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Collagen is the predominant structural protein, contributing to 25%–30% of total
body protein. It is vital for maintaining the strength, flexibility, and structural
integrity of connective tissues throughout the human body. Of the 28 identified
collagen types, collagen I and collagen III are especially critical - collagen I
imparts tensile strength, while collagen III enhances matrix flexibility. Disruptions
in collagen structure and composition are frequently associated with aberrant
collagen I and collagen III ratio that compromises tissue functions and
contributes to pathological conditions affecting bone (osteoporosis), oral
tissues (periodontal disease), wound healing (diabetic complications),
reproductive organs (ovarian cancer), and pelvic support structures (pelvic
organ prolapse), among others. These alterations arise from aging, genetic
polymorphisms, and disease factors that disrupt collagen synthesis, assembly,
and degradation. This review highlights recent advances in understanding the role
of collagen and collagen I/III ratio in pathophysiological processes and
deliberates emerging therapeutic interventions designed to restore collagen
equilibrium, encompassing biomaterials, stem cell therapies, gene editing
techniques, and biophysical stimulation modalities. Future directions in tissue-
engineered extracellular matrix development, precision medicine applications,
and combined therapeutic strategies are discussed as transformative approaches
for managing collagen-associated disorders and improving patient outcomes.
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1 Introduction

About 30% of human protein mass comprises collagen, the main structural protein in
the extracellular matrix (ECM) (Karamanos et al., 2021; Zhou et al., 2024). Collagen is the
major component of a variety of connective tissues, including skin, bone, tendon, cartilage,
and blood vessels, offering the tissues’ tensile strength, structural stability, and elasticity
(Huebner et al., 2020; Xu et al., 2021; Li et al., 2024). The distinctive triple-helical structure
of collagen molecules consists of three α-chains arranged in a (Gly-X-Y)n pattern, and its
biomechanical qualities depend on this arrangement (Mienaltowski et al., 2021; A. Gerrein
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et al., 2025). The two most common types of collagen are collagen I,
found in bones, tendons, and most connective tissues, and collagen
III, found in greater quantities in skin and blood vessels (Henriksen
and Karsdal, 2024). Imbalance in the ratio of collagen I and collagen
III disrupts the tissue’s homeostasis, resulting in a variety of
inflammatory, neoplastic, and degenerative diseases (Singh
et al., 2023).

Beyond its structural functions, collagen is crucial because it acts
as a bioactive matrix that interacts with growth factors, signaling
molecules, and integrins (Rinaldi et al., 2021; Surdiacourt et al.,
2025). Collagen homeostasis is regulated through the coordinated
balance between anabolic processes (fibroblast-mediated collagen
synthesis and secretion) and catabolic processes (matrix
metalloproteinase (MMPs)-mediated proteolytic cleavage of
collagen fibrils), warranting proper extracellular matrix turnover
and tissue integrity (Pires et al., 2022; FitzGerald et al., 2024).
Dysregulation of collagen homeostasis has profound
pathophysiological consequences that manifest across multiple

organ systems and health conditions (Panwar et al., 2018;
Jürgensen et al., 2020). Impaired tissue mechanics (Silver et al.,
2021), slowed wound healing (Yen et al., 2018; Wang et al., 2021),
increased vulnerability to fractures (Li et al., 2018), and even
intensified tumor invasiveness, can all result from abnormal
collagen synthesis, degradation, or structural organization (Beam
et al., 2015; Liang et al., 2020). Notably, advanced imaging methods,
including second-harmonic generation microscopy, have enabled
label-free visualization and quantitative assessment of collagen
fibers’ density, orientation, and 3D organization within intact
tissues, which aid in determining how a disease or disorder is
progressing and how effective a treatment works (Kim et al.,
2016; Esquibel et al., 2020).

This review provides a comprehensive understanding of
collagen biology, identifies diseases caused by imbalances in the
collagen I/III ratio, and presents new developments in therapeutic
approaches that use molecular, cellular, and material-based
techniques to restore tissue integrity, as depicted in Figure 1.

FIGURE 1
An outline of collagen biology, diseases, and therapies. Fibroblasts differentiate into myofibroblasts, leading to the synthesis of collagen and the
formation of a triple-helical structure. The produced collagen fibrils are organizedwithin the ECMmatrix of different organs, providing structural integrity.
Collagen imbalance and degradation are regulated by MMPs, responsible for several pathological conditions. Therapeutic approaches are devised to
remodel collagen at molecular, cellular, and tissue levels.
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2 Collagen biology and structure

2.1 Synthesis and structure

A highly synchronized process, collagen production starts in the
endoplasmic reticulum of fibroblasts, osteoblasts, chondrocytes, and
other cells that produce proteins of the extracellular matrix (Orgel
et al., 2011; Narauskaitė et al., 2021). As shown in Figure 2a,
translation of α-chain precursors is the first step in the formation
of procollagen. Proline and lysine residues are then hydroxylated (a
process that requires vitamin C), and hydroxylysine is glycosylated.
These post-translational modifications are critical for collagen triple
helix formation and stability (Yamauchi and Sricholpech, 2012).

