy
along the way to failure. The mechanical description and clinical
relevance of Strength-Based- Combinations and Linear Elastic Force-
Based Combination are presented in Supplementary Appendix B

(Supplementary Tables SB1, SB2).

2.5 Statistical analysis

Logistic regression and AUROC were used in this study to
evaluate how the descriptors of the 3D-DXA-based FE model
discriminate between fracture subjects and controls, compared to
aBMD and 3D-DXA cortical and trabecular parameters.
Furthermore, for variables that followed a normal distribution,
we applied the unpaired two-sample t-test and for those that did
not meet the assumption of normality, we used the non-
parametric Mann-Whitney U test to assess whether the mean
values of the mechanical parameters in the case group differed
significantly from those in the control group. The mechanical
descriptors were combined in a multi-logistic regression analysis
for fracture assessment. A leave-one-out cross-validation (Airola
et al,, 2011; Stone, 1974) was used in all logistic regressions, and
the statistical significance of the differences among the obtained
AUROC values was evaluated using the DeLong method (DeLong
et al., 1988).
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Strength (F,), Displacement (Do), Nonlinear Energy

Linear Elastic Force (F,), Linear Elastic Displacement (D), Linear elastic energy

Nonlinear Deformation (D, ), Residual Displacement (Dj), Dissipated Energy, Residual
Energy (Elastic Energy)

Strength + Displacement, Strength + Nonlinear Energy, Strength + Nonlinear
Deformation, Strength + Residual Displacement, Strength + Dissipated Energy, Strength
+ Residual Energy

Linear Elastic Force + Linear Elastic Displacement, Linear Elastic Force + Linear elastic

energy, Linear Elastic Force + Nonlinear Deformation, Linear Elastic Force + Residual

Displacement, Linear Elastic Force + Dissipated Energy, Linear Elastic Force + Residual
Energy

3 Results

3.1 Mechanical behavior of the femur under
side-way fall configuration

Figure 4 illustrates the force-displacement curves for 3D-DXA-
based femur models simulated under side-fall loading, in randomly
selected subjects. The curves show that subjects with comparable
bone strength could reach different failure points, characterized by
varying displacement (D) and nonlinear energy values.

3D-DXA-based FE analysis results, depicting the distribution of
maximum principal plastic strain and maximum principal stress at
maximum reaction force, in a randomly selected femur model under
side-fall loading is provided in the Supplementary Appendix C. High
values of both maximum principal plastic strain and stress were
observed at the femoral neck, suggesting this region as the most
probable site of structural failure.

3.2 FE-predicted mechanical descriptors
and their ability to discriminate fracture and
non-fracture subjects

The mean * standard deviation of TH aBMD, 3D-DXA
measurements, and mechanical descriptors calculated using the
FE analysis for the hip fracture and control groups are presented
in Table 3. Parameters including aBMD, integral vBMD, trabecular
vBMD, cortical sBMD, strength, linear elastic force, linear elastic
energy, and residual energy, were significantly lower in hip fracture
cases compared to controls. In contrast, displacement, linear elastic
displacement, nonlinear deformation, and residual displacement
were significantly higher in hip fracture cases. Nonlinear energy
was higher in controls, while dissipated energy was greater in hip
fracture cases, although none of these differences were statistically
significant.

The AUROCs achieved with the
descriptors were compared to those achieved with aBMD and
3D-DXA measurements, i.e., integral vBMD, trabecular vBMD,
and cortical sBMD (Table 4). The FE-based mechanical
descriptors were classified into four categories: (i) Nonlinear FE

FE-based mechanical

Analysis; (ii) Piecewise Linear Analysis; (iii) Combination of Bone
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FIGURE 4

Force-displacement curves of a few subjects under sideway fall FE simulation.

TABLE 3 Mean + standard deviation of DXA, 3D-DXA measurement, and FE-based mechanical descriptors in the control and hip fracture groups.

