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Human induced pluripotent stem cells (hiPSCs) have emerged as a promising
platform for elucidating diseasemechanisms and developing new drugs. Over the
past 2 decades, it has become possible to efficiently generate large quantities of
cardiomyocytes (CMs) from hiPSCs, thereby enabling the reproduction of
disease-specific characteristics in culture dishes. Although this technology has
the potential to substantially enhance the efficiency of drug discovery and
understanding of disease, the immaturity of hiPSC-derived CMs (hiPSC-CMs)
has been a major barrier to their widespread adoption. This review discusses the
recent advances that address these challenges and explores the potential of
hiPSCs to advance disease modeling, elucidate disease mechanisms, and
accelerate drug discovery.
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1 Introduction

Cardiovascular disease is reported to cause approximately 19.8 million deaths annually,
ranking as the leading cause of death worldwide (Mensah et al., 2023). Recent analysis has
shown that the number of new cardiovascular drugs is steadily decreasing (Figtree et al.,
2021). This is mainly because only approximately 5% of new molecular entities (NMEs) are
ultimately approved, and the approval of a single NME requires considerable time and
expense (Schuhmacher et al., 2016). A fundamental reason for this low success rate is the
lack of preclinical models that can accurately evaluate therapeutic efficacy and safety in
humans (Schuhmacher et al., 2016). Animal models have been widely used in preclinical
trials. However, due to differences in cardiac biology between species, these models have
limited ability to predict the efficacy of new drugs and harmful cardiovascular side effects in
humans (Milani-Nejad and Janssen, 2014). For example, the heart rate of mice is
approximately eight times higher than that of humans, and cardiac repolarization in
mouse cardiomyocytes (CMs) depends mainly on transient outward K+ current Ito, 4-
aminopryridine sensitive K+ current IK, slow1, TEA-sensitive K

+ current IK, slow2, and steady-
state current ISS ion currents (in humans, depends mainly on IKs and IKr) (Garg et al., 2018).
Additionally, human primary CMs rapidly dedifferentiate during cultivation, making it
impossible to accurately evaluate the effects of drugs on the heart (Bird et al., 2003).
Therefore, models that can accurately evaluate drug efficacy and cardiotoxicity in humans
are essential for drug discovery. A deeper understanding of the disease mechanism is
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essential for drug discovery to target the early stages of disease
development and to develop sensitive and effective drugs with fewer
side effects (Bekhite and Schulze, 2021). Disease-specific gene-
modified mice and rats, as well as patient-derived primary CMs,
have been used to elucidate disease mechanisms. However, as
mentioned earlier, there are discrepancies between the human
heart and animal or human primary cardiac muscle cells,
necessitating models that closely resemble the human heart in vivo.

Human induced pluripotent stem cells (hiPSCs) have unlimited
proliferative potential and can generate patient-derived hiPSC-
derived CMs (hiPSC-CMs), making them extremely useful tools
for elucidating disease mechanisms and for subsequent drug
development. Since the report by Takahashi and Yamanaka et al.
on the successful reprogramming of human fibroblasts into hiPSCs,
research has been actively conducted on the differentiation of
hiPSCs into target cells (Takahashi et al., 2007). In the field of

FIGURE 1
The difference between human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and adult human cardiomyocytes (AdCMs) in
(A) cardiomyocyte (CM) structure, (B) sarcomere isoform, (C) electrophysiology, (D) metabolism. This image was created in BioRender. Fujita, T. (2025)
https://BioRender.com/zr1cw9z.
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cardiology, protocols for differentiating hiPSCs into CMs have
continuously improved, resulting in a substantial increase in the
efficiency of differentiation into CMs compared to when hiPSCs first
became available (Feeney et al., 2025; Umei et al., 2025).
Furthermore, a method for removing non-cardiac cells obtained
concomitantly with the differentiation of hiPSCs into CMs and
technology for the mass production of hiPSC-CMs have been
developed, enabling the simple and large-scale production of
high-purity hiPSC-CMs (Someya et al., 2021; Tanosaki et al.,
2020; Tohyama et al., 2017; Tohyama et al., 2016; Tohyama
et al., 2013). However, hiPSC-CMs exhibit an immature
phenotype similar to that of fetal CMs, which limits their
application in elucidating disease mechanisms and drug discovery
(Kannan and Kwon, 2020; Tu et al., 2018). Cardiovascular diseases
are common in the elderly; therefore, the maturation of hiPSC-CMs
is key to producing cardiovascular disease models that are useful for
drug discovery.