After forming a triple helix, the procollagen molecule is released
into the extracellular space, where its N- and C-terminal propeptides
are broken down by specific enzymes (Perumal et al., 2008). The
resultant tropocollagen molecules self-assemble into fibrils with a
distinctive quarter-staggered pattern, called D-period (Giubertoni
et al., 2024). Lysyl oxidase catalyzes cross-linking, which adds
toughness and tensile strength to the fibrils. This multi-level
assemblage governs collagen’s resistance to mechanical stress
(Herchenhan et al., 2015). Collagen pathologies can result from
diverse etiological factors that disrupt normal collagen synthesis,
post-translational modification, or ECM assembly. These include
genetic mutations, abnormal enzyme levels affecting collagen
processing, nutritional deficiencies that impair cofactor

FIGURE 2
(a) Structural biology of collagen. (b,c) Types of collagens present at the different parts of the body. Their detailed functions are outlined in Table 1.
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availability for essential enzymatic reactions, or injuries (Lu
et al., 2019).

2.2 Collagen types and functions

According to their structure and function, collagen comes in at
least 28 distinct forms (Table 1). As illustrated in Figures 2b,c, large
fibrils of collagen I, which is the most prevalent, are present in bone,
skin, tendons, and ligaments. Collagen III typically forms hetero
fibrils with collagen I. It offers distension and flexibility of tissues in
the skin, blood vessels, and intestines. The collagen I/III ratio in the
hetero-fibrils regulate the tissues’ elasticity and tensile strength

(Kuivaniemi and Tromp, 2019; Wang J. et al., 2022). Other
significant types of collagen include: collagen II- mainly presents
in the eye’s vitreous body and cartilage, and is necessary for the
integrity of cartilage (Lai et al., 2020); collagen IV- creates a network
resembling a mesh in basement membranes, and is essential for the
kidney glomerulus’ filtration processes and the epithelial tissues’
structural support (Bersie-Larson et al., 2020); collagen V and XI-
participate in fibrillogenesis and control the fibril diameter
(Wenstrup et al., 2011); collagen VII- causes dystrophic
epidermolysis bullosa due to alterations in anchoring fibrils,
which connect the dermis to the epidermis (Chung and Uitto, 2010).

Collagens’ essential involvement in tissue specificity and
homeostasis is reflected in their structural and functional

TABLE 1 Overview of collagen types and their roles in various tissues.

Collagen
type

Where it’s found? What it does? References

Collagen I Connective tissues, Bone, Ligaments,
Skin, and Tendon

Provides toughness to skin, bone, and fibrous tissue -
Strength Provider

Henriksen and Karsdal (2024), Kanniyappan et al.
(2024a), 2024b

Collagen II Cartilage, Eyes Handles joint pressure and keeps the cartilage
healthy – Shock Absorber.

Lai et al. (2020)

Collagen III Connective tissues, Organs, Blood vessels,
Skin

Provides strength and shape to the tissues - Supporter Kuivaniemi and Tromp (2019)

Collagen IV Basement membranes (e.g., Kidneys),
Heart valves

Creates a network that supports cells and filters
biomolecules – Filter

Bersie-Larson et al. (2020)

Collagen V Skin, Bone, Cornea Work along with Type I collagen to provide strength
and structure to the tissues – Fibril Regulator.

Wenstrup et al. (2011), Karsdal (2023)

Collagen VI Connective tissue, muscles Helps to stay organized and recover tissues – Repair
worker.

Di Martino et al. (2023)

Collagen VII Skin Holds skin layers together - Anchor Gretzmeier et al. (2022)

Collagen VIII Cornea, Blood vessels Helps the growth of blood vessels and movement of
cells- Builder

Mohabeer et al. (2021)

Collagen IX Cartilage Keeps cartilage strong by linking collagen to other
molecules - Stabilizer

Heilig et al. (2020)

Collagen X Growth plate in bones Supports formation of bone and growth during
development – Body Builder

Shen (2005), Kamakura et al. (2023)

Collagen XI Cartilage Controls the arrangement of collagen fibers in cartilage
- Organizer

Sun et al. (2020)

Collagen XII Tendons, ligaments, and Skin Strengthens tissues under tension-like ligaments and
tendons - Reinforcer

Izu et al. (2021)

Collagen XIII Skin, Blood vessels Helps tissues stay attached during stress or movement
- Stabilizer

Heikkinen et al. (2020)

Collagen XIV Tendons, Skin Works with other collagens to keep fibers
organized – Fibril Helper.

Young et al. (2000), Gillesberg et al. (2024)

Collagen XV Blood vessels Helps maintain the structure of blood vessels and other
tissues - Stabilizer

Muona et al. (2002), Bretaud et al. (2020)

Collagen XVI Smooth muscle, connective tissue Helps cells stick to their surroundings – Adhesion
Specialist

Eble et al. (2006)

Collagen XVII Skin (Basement Membrane) Connects layers of skin, keeping them together - Glue van Leusden et al. (2001)

Collagen XVIII Blood vessel walls Controls growth of blood vessels – Angiogenesis
Regulator

Seppinen et al. (2008)

Collagen
XIX–XXVIII

Specialized tissues Works in essential roles of unique tissues – Special
Team

Munezane et al. (2019)
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diversity. The clinical impact of impaired collagen integrity is
significant, as mutations in collagen genes can lead to serious
connective tissue disorders. For example, mutations in COL1A1-
COL1A2 cause osteogenesis imperfecta, mutations in
COL4A3–COL4A5 result in Alport syndrome, and
COL3A1 mutation leads to vascular Ehlers-Danlos syndrome
(O’Connell, 2014).