Methods Parameters Control Hip
fracture
DXA (TH) aBMD (-2, 0.85 + 0.12 0.76 + 0.11 <0.001
3D-DXA Measurement (TH) Integral vBMD (%) 290.17 + 47.92 25223 + 41.22 <0.001
Trabecular vBMD (%) 140.39 + 34.94 112.2 + 28.54 <0.001
Cortical sBMD (%) 144.13 + 18.90 131.30 + 18.21 <0.001
FE-Based Mechanical Nonlinear FE Analysis Strength (N) 3407.70 + 568.3 | 2984.82 + 552.81 <0.001
Descriptors

Displacement (mm) 2.67 +0.28 2.98 + 0.31 <0.001

Nonlinear Energy (N.mm) 6588.48 + 6504.74 + 0.69

1197.23 1248.04
Piecewise Linear Linear Elastic- Based Linear Elastic Force (N) 2707.66 + 469.18 | 2351.17 + 446.46 <0.001
Analysis
Linear Elastic 0.92 £ 0.06 0.97 £ 0.06 <0.001
Displacement (mm)

Linear elastic energy (N.mm) 1250.07 + 216.58 = 1139.39 + 211.78 0.004

Nonlinear Plastic- Nonlinear Deformation (mm) 1.75 + 0.23 2.01 +0.28 <0.001
Based

Residual Displacement (mm) 1.50 + 0.21 1.74 + 0.23 <0.001

Dissipated Energy (N.mm) 4579.60 + 875.13 = 4621.86 + 885.90 0.78

Residual Energy (N.mm) 1983.11 + 335.87 = 1839.58 * 342.28 0.01

*P —values from unpaired two-sample t-test for normally distributed parameters or Mann-Whitney U test for non-normally distributed parameters, the bold values denote statistically
significant results.

Strength with Mechanical Descriptors; (iv) Combination of Linear 2. Piecewise Linear Analysis: Piecewise linear analysis generated

Elastic Force with Mechanical Descriptors. two categories of mechanical descriptors based on elastic-
plastic characteristics: a) linear elastic-based descriptors,
1. Nonlinear FE Analysis: Nonlinear FE analysis identified

displacement as a key mechanical descriptor for fracture

including elastic force, displacement, and energy; b)
nonlinear plastic-based descriptors, such as nonlinear
discrimination. However, strength alone showed slightly deformation, residual displacement, and residual energy.
analyses,

residual

higher discrimination power compared to aBMD and Mechanical descriptors derived from these

comparable performance to trabecular vBMD. particularly ~ nonlinear  deformation  and
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TABLE 4 AUROC calculated using leave-one-out cross-validation.

Methods Descriptors P-value*
(Versus (Versus
aBMD) trabecular

vBMD)
DXA aBMD 0.69 - 0.192
3D-DXA measurement Integral vBMD 0.71 0.206 0.433
Trabecular vBMD 0.72 0.192 -
Cortical sSBMD 0.66 0.129 0.088
FE-Based Mechanical Nonlinear FE Analysis Strength 0.72 0.275 0.994
Descriptors
Displacement 0.78 0.057 0.14
Nonlinear Energy 0.52 0.0006 0.0004
Piecewise Linear Analysis | Linear Elastic- Based | Linear Elastic Force 0.72 0.230 0.959
Linear Elastic Displacement 0.72 0.583 0.979
Linear elastic energy 0.65 0.255 0.116
Nonlinear Plastic- Nonlinear Deformation 0.79 0.039 0.099
Based
Residual Displacement 0.79 0.033 0.085
Dissipated Energy 0.51 0.035 0.0083
Residual Energy 0.63 0.162 0.078
Combination of Strength-Based- Strength + Displacement 0.79 0.002 0.022
Mechanical Descriptors Descriptors
Strength + Nonlinear Energy 0.79 0.003 0.030
Strength + Nonlinear 0.79 0.002 0.026
Deformation
Strength + Residual 0.80 0.001 0.016
Displacement
Strength + Dissipated Energy 0.79 0.002 0.022
Strength + Residual Energy 0.73 0.100 0.621
Linear Elastic Force- | Linear Elastic Force + Linear 0.74 0.046 0.378
Based Descriptors Elastic Displacement
Linear Elastic Force + Linear 0.74 0.061 0.468
elastic energy
Linear Elastic Force + 0.78 0.010 0.074
Nonlinear Deformation
Linear Elastic Force + Residual 0.79 0.005 0.033
Displacement
Linear Elastic Force + 0.77 0.014 0.103
Dissipated Energy
Linear Elastic Force + Residual 0.71 0.467 0.841
Energy

*P-Values calculated between AUROCs using the Delong method; the bold values denote statistically significant results; Bold AUROC values indicate the highest values within each group of
descriptors; aBMD, integral vBMD, and cortical sSBMD, were calculated at the TH, region of interest.

displacement, demonstrated a statistically significant 3. Combination of Bone Strength with Mechanical Descriptors:

enhancement in discriminating hip fracture cases from
controls compared to the aBMD method [AUROC:
0.79 versus 0.69]. Additionally, linear elastic force and linear
elastic displacement provided a discrimination capacity similar
to trabecular vBMD [AUROC:0.72].