This review provides an overview of the differences between
hiPSC-CMs and adult human CMs (AdCMs) and considers various
studies aimed at achieving cardiomyocyte maturation to more
accurately reproduce the phenotype of AdCMs. Furthermore, we
introduce research on disease and drug induced cardiotoxicity
modeling and drug discovery using hiPSC-CMs that utilize the
maturation technologies developed to date.

2 Differences between hiPSC-CMs
and AdCMs

The hiPSCs have the potential to accurately reproduce the
genetic and phenotypic characteristics of cardiovascular diseases
in vitro, making them a highly attractive tool for developing disease
models. However, hiPSC-CMs are immature compared to AdCMs,
which limits their application in elucidating disease mechanisms
and drug discovery. This review focuses on cell morphology,
electrophysiology and metabolic maturation (Figures 1A–D).

2.1 Cell morphology

AdCMs have a cylindrical shape with a volume of approximately
40,000 μm3 (140 µm in length, 20 µm in width) (Smith and Bishop,
1985; Gerdes et al., 1992). In contrast, hiPSC-CMs are smaller than
AdCMs, with a volume of 3000–6000 μm3 and a more rounded
shape (Rupert et al., 2017; Josvai et al., 2025).

The sarcomere is the functional unit responsible for cell
contraction. Immature hiPSC-CMs have poorly-organized
sarcomeres, which are randomly orientated, whereas AdCMs
form myofibrils parallel to the entire CMs (Figure 1A) (Bedada
et al., 2016; Ahmed et al., 2020). The sarcomere consists of thin and
thick filaments and Z-bands (Figure 1B). The sarcomere length of
hiPSC-CMs is 1.7–2.0 μm, which is slightly shorter than that of
AdCMs (1.9–2.2 μm). Various proteins that constitute the
sarcomere undergo isoform switching as maturation progresses
(Figure 1B). For example, αMHC is expressed in immature CMs
and βMHC is expressed in mature CMs in humans, whereas βMHC
is expressed in the fetal stage and αMHC is expressed in the adult
stage in rats and mice (Lompre et al., 1979; Lompré et al., 1984). The

regulatory light chain of myosin is predominantly MLC2a in
immature CMs, and switches to MLC2v as maturation progresses
(O’Brien et al., 1993; Kubalak et al., 1994). Slow-twitch skeletal
troponin I (ssTnI) is expressed in immature CMs and switches to the
expression of cardiac TnI (Gorza et al., 1993). For titin, the
immature CMs express the long and flexible titin isoform, N2BA,
whereas mature CMs express the short and rigid titin isoform, N2B
(Lahmers et al., 2004). Myomesin isoforms that constitute the
M-band express EH-myomesin (gene name: MYOM1) in
immature CMs and switch to Myomesin-2, which lacks the EH
domain, in mature CMs (Agarkova et al., 2000). In heart failure (HF)
CMs, sarcomere isoform switching also occurs. HF causes isoform
switching opposite to maturation (i.e., switching from N2B to N2BA
of titin, from Myomesin-2 to EH-myomesin, and from βMHC to
αMHC) (Miyata et al., 2000; Krüger and Linke, 2009; Schoenauer
et al., 2011).