3 Collagen-related disorders

Collagen disorder impacts different body parts, leading to
discomfort, impairment, and even fatal consequences due to
weakened tissues and compromised functions when the
synthesis, assembly, or degradation of collagen is disrupted. As
discussed in the previous section, the ratio between the two
primary forms of collagen-collagen I and collagen III- is
crucial to mitigate the risks of these disorders. Firm and dense
collagen I offers structural support to tissues like bones,
ligaments, and tendons. Collagen III, which is more elastic
and flexible, is found in tissues that need to stretch and recoil,
such as blood vessels, skin, lungs, and intestines. A proper ratio of
the two collagen types in a healthy tissue warrants a balance
between the tissue’s strength and flexibility (Table 2). A
disruption of this equilibrium can result in an array of
pathophysiological conditions, such as bone disorders, chronic
wounds, periodontal disease, and pelvic organ prolapse (POP),
among others (Chi et al., 2022).

In this review, we highlight several key collagen-related
pathological conditions, such as POP, osteoarthritis (OA),
diabetic wound healing, osteoporosis, and periodontal disease.
These conditions are clinically prevalent and physiologically
diverse. They represent significant health challenges and
considerable physical and economic burdens. We aim to
elucidate these conditions and divulge treatment options by
looking into the underlying mechanisms associated with the
role of collagen imbalance. The insights offer the prospects of
improving clinical outcomes and quality of life for affected
individuals.

3.1 Pelvic organ prolapse

Globally, approximately 40% of women are projected to
encounter POP (Carroll et al., 2022). It is a condition
characterized by the weakening of pelvic floor muscles and
connective tissues, resulting in the descent of pelvic organs into
the vaginal canal. POP affects women of various ages and can lead to
pelvic pressure, vaginal bulge, urinary and bowel issues, and sexual
dysfunction, particularly in older adults. Growing evidence links
connective tissue abnormalities to the development of POP (Ferreira
et al., 2020; Wang B. et al., 2022). POP results from compromised
pelvic floor support, primarily due to alterations in connective tissue
composition and structure. The pelvic floor’s support matrix is
composed of collagen (mainly collagen I and collagen III),
elastin, and smooth muscle cells. In POP, there is a documented
reduction in total collagen content, an increased collagen I/III ratio
(Li et al., 2021b; Chi et al., 2022), increased expression of MMPs,
changes in collagen cross-linking, which collectively reduce tissue
resilience and mechanical strength and abnormalities in the
nanoscopic to microscopic structure of fibrillar collagen within
the vaginal wall connective tissues of POP patients were
identified in our previous studies (Sridharan et al., 2012; Kim
et al., 2016). Elastin deficiency further impairs tissue elasticity,
while smooth muscle dysfunction contributes to loss of active
support (Jameson et al., 2020). Our previous studies
demonstrated that fibroblasts isolated from prolapsed tissues
display an altered response to mechanical stimulation and a
diminished ability to synthesize collagen (Persu et al., 2011;
Wang X. et al., 2022) (Figure 3).

POP is usually diagnosed through a pelvic examination. This
examination involves the evaluation of the patient’s pelvic organs
while they exert abdominal pressure and recline in a supine position
(Persu et al., 2011; Chi et al., 2022). POP Management is
individualized, considering both the severity of the prolapse and
the patient’s preference. Mild cases are typically managed
conservatively through lifestyle modifications, pelvic floor
exercises (such as Kegels), and the use of pessary devices. In
contrast, more severe or persistent prolapse may require surgical
intervention, ranging from traditional open procedures to

TABLE 2 The ratio of Collagen I and Collagen III (collagen I/III) in various tissues.

Tissue type Collagen I/III References

Skin 2.1–3.1 Li et al. (2021b)

Human heart 0.3–0.6 Wittig and Szulcek (2021)

Blood vessels 2–3:1 Shabani et al. (2024)

Tendons & ligaments 38:1 Birch et al. (2013), Tresoldi et al. (2013)

Bone Collagen I: >90%; Collagen III: <10% Amirrah et al. (2022)

Intestine 2:1 Brown et al. (2017)

Liver 1:1 Cequera and García de León Méndez (2014)

Uterus (Non-Pregnant) 2–3:1 Yellon (2020)

Scar tissue 5:1 Li et al. (2021b)
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minimally invasive techniques, to restore normal pelvic anatomy.
Ultimately, optimal care requires a personalized approach, guided
by thorough assessment and professional expertise (Chung and
Kim, 2018).

Despite the range of available treatments—including surgical
repair and pessary use—high recurrence rates and various
complications remain significant challenges (Kelly et al., 2016;
Wu et al., 2017). Pelvic floor rehabilitation training often falls
short of providing satisfactory results. Hence, there is a pressing
need for novel, safer, and more effective treatment modalities. Stem
cell therapy, particularly utilizing bone marrow mesenchymal stem
cells (MSCs), has garnered attention due to their self-renewal and
differentiation capabilities. However, challenges such as prolonged
culture periods, limited tissue availability, and high costs hinder
widespread adoption (Herberts et al., 2011; Wang X. et al., 2022).
Additional barriers to care for pelvic floor disorders include
underreporting of symptoms, misdiagnosis, and systemic
healthcare delays—issues that are especially common among
older women. In light of these challenges and the limitations of
current treatments, several regenerative approaches are now under
investigation as potential solutions (Yuk et al., 2018; Wang X. et al.,
2022; Cross et al., 2023). Fibroblasts offer a promising alternative.
They are abundant, easily accessible, and amenable to lab cultivation
and expansion. Moreover, utilizing autologous fibroblasts presents a
straightforward and cost-efficient solution, as these cells are
proficient in producing collagen and other essential extracellular
matrix proteins (Chi and Wang, 2018; Chi et al., 2019).