Frontiers in Bioengineering and Biotechnology

Combining FE strength with corresponding displacement,
nonlinear energy, and nonlinear plastic-based descriptors
significantly enhanced fracture discrimination compared to
BMD-based methods. Notable combinations that significantly
over-performed any aBMD-based descriptors included:
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FIGURE 5

ROC curves for the mechanical descriptors compared with (a) aBMD and (b) Trabecular vBMD.

Strength + Displacement, Strength + Nonlinear Energy,
Strength + Nonlinear Deformation, Strength + Residual
Displacement, and Strength + Dissipated Energy. Among
these, FE strength + Residual Displacement emerged as the
most effective combination, achieving a notable improvement
in AUROC compared to both aBMD (0.80 vs. 0.69, P = 0.001)
and trabecular vBMD (0.80 vs. 0.72, P = 0.016).
4. Combination of Linear Elastic Force with Mechanical
Descriptors: Integrating linear elastic force with the
corresponding linear elastic displacement, energy, and
nonlinear plastic-based descriptors further improved the
ability to discriminate fracture cases from controls across
most combinations. Particularly effective combinations
included: Linear Elastic Force + Linear Elastic Displacement,
Linear Elastic Force + Linear Elastic Energy, Linear Elastic
Force + Nonlinear Deformation, Linear Elastic Force +
Residual Elastic

Dissipated Energy. Notably, Linear Elastic Force + Residual

Displacement, and Linear Force +
Displacement showed a statistically significant improvement in
fracture discrimination compared to aBMD and 3D-DXA
measurements [0.79 versus 0.69 and 0,72, respectively],
further highlighting the importance of incorporating

nonlinear-plastic based descriptors into fracture risk models.

The ROC curve obtained using strength + residual displacement,
which resulted in the highest AUROC, is presented in Figure 5,
together with the ROC curves obtained using aBMD and trabecular
vBMD. The FE-derived mechanical descriptors for the control and
fracture subjects are presented in Supplementary Appendix D
(Supplementary Tables SDI, SD2). It is noteworthy that the
influence of different fall scenarios and the impact thereof on the
discrimination ability is summarized in Supplementary Appendix E.
The presented scenarios correspond to those most commonly
applied in previous investigations (Falcinelli et al., 2014; Grassi
et al,, 2023; Pinilla et al., 1996; Abe et al., 2022). Remarkably, the
capacity of the femur strength parameter derived from FE
simulations to overcome the capacity of the discrimination by
aBMD (AUROC = 0.69) depended on the loading direction.

Frontiers in Bioengineering and Biotechnology

Strength AUROC values ranged from 0.68 to 0.72. The best
performance of the strength descriptor was achieved with a load
aligned with the vertical when the fall models had no internal
rotation and no adduction. In every case, Strength AUROC
values were overperformed when mechanical information about
the inelastic model response was considered for discrimination,
according to the best-performing descriptors achieved with the
default load.

4 Discussion

This study explored the added value of the global mechanical
descriptors to discriminate the occurrence of femur fragile fracture
in a case-control study using DXA-based 3D modeling and
FE methods.

Three sets of FE-derived descriptors were chosen to capture
distinct mechanical and possibly clinically meaningful aspects of hip
fracture risk, as far as fracture risk groups can be compared.
Importantly, in contrast to sophisticated FE models that describe
bone failure mechanics (Zysset et al., 2015), we propose mechanical
surrogates as per the capacity of the femoral bone to absorb
mechanical energy in a binary partition of osteoporosis patients:
fracture cases, and controls. In our models, nonlinear FE-based
descriptors, extracted from the load-displacement curve up to
failure, capture the volumetric accumulation of plastic strain up
to the point at which the femur model stops to increasingly resist the
load. We see from our results (Table 4, Strength-based + nonlinear
descriptors) that the nonlinearity associated with this simulated
process nicely complements the state-of-the-art bone strength, to
eventually overperform the discrimination capacity of both DXA-
based aBMD and 3D-DXA-based vBMD. The piecewise modelling
of the nonlinear mechanical response further informed about how a
specific femur model was reaching its maximum ability to store
mechanical energy: it was used to evaluate the balance of elastic
energy stored vs. dissipating plastic deformations until the
maximum reaction force was reached. Especially, it gave access to
the residual displacement descriptor that, once combined with the
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strength, led to the best discrimination capacity, and proved to be,
per se a promising descriptor for fracture risk assessment. Overall,
these results, achieved with surrogates of the inelastic behaviour of
bone, suggest that quantifying the bone’s post-yield behaviour,
according to measurable bone properties at baseline, could
improve significantly the clinical assessment of the risk of bone
fragile fracture.