T-tubules are structures observed during the late stage of
myocardial maturation in the mouse heart after birth (P10) (Xu
et al., 2024). Therefore, they are rarely observed in hiPSC-CMs,
leading to delayed calcium-induced calcium release (CICR) due to
the spatial uncoupling between L-type Ca2+ channels (LTCC) and
RYR2 (Lieu et al., 2009). The biogenesis and maintenance of
T-tubules involve various membrane scaffolding proteins, such as
bridging integrator 1 (BIN1), junctophilin 2 (Jph2), and caveolin 3
(Cav3) (Hong et al., 2014; Zhang et al., 2014; Bryant et al., 2018). In
particular, BIN1 has recently been shown to regulate T-tubule
proliferation and organization in collaboration with MTM1 and
DNM2 (Perdreau-Dahl et al., 2023). Additionally, recent studies
have shown that Ptpn23 plays an adapter role between the
dystrophin glycoprotein complex and the Z-band of the
sarcomere and is essential for T-tubule biogenesis and
maintenance (Xu et al., 2024). Regular T-tubules are formed in
AdCMs, whereas they are barely formed in immature hiPSC-CMs.
Therefore, the underdevelopment of T-tubules leads to the
disassociation of LTCC and RYR2, resulting in delayed CICR.
The expression of BIN1 and Cav3, which are involved in
T-tubule formation, increases with hiPSC-CM maturation (Soma
et al., 2024). In HF CMs, T-tubule formation is disrupted, or
T-tubule density is reduced (Bryant et al., 2018; Xu et al., 2024).

Morphological differences were also observed in mitochondria.
AdCMs mitochondria are large with well-developed cristae (Li et al.,
2020a). The development of the cristae increases the surface area of
the inner membrane and promotes efficient cellular respiration. In
contrast, hiPSC-CMmitochondria are smaller than those of AdCMs
and have absent or sparse cristae (Wang et al., 2023b).

2.2 Electrophysiology

The action potential of CMs is formed by Na+ current INa via
Nav1.5 (phase 0); IKto (phase 1); L-type and T-type Ca

2+ currents ICa,
which contribute to the plateau phase (phase 2); Ikr, IKs (phases 2 and
3); and the inwardly rectifying K+ current IK1 and pacemaker current
If (phase 4) (Karakikes et al., 2015). Immature hiPSC-CMs differ
from AdCMs in five aspects (Figure 1C). First, hiPSC-CMs express
potassium hyperpolarization-activated cyclic nucleotide-gated
channel 4 (HCN4), which generates inward currents at the
diastolic potential, enabling autonomous beating (Li et al.,
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2020b). In contrast, AdCMs express low levels of HCN4, resulting in
the absence of autonomous beating (Saito et al., 2015). Second,
hiPSC-CMs have insufficient expression of Kir2.1 (KCNJ2) and
Kir2.2 (KCNJ12), resulting in a smaller IK1 and a higher resting
membrane potential (approximately −60 mV) compared to AdCMs
(approximately −90 mV) (Goversen et al., 2018). Third, hiPSC-CMs
have lower Nav1.5 (SCN5A) expression than AdCMs, resulting in a
50% slower rise in upstroke velocity (Lee et al., 2024b). Fourth,
hiPSC-CMs express lower levels of Cav1.2 (CACNA1C) than
AdCMs and lead to a lack or shorter plateau phase (Yang et al.,
2014a). Finally, the conduction velocity of hiPSC-CMs
(0.03–0.06 m/s) is slower than that of AdCMs (0.3–0.4 m/s)
(Durrer et al., 1970; Bursac et al., 1999; Kadota et al., 2013;
Zhang et al., 2013). This is because immature hiPSC-CMs have a
lower expression of connexin 43 than AdCMs, and connexin 43 is
distributed around the cells, whereas AdCMs have connexin
43 localized in the intercalated disk (Gilbert, 2021). As described
above, there are several electrophysiological differences between
hiPSC-CMs and AdCMs. When evaluating hiPSC-CMs for
applications such as assessing the proarrhythmic effects of new
drugs, it is important to note that immature hiPSC-CMs only
partially reflect the electrophysiology of AdCMs.

Ca2+ that flows into the cell through LTCC activates RYR2,
releasing large amounts of Ca2+ from the sarcoplasmic reticulum
(SR) into the cytoplasm (Endo, 1977). This process is known as
CICR. The presence of the T-tube brings RYR2 and LTCC in close
proximity, enabling efficient calcium processing (Bers, 2002). CICR
leads to a rapid increase in Ca2+ concentration; Ca2+ binds to cTnC,
initiating sarcomere contraction (Parmacek and Solaro, 2004). In
contrast, during the diastolic phase, Ca2+ in the cytoplasm is taken
up into the SR via SERCA2a (gene name: ATP2A2) and
simultaneously released outside the cell via NCX (Aronsen et al.,
2016). Of these proteins, NCX expression is unchanged between
hiPSC-CMs and AdCMs, whereas RYR2, SERCA2, and Cavβ are
higher in AdCMs than in hiPSC-CMs (Rao et al., 2013).