In our prior research, it was demonstrated that stimulated
fibroblast cells can produce an increased amount of collagen,
which holds promise for their use in the repair of chronic

wounds and POP (Chi and Wang, 2018; Chi et al., 2019).
Building on these findings, electrical stimulation effectively
corrects fibroblast dysfunction and increases collagen synthesis,
supporting improved pelvic floor integrity. This enhanced
collagen production is accompanied by a decreased collagen
alignment index, suggesting improved tissue biomechanics and
resilience (Rathnayake et al., 2022). Our in vivo studies further
validated these findings, underscoring the therapeutic promise of ES
in addressing collagen-related disorders. By both enhancing collagen
deposition and modulating its structural alignment, ES may be
pivotal in restoring the biomechanical integrity of pelvic tissues,
potentially aiding in the prevention ormitigation of POP and similar
conditions. The reproducibility of our results across in vitro and in
vivomodels highlights the reliability of ES as a strategy for activating
fibroblast function and promoting collagen synthesis.

3.2 Ovarian cancer and ECM remodeling

Ovarian cancer (OC) is the most lethal gynecologic malignancy,
often diagnosed at an advanced stage because of its ambiguous early
symptoms. The development and spread of tumors are significantly
influenced by ECM remodeling, especially collagen realignment.
Cancer cells and tumor-associated fibroblasts (CAFs) secrete MMPs
and lysyl oxidase-like enzymes. These enzymes alter the extracellular
matrix by changing its biochemical composition, structure, and
stiffness. In the ovarian cancer microenvironment, there is a
significant increase of the collagen I/III ratio. This
microstructural shift leads to enhanced stiffness and realignment
of collagen fibers, forming linear and oriented fibrillar structures

FIGURE 3
Overview of the pathophysiology of pelvic organ prolapse and the current clinical treatment modalities.
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that are aligned perpendicular to the tumor margin, creating
“highways” that facilitate directional migration of cancer cells
through contact guidance-mediated mechanotransduction (Erez
et al., 2010; Li et al., 2021a; Thorseth et al., 2022) as represented
in Figure 4.

Signaling pathways, mediated by factors such as transforming
growth factor beta (TGF-β), integrins, and discoidin domain
receptor 1 (DDR1), control this remodeling. It is observed that
DDR1 is involved in collagen alignment mediation and metastasis
promotion in ovarian cancer (Quan et al., 2011;Wang S. et al., 2022).
A different investigation conducted by Pickup et al. brought
attention to the function of TGF-β signaling in controlling
collagen’s arrangement and accelerating tumor growth of tumors
(Pickup et al., 2013). The potential of blocking ECM remodeling by
DDR1 antagonists, anti-TGF-β antibodies, and MMP inhibitors
(like batimastat) is being studied as a treatment option for tumor
metastases (Nam et al., 2008; Liu and Khalil, 2017;Winer et al., 2018;
Yang et al., 2020; Wu et al., 2024). On the other hand, breaking the
tumor-ECM interaction by anti-fibrotic drugs and CAF-targeting
treatments is expected to lessen invasiveness and enhance the
delivery of chemotherapy (Jiang et al., 2022).

Multiple studies have underscored the clinical consequences of
collagen realignment for tumor invasion. For instance, it was shown
by Natarajan et al. that the collagen fibers in the ECM of ovarian
tumors are oriented perpendicular to the tumor margin, offering

structural support for the invasion of the tumor (Natarajan et al.,
2019). According to Levental et al., collagen alignment facilitates
ovarian cancer cell motility and improves its capacity to permeate
the extracellular matrix (Levental et al., 2009). The significance of
ECM architecture in cancer treatment has been highlighted by
studies employing 3D tumor models, demonstrating that altering
collagen alignment hinders tumor invasion (Staneva et al., 2018;
Alkmin et al., 2022).

The arrangement of collagen in healthy tissues is frequently more
loosely arranged or randomly oriented. Conversely, in malignancies, an
increased collagen I/III ratio and collagen I enrichment led to excessive
fiber alignment, which in turn enhances matrix stiffness and facilitates
directional cell migration. Collagen realignment for the tumor invasion
within the microenvironment of ovarian tumors is intricate and
involves multiple components. Comprehending the interplay
between these components and the collagen I/III ratio is crucial in
formulating novel treatment approaches that aim to target the
extracellular matrix, hence impeding tumor advancement and spread.

3.3 Diabetic wound healing

Chronic wounds represent a major complication of diabetes
mellitus, significantly increasing patient morbidity and healthcare
expenditure. These lesions, which frequently manifest as diabetic

FIGURE 4
Realignment of Collagen fibers in the ECM of ovarian tumors to assist cancer spreading. Specialized groups of cells, such as tumor-associated
fibroblasts, release enzymes that break down and rebuild the ECM. Signals frommolecules, e.g., TGF-β and DDR1, facilitate collagen I alignment, forming
“tracks” that guide cancer cells tomigrate. A higher collagen I/III ratio in the ECM creates a stiffer environment which supports tumor growth and invasion.
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foot ulcers, are distinguished by inadequate angiogenesis, ongoing
inflammation, and abnormal ECM remodeling as shown in Figure 5.
Defective collagen deposition constitutes a hallmark of impaired
diabetic wound healing (Südy et al., 2021).