The proposed analyses underscore two critical aspects of
fracture risk assessment. First, relying on bone strength alone is
insufficient for patient-specific fracture discrimination, as it
overlooks critical mechanical parameters combined with the
elastic-plastic assumptions, hereby subjacent to the concept of
strength. Second, the FE analyses in this study use a static
loading scenario, whereas fatigue effects from repetitive or
dynamic loads shall influence fracture risk through micro-
damage accumulation (Mirzaali et al., 2020), especially when the
bone turnover balance is altered, as in osteoporosis. Fatigue-related
effects cannot be addressed by using bone strength alone, but we
hypothesized that their representation can be improved through
parameters such as residual displacement, nonlinear deformation,
and energy absorption. Such assessment of the FE-predicted
mechanical parameters, in the present study, considers cross-
validation, which is otherwise too often overlooked in the literature.

To assess the discrimination power and clinical applicability of
the proposed mechanical descriptors, we compare those with
existing FE-based methods, including QCT-based, 2D-DXA-
based, and 3D-DXA-based models. The discrimination capability
of QCT-based FE analysis for hip fractures was first investigated in
the MrOS study by Orwoll et al. (2009), which revealed that femoral
strength (AUROC:0.83) and the load-to-strength ratio (AUROC:
0.79) were key predictors, showing comparable performance with
aBMD (AUROC:0.85),
Subsequent studies by Amin et al. (2011) in community-dwelling
adults and Kopperdahl et al. (2014) used the AGES Reykjavik cohort
and confirmed these findings, showing no significant improvement

without any significant difference.

using FE-based parameters compared to aBMD. In contrast, our
study demonstrates that the proposed FE strength + residual
displacement descriptor from the 3D-DXA-based model provides
superior fracture discrimination compared to aBMD and
outperforms previous QCT-based FE studies (Orwoll et al., 2009;
Amin et al., 2011; Kopperdahl et al., 2014). A large retrospective
study by Adams et al. (2018), following the MrOS (Orwoll et al.,
2009) and AGES Reykjavik (Kopperdahl et al, 2014) protocols,
provided the first evidence of a significant advantage for QCT-based
FE analysis (hazard ratio (HR) = 2.8, 95% CI 2.2-3.5) over aBMD
(HR = 2.1, 95% CI 1.7-2.5), validating the clinical value of the
Biomechanical Computed Tomography (BCT) approach. Keaveny
et al. (2023) introduced BCT", an advanced method incorporating
nine variables, including bone strength, age, bone volume, fat
content, and body composition. BCT* outperformed BMD and
FRAX, achieving an AUROC of 079 vs. 0.72 and 0.73,
respectively. Our study showed a greater improvement in
incident hip fracture assessment (AAUROC = 0.11 vs. 0.07), and
importantly, our 3D-DXA-based FE models are verified against
QCT-based FE models (Dudle et al,, 2023; Qasim et al., 2024).
Bessho et al. (2007) introduced a novel concept, later expanded by
Falcinelli et al. (2014), who assessed femoral strength under various
loading conditions to identify the weakest scenario for each patient.
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Their findings showed that minimum femoral strength better-
discriminated fractures than standard sideways fall strength,
achieving a higher AUROC than aBMD (0.88 vs. 0.79). However,
the study had limitations, as QCT images were acquired post-
fracture by scanning the contralateral femur, potentially affecting
FE model accuracy in fracture risk assessment. Fleps et al. (2022)
demonstrated that nonlinear FE models improved fracture
prediction over aBMD (AUROC: 0.78 versus 0.72 in men,
0.75 versus 0.69 in women) within the AGES Reykjavik cohort.
In their study, the most discriminative fall direction had low internal
rotation and adduction, differing from Falcinelli et al. (2014). The
AUROC values in our study were slightly higher than those reported
by Fleps et al. (2022), further emphasizing the clinical potential of
the 3D-DXA-based FE model alternative. Although QCT-based FE
models show strong fracture discrimination (Adams et al., 2018;
Keaveny et al., 2023), their high cost and radiation exposure limit
widespread use. In addition, while most previous QCT-based FE
studies focused on single metrics such as femoral strength, the load-
to-strength ratio, or the multivariate BCT* combining strength with
clinical parameters, none have explored novel mechanical
descriptors from FE simulations. Our work introduces descriptors
integrating strength with nonlinear behaviour (e.g., residual
displacement), capturing aspects of bone fragility beyond
traditional measures. By rigorously assessing their discrimination
performance, our findings extend existing QCT-based approaches
and highlight the potential of global mechanical descriptors to
improve fracture-risk prediction.