2.3 Metabolism

CMmetabolism undergoes dramatic changes during fetal and
adult development. During the fetal stage, cardiac muscle cells
obtain ATP mainly through glycolysis due to the low-oxygen
environment, mitochondrial immaturity, low levels of fatty acids,
and high levels of lactate in the blood (Lopaschuk and Jaswal,
2010; Ding et al., 2021; Chen et al., 2023). The hiPSC-CMs also
depend on glycolysis for ATP production (Figure 1D) (Kim et al.,
2013). In AdCMs, oxidative phosphorylation (OXPHOS)
accounts for almost all ATP demand (about 95%), and the
majority of mitochondrial ATP production is derived from the
oxidation of fatty acids (Lopaschuk et al., 2021). This leads to an
increase in mitochondrial size, elongation, and membrane
potential as well as the acquisition of more developed cristae
during CM maturation (Scuderi and Butcher, 2017). Healthy
AdCMs require large amounts of ATP to maintain their
contractile function and they rely on OXPHOS, which is more
efficient for ATP production than glycolysis. In contrast, in end-
stage HF, the ATP content decreases by up to 30% compared to
that in healthy hearts due to reduced mitochondrial oxidative

ability (Ingwall and Weiss, 2004; Bottomley et al., 2013). In HF
cardiomyocytes, glycolysis is increased to compensate for
reduced ATP production (Allard et al., 1994).

3 Various approaches for enhancing
hiPSC-CM maturation

Generally, hiPSC-CMs are more similar to fetal CMs than to
AdCMs. Since many cases of HF occur in the elderly, it is important
to enhance hiPSC-CM maturation to produce HF models. The
factors that regulate the maturation of hiPSC-CMs are listed
below (extracellular matrix, ECM; culture substrate stiffness; co-
culture with non-CMs; biological and chemical compounds;
electrical and mechanical stimuli; culture span; and cell culture
platforms) (Figure 2). A combination of these factors is expected to
enhance the maturation of hiPSC-CMs.

3.1 ECM

The ECM regulates cellular behavior, such as cell migration,
proliferation, and differentiation during heart development, and
provides structural support (Song and Zhang, 2020; Silva et al.,
2021b; Thomas et al., 2022). Barreto-Gamarra focused on the
increased expression of α2β1 integrin in cardiac progenitor cells
(CPCs) and demonstrated that using Type I collagen as the ECM
at the hiPSC-CPC stage enhanced the maturation of hiPSC-CMs
(Barreto-Gamarra and Domenech, 2025). Chanthra et al.
screened ECM components that contributed to hiPSC-CM
maturation and demonstrated that laminin 511/521 promoted
hiPSC-CM maturation (Chanthra et al., 2020). We extracted
porcine collagen from organs, such as the heart, kidney, lung,
liver, spleen, and skin, and investigated which organ-derived
collagen was suitable for hiPSC-CM-derived heart tissue
maturation. Collagen from the heart exhibited the highest
degree of hiPSC-CM maturation and shape retention rate in
heart tissue, indicating that Type III and Type V collagen within
the heart play important roles (Tani et al., 2023). These results
indicate that the ECM contributes to hiPSC-CM maturation,
suggesting the necessity of selecting an appropriate ECM for
mature hiPSC-CMs.

3.2 Culture substrate stiffness

The elastic moduli of the neonatal and adult hearts are
approximately 6.8 kPa and 25.6 kPa, respectively (Bhana et al.,
2010). The elastic moduli of plastic and glass dishes commonly used
for cell culture are >1 GPa and >70 GPa, respectively, and hiPSC-
CMs cultured in these dishes are not in an environment with
appropriate stiffness (Travers et al., 2016). To create an
environment similar to in vivo conditions, polyacrylamide or
polydimethylsiloxane was used as a culture substrate (Pasqualini
et al., 2015; Herron et al., 2016; Körner et al., 2021). Various
maturation indicators such as increased cell size, sarcomere
length, connexin 43 expression, conduction velocity, and
sarcomere maturation have been reported to be higher in hiPSC-
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CMs seeded on conventional culture substrates (Pasqualini et al.,
2015; Herron et al., 2016; Körner et al., 2021; Dhahri et al., 2022).