Collagen molecules of different types are deposited
dynamically and sequentially during proper wound healing.
For instance, collagen III first lays the groundwork for
collagen I to replace it later to create a robust, mature matrix.
This development has stopped or is significantly delayed in
diabetes patients. An elevated glucose level limits the
fibroblasts’ capacities to generate collagen, proliferation, and
mobility. Moreover, hyperglycemia promotes the formation of
advanced glycation end-products (AGEs), which cross-link
collagen fibers, increasing the matrix stiffness and impairing
its biological functionality (Guillon et al., 2021). AGEs
perpetuate inflammation and oxidative stress by binding to
their specific receptors (Receptor for AGEs -RAGE) on
immune cells and fibroblasts (Chuah et al., 2013). Chronic
wounds with an excess of immature collagen III and a
shortage of collagen I result from these causes.

Therapeutic strategies for diabetic wounds increasingly target
the ECM (Holl et al., 2021). Collagen-based wound dressings offer
structural scaffolding and create an optimal microenvironment for
angiogenesis and cellular infiltration. Incorporation of bioactive
compounds, such as growth factors (vascular endothelial growth
factor (VEGF), platelet-derived growth factor (PDGF)), oxygen-
releasing compounds, or antimicrobial peptides, effectively
enhances healing responses. Autologous platelet-rich plasma and

exosomes produced from stem cells have demonstrated efficacy in
modulating the wound microenvironment and promoting collagen
synthesis (Huang et al., 2025). Non-invasive modalities, such as
electrical stimulation and photo-biomodulation, are gaining
recognition as effective approaches to upregulate collagen I gene
expression and improve wound healing outcomes in diabetic
patients (Xu et al., 2022; Oyebode et al., 2023; Mgwenya et al., 2025).

3.4 Osteoporosis

Reduced bone mass, microarchitectural degradation, and an
elevated risk of fracture are the hallmarks of osteoporosis, a
systemic skeletal condition (Wen et al., 2012; Mukherjee and
Das, 2024). Collagen I is a significant portion of the bone matrix
and plays an essential role in the bone matrix’s tensile strength to
withstand fractures (Mäkitie et al., 2019; Kanniyappan et al., 2020;
Kanniyappan et al., 2021; Kanniyappan et al., 2024a). The
mechanical integrity of the bone is compromised in osteoporosis
due to disruptions in collagen synthesis, cross-linking, and
organization. Collagen abnormalities in bone disorders result
from both disease-specific mechanisms and natural aging
processes that impair the quality of bone, mechanical properties,
and healing mechanisms, leading to bone marrow fibrosis and bone
fragility (Figure 6). For example, estrogen deprivation in
postmenopausal women increases osteoclast activity and
promotes collagen breakdown. Osteogenesis imperfecta or an
increased fracture risk can also be caused by mutations in

FIGURE 5
Diagram illustrating how high glucose levels in diabetes disrupt wound healing by impairing collagen deposition. Excess glucose promotes AGE
formation, which stiffens tissue and triggers chronic inflammation through RAGE receptors. This leads to a decreased collagen I/III ratio, resulting in
delayed healing and poor tissue repair in diabetic wounds.
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collagen genes COL1A1 and COL1A2 (Sun et al., 2024;
Subramanian et al., 2025).

In clinical practice, collagen turnover is measured using bone
resorption markers such as C-terminal telopeptide of collagen I
(CTX) and bone formation markers such as procollagen type I
N-terminal propeptide (P1NP) (Uitterlinden et al., 1998).
Therapeutic approaches aim to rebalance bone remodeling.
Bisphosphonates and denosumab are examples of anti-resorptive
drugs that prevent osteoclast-mediated collagen deterioration.
Teriparatide and romosozumab are anabolic therapies that
promote osteoblast function and collagen I synthesis. Tissue-
engineering techniques are being developed to use collagen
scaffolds in conjunction with mesenchymal stem cells, bioactive
glass, or hydroxyapatite to rebuild osteoporotic bone. These
methods aim to improve collagen’s structure and quality inside

the bone matrix, in addition to restoring bone density (Zhang et al.,
2017; Acri et al., 2021).

3.5 Periodontal disease

Chronic bacterial infections and dysregulated host immune
responses are the main causes of periodontal disease, an
inflammatory disorder that impair the teeth’s supporting tissues
(Kwon et al., 2021). Both microbial enzymes and host-derived
proteases, e.g., MMPs, significantly degrade the ECM of
periodontal tissues, which is rich in collagen I and collagen III
(Isler et al., 2022). Prolonged inflammation causes the periodontal
ligament to break down, the gingival collagen to degrade, and the
alveolar bone to resorb as periodontitis progresses. MMP-8 and

FIGURE 6
A schematic demonstration showing the role of collagen I and collagen III in bone disorders. Estrogen deprivation, aging, and mutations
downregulate the collagen I level and upregulate the collagen III level. This imbalance impairs bone quality, healing, and tensile strength, contributing to
bone fragility, marrow fibrosis, and delayed callus formation.
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MMP-13 are essential for breaking down collagen I in periodontal
tissues. In the normal periodontal ligament, collagen I represents the
major structural component of the fibrillar collagen network with a
collagen I/III ratio of 4:1. Nevertheless, periodontitis significantly
disrupts this ratio through selective collagen I degradation while
maintaining or enhancing collagen III synthesis, resulting in a
pathological shift in collagen composition (Kaku and Yamauchi,
2014; Li et al., 2019). At the same time, pro-inflammatory cytokines,
including tumor necrosis factor-alpha (TNF-α) and interleukin-1
beta (IL-1β), exacerbate the degradative microenvironment by
suppressing collagen synthesis while upregulating MMP
expression (Franco et al., 2017; Luchian et al., 2022). The
pathophysiological mechanisms that regulate the collagen I/III
ratio in periodontal disorders are represented in Figure 7.