As an alternative, DXA-based FE models have been proposed to
estimate femoral strength for hip fracture assessment (Wills et al.,
2019; Grassi et al.,, 2023). DXA-based 2D FE models have been
developed to assess bone strength and hip fracture risk. Naylor et al.
(2013) found only marginal improvement in fracture discrimination
using strength (AUROC 0.67) and load-to-strength ratio
(AUROC = 0.68) compared to FN aBMD (AUROC = 0.66), with
a slight increase after adjustment for FN aBMD (AUROC = 0.68 and
0.69, for FN aBMD + strength and FN aBMD + load-to-strength
ratio, respectively). Yang et al. (2014) reported femoral strength as a

strong predictor of hip fracture risk after adjusting for age and BMI
(HR = 2.2, 95% CI 1.95-2.50), outperforming TH aBMD (HR 1.9,
95% CI 1.7-2.1) but not FN aBMD (HR 2, 95% CI 1.8-2.3). More
recently, DXA-derived indexes, such as the Bone Strain Index (BSI),
have been developed. Sornay-Rendu et al. (2022) utilized a DXA-
based 2D FE model to assess FN and TH BSI, alongside aBMD, in
the OFELY study, which focuses on all major osteoporotic fractures
instead of purely on incident hip fractures like in the present study.
The AUROC for TH BSI (0.64) was not significantly different from
that of TH aBMD (0.65) or Trabecular Bone Score (TBS) (0.67). In
the current study, the discrimination power of aBMD, with an
AUROC of 0.69, aligns with those results, and 3D-DXA vBMD tends
to improve the discrimination (AUROC = 0.72). These outcomes
reveal the likely importance of 3D information, especially if the latter
is extended to mechanical descriptors (Table 4).

Indeed, since 2D models do not capture variations in bone
geometry, density distribution, or impact forces, DXA-based 3D
modeling has been developed to enable 3D-DXA-based FE models,
as utilized in the current study (Wills et al., 2019; Grassi et al., 2023).
Grassi et al. (2023) employed a 3D-DXA-based linear FE model in a
MrOS cohort, demonstrating a significant improvement in the
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AUROC values for bone strength normalized by body weight (BW)
across 10 different fall scenarios compared to BMD combined with
BMI (0.78 vs. 0.72). This study is the only 3D-DXA-based
investigation directly comparable to our approach and the first to
show a statistically significant improvement in hip fracture
discrimination over TH aBMD using subject-specific 2D-to-3D
FE models. The current study exhibits slightly improved
discrimination power compared to Grassi et al. (2023)
(AAUROC = 0.11 vs. 0.06), likely due to key methodological
differences. In contrast to the linear elastic approach adopted by
the Authors (Grassi et al., 2023), we incorporated nonlinear material
properties, providing a computationally efficient way to reflect the
inelastic femur mechanics under side-fall loading, consistent with
experimental findings 7,9. Fleps et al. 14 also demonstrated the
superiority of nonlinear FE models in fracture discrimination.
Besides, (Grassi et al., 2023) estimated femoral strength using a
surface-strain criterion (Schileo et al., 2014; Schileo et al., 2008b)
originally established from experimental observations (Grassi et al.,
2012). While this approach restricts failure assessment to the bone
surface, our methodology captures the volumetric behavior of the
femur, not excluding that failure prediction might be controlled by
the mechanics of internal compartments of the model (Wills et al.,
2019). This provides a more comprehensive representation of bone
mechanics, including the mechanics of the entire neck and
intertrochanteric regions, facilitates clinical translation, and is
consistent with the framework proposed by Keaveny et al.
(2023), Orwoll et al. (2009), Amin et al. (2011).