3.3 Co-culture with non-CMs

The heart is composed of various cells, including CMs, vascular
endothelial cells, and cardiac fibroblasts, with CMs accounting for
only 25%–35% of the total number of cells (Nag, 1980; Bergmann
et al., 2015; Pinto et al., 2016). In adult mouse hearts, vascular
endothelial cells (approximately 60%) and cardiac fibroblasts
(approximately 15%) constitute the largest proportion of non-
CMs (Pinto et al., 2016). Because these non-CMs contribute to

the production of ECMs, the supply of various signaling pathways
and growth factors in place of CMs, co-culture of these cells with
hiPSC-CMs have been shown to improve their electrophysiological
maturation, sarcomere alignment, and metabolic function (Yang
et al., 2023).

3.4 Biological and chemical compounds

Thyroid and glucocorticoid hormones are essential for heart
maturation (Li et al., 2014; Rog-Zielinska et al., 2015). The
administration of the thyroid hormone, T3, to hiPSC-CMs has
been shown to contribute to a wide range of hiPSC-CM

FIGURE 2
Maturation factors of human induced pluripotent stem cell-derived cardiomyocytes. This image was created in BioRender. Fujita, T. (2025) https://
BioRender.com/zr1cw9z.
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maturation processes, including increased cell size, sarcomere
length, contractile force, and mitochondrial maturation (Lee
et al., 2010; Chattergoon et al., 2012; Yang et al., 2014b). The
combination of T3 and glucocorticoids enhances T-tube
development, CICR, and ventricular-like excitation–contraction
coupling (Parikh et al., 2017). NRG1, a member of the epidermal
growth factor (EGF) family, is essential for cardiac conduction
system development, and its administration to hiPSC-CMs has
been shown to promote the maturation of metabolism and
contractility (Rupert and Coulombe, 2017). Estrogen-related
receptor γ (ERRγ) agonists and S-phase kinase-related protein
inhibitors (S-PK2) produce marked upregulation in
TNNI3 expression (Miki et al., 2021). In particular, hiPSC-CMs
treated with the ERRγ agonist produce a larger cell size, longer
sarcomere length, the presence of T-tubules, and have enhanced
metabolic function and contractile and electrical properties.

Other studies have focused on the metabolic transition from
glycolysis to OXPHOS and fatty acid oxidation (FAO) during the
maturation of CMs (Horikoshi et al., 2019; Feyen et al., 2020). Feyen
et al. reported that hiPSC-CMs cultured in media containing low
levels of glucose and high levels of fatty acids exhibited increased
mitochondrial numbers with more aligned Z-lines, increased
expression of mature CM-related genes, increased contractility,
and electrophysiological maturation. This maturation medium
made it possible to reliably model LQT3 and dilated
cardiomyopathy (Feyen et al., 2020). Peroxisome proliferator-
activated receptors (PPARs) are ligand-activated transcription
factors involved in growth, proliferation, and metabolism, with
three isoforms: PPARα, PPARδ, and PPARγ (Barger and Kelly,
2000; Ahmadian et al., 2013). Activation of PPARα and PPARδ has
been shown to contribute to the maturation of hiPSC-CMs
(Wickramasinghe et al., 2022; Lee et al., 2024a). Activation of
PPARδ increases the content of mitochondria and peroxisomes,
enhances cristae formation, and increases FAO flux, thereby
inducing a metabolic switch from glycolysis to FAO
(Wickramasinghe et al., 2022).

3.5 Electrical and mechanical stimulation

Since the membrane potential and contractility of CMs change
with cardiac growth and development, electrical and mechanical
stimuli play crucial roles in the maturation of hiPSC-CMs. Tan et al.
demonstrated that the incorporation of electrically-conductive
silicon nanowires into hiPSC-CM spheroids improved the
intrinsic electrical microenvironment, thereby promoting the
structural and functional maturation of hiPSC-CMs (Tan et al.,
2015). The combination of nanowires and electrical stimulation
enhanced cell–cell junction formation, improved the development
of contractile machinery, and led to a marked decrease in the
spontaneous beat rate of hiPSC-CM spheroids (Richards et al.,
2016). Exogenous electrical pulses similar to those in CMs
promote the differentiation and functional maturation of iPSC-
CMs (Ma et al., 2016).