Current therapeutic techniques include surgical procedures,
antimicrobial medication, and mechanical debridement.
Regenerative periodontal therapy employs collagen-based
membranes for guided tissue regeneration, frequently enhanced
with bone grafts or enamel matrix derivatives to promote
selective regeneration of periodontal ligament, cementum, and
alveolar bone (Takallu et al., 2024). Advancement in biomaterial
science enables the creation of cross-linked collagen scaffolds that
support osteoblast and fibroblast activity and show extended
stability (Wen et al., 2024). Additionally, emerging therapeutic
modalities including stem cell-based therapies and controlled
growth factor delivery methods are under investigation to
promote collagen synthesis and comprehensive periodontal tissue
repair (Figure 8) (Binlateh et al., 2022).

FIGURE 7
A schematic diagram illustrating the pathophysiological mechanisms that regulate the collagen I/III ratio in periodontal disorders. Chronic infection
and inflammation trigger MMP production and oxidative stress, leading to the degradation of collagen I and disrupted remodeling of collagen III, which
results in an imbalanced ECM and impaired periodontal healing.
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4 Emerging therapeutic strategies

Though we mentioned the treatment strategies in each disorder
specifically, in this section, we emphasize the additional treatment
strategies and emerging technologies for the effective repair and
regeneration of collagen matrices.

4.1 Collagen-based biomaterials

Collagen-based biomaterials have emerged as significant
contributors to regenerative medicine by creating scaffolds
mimicking the native ECM while promoting cellular adhesion,
proliferation, and differentiation. These materials have found
versatile applications across multiple medical fields, including
cardiovascular repair, orthopedic reconstruction, wound healing,
and cosmetic procedures. While native collagen offers inherent
advantages such as biocompatibility and biodegradability, its
clinical utility is often limited by suboptimal mechanical
properties and susceptibility to enzymatic degradation.
Frequently, chemical cross-linking strategies are employed to
address these limitations.

The development of hybrid biomaterial systems represents a
major advancement in overcoming collagen’s inherent limitations.
By combining collagen with synthetic polymers such as poly (lactic-
co-glycolic acid) (PLGA), polycaprolactone (PCL), or polyethylene
glycol (PEG), researchers can create composite scaffolds with
tunable degradation rates, mechanical characteristics, and

bioactivity that are tailored to specific clinical applications
(Fernandes-Cunha et al., 2020). Further enhancement of scaffold
functionality is achieved through the strategic incorporation of
bioactive nanoparticles. Nanoparticles such as graphene oxide,
bioactive glass, or hydroxyapatite can be integrated into collagen
matrices to improve osteoconductivity and bioactivity. Advanced
manufacturing techniques have revolutionized the fabrication of
collagen-based scaffolds, enabling unprecedented control over
scaffold architecture and spatial distribution of bioactive
components throughout the scaffold structure. Complementary
manufacturing approaches, including electrospinning and freeze-
drying techniques, enable the creation of nanofibrous collagen
matrices that closely resemble native tissue structures (Coolen
et al., 2019; Marques et al., 2019; Jonidi Shariatzadeh et al., 2025).

4.2 Stem cell therapy

Since stem cells are regenerative and immunomodulatory, stem
cell–based therapies hold great promise for treating collagen-
associated diseases. MSCs obtained from tooth pulp, bone
marrow, adipose tissue, or the umbilical cord can develop into
osteoblasts and fibroblasts, aiding tissue remodeling and collagen
production. MSCs seeded onto biomaterials have shown to
effectively remodel the collagen matrix with improved collagen
I/III ratio and increased biomechanical strength to manage pelvic
organ prolapse (Zhang et al., 2021). MSCs also exerted paracrine
effects on diabetic wounds that promote endogenous fibroblasts and

FIGURE 8
Stem cell-based therapies for periodontal tissue repair. At sites of periodontal damage, MSCs help form new blood vessels and release signaling
factors, such as TNF-α, IL-6, IGF-1, and TGF-β, which attract immune cells and guide MSC differentiation to fibroblasts, cementoblasts, and
osteoblasts—supporting tissue repair and bone growth. The immune cells release IL-10 to help prevent bone breakdown and stabilize the new bone
(Binlateh et al., 2022).
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decrease inflammation. Moreover, it has been demonstrated that
proteins and microRNAs carried by exosomes and extracellular
vesicles produced from stem cells increase the expression of the
collagen gene. For instance, Xu et al. showed that the human
umbilical mesenchymal stem cell (hucMSC)-derived exosomes
contain advantageous microRNAs that may aid in pelvic tissue
repair. Upon the introduction of these exosomes to primary
vaginal fibroblasts derived from patients with POP, they were
found to facilitate the reduction of inflammation through the
downregulation of critical cytokines (e.g., IL-1β, IL-2, IL-4),
promote fibroblast proliferation, and significantly enhance
collagen I synthesis—essential processes for the restoration of a
healthy pelvic floor (Figure 9a) (Xu et al., 2024).