Furthermore, our mechanical descriptors enhance patient-
BMD
distribution, mechanical properties, and structural characteristics.
In particular, residual displacement, nonlinear deformation, and

specific assessments by integrating organ geometry,

energy absorption seemed to capture key determinants of bone
fragility between the two patient groups, beyond bone strength
alone, ultimately improving fracture prediction.

Extending the above observations, the effect of different fall
scenarios was evaluated in the present study, and our findings are
consistent with those of Fleps et al. (2022), who reported that fall
models with low internal rotation and adduction are the most
suitable for discriminating hip fracture cases from controls.
the
descriptors of the inelastic behaviors of the femur models was

Remarkably, discrimination achieved by incorporating
consistently superior to that achieved with only the state-of-the-
art Strength parameter. Nevertheless, we found a high variability as
per the performance of the mechanical descriptor to discriminate
the fracture cases, versus the BMD parameters, when load directions
were varied (Supplementary Appendix E, Supplementary Table
SE1). Therefore, we recommend that probabilistic fracture risk be
assessed across a range of fall directions (Falcinelli et al., 2014; Grassi
et al.,, 2023).

The proposed 3D-DXA-based approach offers a clinically viable
solution for fracture risk assessment by utilizing standard DXA
scans, eliminating additional radiation exposure, and reducing costs
compared to QCT-based FE methods (Fleps et al., 2022; Adams
et al,, 2018). Its computational efficiency, implemented using the
commercially available 3D-Shaper software (Humbert et al., 2016),
further enhances its clinical feasibility. Processing time per subject to
compute 3D-DXA analysis using 3D-Shaper software is 1 min 30 s
on an Intel Core i7-4790K CPU, which is significantly faster than the
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methods used by Grassi et al. (2023), which required approximately
6 hours per scan using 20 CPU cores. Additionally, our FE
simulation takes about 15 min per subject using 4 CPU cores,
compared to 2 hours reported by Fleps et al. (2022). The existing
regulatory approvals for the 3D-Shaper software are also an asset for
the future clinical implementation of the 3D-DXA-based FE
approach evaluated in this study.

Despite its advantages, the proposed approach has some
limitations. The study was based on a retrospective cohort of
64 hip fracture cases and 64 controls. Larger, prospective cohorts
are needed for further validation. The elastic-plastic model used
to capture inelastic bone mechanics was a rough approximation
of the real bone failure mechanics. It allowed computationally
affordable simulations and indicated a robust improvement
compared to BMD measure or strength calculations alone.
Yet, whether
mechanics

macroscopic multiscale bone failure

further
predictions remains to be explored. A challenge also arises in

or
models can improve fracture risk
femoral head density reconstruction, as clinical DXA scans often
suffer from acetabulum superimposition. This region is excluded
from the 2D-to-3D reconstruction using 3D-Shaper software
(Humbert et al., 2016), and the femoral head is reconstructed
by mapping QCT-derived density onto the DXA image (Humbert
et al., 2016). This approximation may affect the accuracy of the
femoral geometry and material properties, but rigid-body
constraints with a reference point were applied during the FE
simulation to mitigate the effect, prevent stress concentration in
the femur head, and lead to a more realistic model. The present
study prioritized global over local mechanical descriptors (Wills
et al., 2019). While this can be considered as a limitation, as local
descriptors might achieve improved discriminations (Wills et al.,
2019), we hereby avoid the need for site-specific fracture
This
convergence, enhances computational efficiency, and reduces

analyses. strategy reduces sensitivity to mesh
the complexity of the mechanical analysis (only one surrogate
descriptor for bone fracture risk at the organ level). It gathers,
therefore, important characteristics to make the clinical
translation accessible. Indeed, the current cohort does not
of (neck
trochanteric). Hence, the possibility adopt

descriptors fits well with the reality of the data.

include annotations fracture location vs.

to global

5 Conclusion

This case-control study demonstrates a significant improvement
in hip fracture discrimination using 3D-DXA-based FE models
compared to standard aBMD and 3D-DXA measurements. The
consideration of the global balance of elastic and inelastic femur
mechanics during side-fall simulations was a cornerstone to achieve
improved fragile fracture discrimination at reduced computational
cost. These findings suggest that 3D-DXA-based FE models could
enhance osteoporosis management while maintaining DXA as the
clinical standard of care. Among the mechanical descriptors
the
displacement emerged as the most effective for discriminating

evaluated, combination of FE strength and residual

hip fractures, as it incorporates key mechanical parameters
relevant to hip fracture risk.
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