As for mechanical stimulation, passive stretching, guided by
computational modeling, regulates the alignment and calcium
dynamics of hiPSC-CMs in engineered heart muscle (EHM)
(Abilez et al., 2018). LaBarge et al. evaluated the maturation of

scaffold-free hiPSC-CM spheroids exposed to electrical stimulation
with an electric field of 6.5 V/cm with 5 ms pulses at a frequency of
2 Hz for 7 days and mechanical stimulation at 10% strain at a
frequency of 1 Hz for 7 days. The hiPSC-CMs increased the
expression of gap junctions and calcium-handling mechanisms at
the transcriptional, protein, and ultrastructural levels (LaBarge et al.,
2019). Although this study did not directly compare the maturation
of hiPSC-CMs between electrical and mechanical stimulation, the
data are useful because the authors evaluated the maturation of
hiPSC-CMs exposed to both electrical and mechanical stimulation
using the same assessment. Electrical and mechanical stimulation
thus contribute to the maturation of hiPSC-CMs.

3.6 Culture span

In humans, a long time is required for the fetus to mature into an
adult. Therefore, long-term culture is one approach to the
maturation of hiPSC-CMs. In initial studies, CMs differentiated
from human embryonic stem cells (hESCs) were cultured for 60 days
and exhibited more mature characteristics, such as increased cell
size, reduced cell proliferation, and organized sarcomeres (Snir et al.,
2003). The hiPSC-CMs cultured for approximately 1 year (Day 360)
produced myofibrils that were more densely packed and appeared to
have mature Z, A, H, and I bands after 180 days of long-term culture
(Kamakura et al., 2013). The appearance of M-bands was observed
only after 360 days of long-term culture. The hiPSC-CMs can
mature over long-term culture but this process is time-
consuming and costly.

3.7 Cell culture platforms

3.7.1 Two-dimensional (2D) platforms
The hiPSC-CMs cultured in 2D typically exhibit limited

maturity. Cell micropatterning has the potential to enhance the
maturation of hiPSC-CMs in 2D platforms. Mature cardiomyocytes
are rod-shaped; patterning the culture substrate so that cells adhere
in this orientation aligns the sarcomeres and leads to
electrophysiological maturation (Al Sayed et al., 2024).
Combining micropatterning with substrates of appropriate
stiffness has been shown to enhance the maturity of hiPSC-CMs
(Tsan et al., 2021; Strimaityte et al., 2022). This regulation of
micropatterning and substrate stiffness enables T-tubule
formation, which is difficult to achieve in 2D culture (Strimaityte
et al., 2022). Cell density also influences the maturation of hiPSC-
CMs. Increasing the cell density upregulates the expression of Kir2.1
(KCNJ2), enhancing electrophysiological maturation (Li et al.,
2020c). Recent advances have enabled the production of highly-
mature hiPSC-CMs in 2D culture by combining various maturation
methods. However, as 2D platforms do not accurately reproduce the
complex structure and dimensionality of the original tissue, their
ability to mimic specific aspects of development, physiological
functions, and diseases is limited.

3.7.2 Three-dimensional (3D) platform
Three-dimensional (3D) platforms mimic the in vivo

environment more closely than 2D platforms, and many research
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groups have reported the advantages of culturing hiPSC-CMs in 3D
systems to enhance their maturity (Jha et al., 2016; Tiburcy et al.,
2017; Ronaldson-Bouchard et al., 2018; Ulmer et al., 2018;
Beauchamp et al., 2020). The 3D tissues can be divided into
scaffold-free and scaffold-based systems (Tani and Tohyama, 2022).