Despite their therapeutic potential, challenges such as
immunogenicity, variability in stem cell quality and tumorigenic
risk persist. To address these limitations, induced pluripotent stem
cells (iPSCs) and genetically engineered MSCs are under
investigation. Furthermore, bioengineering approaches—including
hydrogel encapsulation, hypoxia preconditioning, and 3D
biomimetic scaffolds—are being employed to improve stem cell
viability, retention, and functionality in vivo (Sridharan et al., 2009;
Sridharan et al., 2013; Li et al., 2014; Zhu et al., 2014; Zhu et al., 2015;
Zhu et al., 2017; Kim et al., 2015).

4.3 External stimulation

Non-invasive physical techniques, such as electrical stimulation
(ES), photo-biomodulation (PBM), and mechanical loading, have
emerged as adjunctive therapeutic interventions for modulating
tissue regeneration and collagen biosynthesis (Park et al., 2015;

Woo, 2024). ES represents the most extensively studied physical
modality for collagen enhancement through coordinated activation
of calcium influx, mitogen-activated protein kinase pathway
(MAPK) pathways, and TGF-β signaling in fibroblasts that
collectively upregulate COL1A1 and COL1A2 gene transcription
(Peng et al., 2025). Clinical applications span from pelvic floor
rehabilitation, post-surgical recovery, to wound management. Our
recent studies demonstrated that aligned silk fibroin-carbon
nanotube scaffolds effectively mediated the electrical stimulation
of fibroblasts of POP patients to promote collagen synthesis at a
desirable collagen I/III ratio favorable for pelvic tissue rejuvenation
and repair (Figure 9b) (Chi and Wang, 2018; Chi et al., 2019;
Rathnayake et al., 2022).

PBM uses red or near-infrared light to increase cellular
adenosine triphosphate (ATP) synthesis and mitochondrial
function. This photo-stimulation lowers inflammation and
oxidative stress while increasing fibroblast migration,
proliferation, and collagen deposition (Hamblin, 2017). Clinical
research shows that PBM increases the tensile strength of
repaired tissues, speeds up wound closure, and improves scar
quality (Anders et al., 2015). Mechanical stimulation, especially
in synthetic tissues, activates mechanotransducive pathways via
the integrin-mediated signal cascades to upregulate collagen gene
expression. Simulating physiological stress, it promotes ECM
formation and functional integration (Dasgupta and
McCollum, 2019).

Current research efforts focus on developing multimodal
therapeutic platforms that integrate physical stimulation
techniques with advanced biomaterial scaffolds and stem cell
therapies to address collagen deficiency. The clinical utility is
further expanded by sophisticated delivery methods incorporating

FIGURE 9
(a) Exosomes derived from human umbilical MSCs promote the proliferation and collagen I production of fibroblasts through the miRNA (Xu et al.,
2024). (b) Electrospun silk fibroin-CNT fibers are mechanically strong, electrically conductive and well aligned with structure mimicking the ECM of
connective tissues. The composite fibers effectively mediated the electrical stimulation of fibroblasts derived from POP patients and boosted the
production of collagen I and collagen III at a ratio favorable for rejuvenation (Rathnayake et al., 2022).
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smart hydrogels and wearable electronics. For example, conductive
hydrogel patches embedded with electrodes can provide localized ES
therapy while simultaneously delivering MSCs or growth factors
directly to target tissues. These integrated platforms represent a
paradigm shift toward personalized, multi-target therapeutic
strategies that address the complex pathophysiology underlying
collagen-related disorders.

4.4 Gene and molecular therapies

Gene and molecular therapies focus on the molecular causes of
collagen disorders to develop innovative treatment options
(Figure 10). CRISPR-Cas9 and related nuclease systems have
demonstrated potential for correcting pathogenic variants in

critical collagen genes. While proof-of-concept studies have
shown successful in vitro correction of disease-causing mutations
associated with osteogenesis imperfecta and classical Ehlers-Danlos
syndrome (Aoki, 2024), significant challenges remain regarding
delivery efficiency, off-target effects, and long-term safety for
clinical applications (Jung et al., 2021).

Post-transcriptional regulation offers alternative strategies for
modulating collagen homeostasis without permanent genomic
alterations. Small interfering RNAs (siRNAs) and antisense
oligonucleotides (ASOs) have shown efficacy in silencing
hyperactive genes encoding matrix metalloproteinases and
cathepsins, thereby reducing pathological ECM turnover (Kole
et al., 2012). MicroRNA-based therapeutics target key regulatory
networks controlling collagen biosynthesis. Specifically, microRNA-
29 family members function as negative regulators of multiple

FIGURE 10
An AAV-based gene editing approach for collagen I mutation to treat osteogenesis imperfecta inmice. (a)Demonstration of the frameshift mutation
in the COL1A2 gene of OIM mice. (b) Repairing template sequence of the pro-a2 C-terminal domain of the propeptide. (c–e) Gene correction of the
COL1A2 gene mutation in IOM osteoblasts was achieved using rAAV9-mediated delivery of GeneRide and Cas9/GR, analyzed through Sanger and NGS
analysis. (f) mRNA levels of corrected genes (Yang et al., 2020).
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collagen genes (COL1A1, COL3A1, COL5A1), while microRNA-21
and microRNA-146a modulate TGF-β signaling and inflammatory
responses that influence fibrotic remodeling. Therapeutic strategies
employing microRNAmimics or antagomirs are under investigation
for conditions ranging from pulmonary fibrosis to hypertrophic
scarring (Wang et al., 2012).

Molecular inhibitors targeting the TGF-β/Smad signaling axis
represent the most clinically advanced molecular therapies for
fibrotic collagen disorders. The activin receptor-like kinase 5
(ALK5) inhibitor galunisertib and the antifibrotic agent
pirfenidone have demonstrated efficacy in reducing collagen
deposition and improving functional outcomes in Phase II/III
clinical trials for idiopathic pulmonary fibrosis, with ongoing
investigations in hepatic and renal fibrosis (Herbertz et al., 2015;
Antar et al., 2022). These agents may have broader applications in
treating pathological collagen accumulation across multiple
organ systems.

The clinical translation of gene and molecular therapies
faces substantial delivery obstacles, including poor tissue
penetration, rapid clearance, and potential immunogenicity.
Researchers are investigating hydrogel-based carriers,
liposomes, and nanoparticle-based systems to increase
targeted distribution, bioavailability, and cellular uptake
while reducing off-target effects. Emerging approaches
combine these delivery systems with biomaterial scaffolds

and cell-based therapies to create integrated treatment
platforms that may enhance therapeutic efficacy while
minimizing systemic exposure and associated risks.

5 Future directions

Collagen therapeutics is a rapidly emerging topic, propelled by
interdisciplinary advancements in biomedical engineering,
regenerative medicine, molecular biology, and material science.
Several phenomena are anticipated to influence future
developments in treatments for illnesses linked to
collagen (Figure 11).

5.1 Personalized and precision medicine

The development of genomic and transcriptome profiling makes
it possible to find collagen metabolism-related gene expression
patterns and mutations unique to a patient. Gene editing,
customized biomaterials, and customized cell therapies are
examples of personalized therapeutic approaches explored to
target specific illnesses more efficiently. Machine learning and
bioinformatics developments also make it easier to forecast how
a disease will advance and how therapy will work.

FIGURE 11
Future directions in collagen therapeutics, highlighting key areas in personalized treatments, smart biomaterials, integration of advanced
technologies, combination strategies, and regulatory considerations. Emphasis is placed on targeted therapies, biosensor integration, scaffold-based
delivery, and translational pathways for clinical application in regenerative medicine.
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5.2 Smart and responsive biomaterials

The next-generation of biomaterials is designed to react to
environmental stimuli like temperature, pH, enzymes, and
mechanical stress (Siddiqua et al., 2024). These “smart”
materials can direct tissue regeneration, adjust to changes
in the wound microenvironment, and release bioactive
chemicals dynamically. In situ modulation of collagen
synthesis or incorporation into self-healing hydrogels,
electroconductive scaffolds, and shape-memory polymers is a
promising platform.

5.3 Integration with advanced technologies

The combination of collagen treatments with technologies
like wearable sensors, microfluidics, and 3D bioprinting is
opening new horizons in tissue engineering and diagnostics.
Collagen-based bioinks in bioprinted tissues can replicate
intricate topologies and facilitate in vivo functional
integration (Marques et al., 2019). In disease models,
microfluidic devices provide real-time collagen synthesis and
breakdown monitoring. Wearable sensors may track ECM
biomarkers noninvasively, allowing for dynamic treatment
modifications.

5.4 Combination therapies

Combination therapies that combine scaffold-based delivery
systems, gene and stem cell therapies, and physical stimulation
techniques are anticipated in future clinical protocols. These
integrative methods could synergistically aid tissue regeneration
while overcome the drawbacks of single-modality treatments. For
instance, a collagen-based hydrogel with microRNA therapies and
stem cells, enhanced by localized electrical stimulation, may offer a
multifaceted approach to healing chronic ulcers or regenerating
pelvic floor tissue.

5.5 Regulatory and translational
considerations

Regulatory frameworks must change to account for the
complexity of bioengineered products to advance collagen-based
medicines from the lab to the bedside. Robust preclinical validation,
well-designed clinical trials, and adherence to good manufacturing
practice (GMP) norms will be crucial (Granjeiro et al., 2024). To
guarantee that these cutting-edge treatments are widely adopted,
issues of cost-effectiveness, scalability, and patient accessibility must
also be addressed.

6 Conclusion

Collagen plays a fundamental role in determining tissue
structure, function, and regenerative capacity across multiple
organ systems. Dysregulation of collagen homeostasis underlies a

broad spectrum of pathological conditions, ranging from
degenerative disorders such as osteoporosis and pelvic organ
prolapse to malignancies including ovarian cancer. We emphasize
the crucial role of collagen I/III ratio in ECM structural integrity and
connective tissues’ biomechanics, and the diagnostic and therapeutic
significance of the collagen I/III ratio for a wide range of pathological
disorders. Understanding the molecular mechanisms governing
collagen synthesis, degradation, and organization has catalyzed
the development of innovative therapeutic strategies targeting
these processes.

Recent advancements in biomaterials, stem cell biology, gene
editing, and physical modulation are changing the therapeutic
landscape for collagen disorders. These methods seek to restore
native tissue functionality and mechanical integrity while
replacing damaged or deficient collagen structures. As
technological capabilities continue to evolve and our
mechanistic understanding deepens, the clinical
implementation of precision-engineered collagen therapeutics
appears increasingly achievable. The utilization of collagen’s
full therapeutic potential in regenerative medicine will require
sustained interdisciplinary collaboration among researchers,
clinicians, and regulatory specialists, coupled with robust
translational research programs that effectively bridge
laboratory discoveries and clinical applications. Through these
coordinated efforts, we expect to optimize collagen-based
interventions to significantly improve the quality of life for
patients affected by the diverse spectrum of connective
tissue disorders.
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