Scaffold-free 3D tissues include cardiac spheroids containing only
hiPSC-CMs; cardiac microtissues created by mixing hiPSC-CMs with
other cell types, such as endothelial cells and cardiac fibroblasts; and
cardiac organoids developed from embryoid bodies (EBs) (Richards
et al., 2017; Hofbauer et al., 2021; Lewis-Israeli et al., 2021; Silva et al.,
2021a; Lee et al., 2022; Moriwaki et al., 2023; Schmidt et al., 2023). The
formation of hiPSC-CM spheroids has been shown to results in
greater structural, metabolic, and functional maturation than
hiPSC-CMs cultured in a 2D platform (Jha et al., 2016; Correia
et al., 2018). Co-culture with non-cardiac cells such as cardiac
fibroblasts has been shown to enhance maturation (Kahn-Krell
et al., 2022). Recent advances in the manufacturing technology of
homogeneous spheroids and microtissues have been shown to
improve the reproducibility of drug responses and are expected to
contribute to drug discovery and the elucidation of disease
mechanisms (Chen et al., 2019; Moriwaki et al., 2023; Moriwaki
et al., 2025). Cardiac organoids are characterized by being derived
from EBs and mimic cardiac development. They possess chamber
cavities, an endocardium, and an epicardium, making them more
similar to the heart in terms of structure, cell type, and spatial
arrangement (Hofbauer et al., 2021; Lewis-Israeli et al., 2021).
Schmidt et al. successfully differentiated the first heart field,
anterior second heart field (aSHF), and posterior SHF from
hiPSCs, producing left ventricular, right ventricular, and atrial
organoids with chamber cavities, respectively (Schmidt et al.,
2023). Organoids resembling the early stages of heart development
were produced by combining these organoids, in which electrical
signals flowed from the atrial organoid to the left and right ventricular
organoids. Although discrepancies in size and cell composition ratio
exist in comparison to cardiac spheroids and cardiac microtissues,
these cardiac organoids are an attractive platform for evaluating fetal
cardiovascular diseases and the effects of teratogens on early heart
development due to their ability to mimic heart development.

Scaffold-based 3D tissues include engineered heart/cardiac tissues
(EHT/ECT), biowires, and heart-on-a-chip (HoC). These tissues use
collagen, fibrin, and decellularized matrices as cellular scaffolding
materials and play a crucial role in the formation of in vivo-like
structures and the dynamic contractile properties of cardiac tissues
(Zimmermann et al., 2002; Hansen et al., 2010; Blazeski et al., 2019;
Goldfracht et al., 2019). Of these approaches, EHT is widely used for
disease modeling and drug testing and has shown promising results in
therapeutic applications (Lemoine et al., 2018; Mannhardt et al., 2020).
EHT is a cardiac tissue composed of cardiomyocytes and interstitial
cells embedded in an environment supported by two flexible pillars
with fibrin, collagen, or a decellularized matrix as the scaffold. The
pillars supporting both ends of the tissue provide diastolic tension and
promote cardiomyocyte alignment. Ronaldson-Bouchard et al.
successfully produced EHT with a considerably advanced degree of
maturity similar to AdCMs (including highly-organized ultrastructural
features, physiological sarcomere length (2.2 μm), high mitochondrial
density (30%), T-tubule presence, and metabolic maturity) by applying
electrical stimulation-based “intensity training” to EHT (Ronaldson-
Bouchard et al., 2018). This “intensity training” method involved

increasing electrical stimulation by 0.33 Hz per day over a 2-w
period, starting at 2 Hz and ending at 6 Hz.

4 Comparison of maturation factors

This chapter discusses which of the approaches introduced in
Chapter 3 contributes most to hiPSC-CM maturation. The current,
most effective strategy for promoting hiPSC-CM maturation is
considered to be electrical and mechanical stimulation training
using EHT (Ronaldson-Bouchard et al., 2018; Zhao et al., 2019;
Lu et al., 2021). Crucially, this electrical and mechanical stimulation
training begins in the early stages of hiPSC-CM culture, with
stimulation intensity gradually increased each day. Although
some electrophysiological parameters remain below AdCM
maturation levels (resting membrane potential, −70 mV; action
potential duration, approximately 500 ms; upstroke velocity,
approximately 25 V/s), the hiPSC-CMs exhibited AdCM-like
phenotypes, including a characteristic notch in ventricular action
potentials, high conduction velocity (25 cm/s), high contractility
(44 mN/mm2), sarcomere lengths of 2.2 μm, T-tubule formation,
and high mitochondrial density (Ronaldson-Bouchard et al., 2018).

Recently, Li et al. by combining electrical stimulation,
micropatterning, and fatty acid-containing media, demonstrated
that maturation factors contributed substantially to hiPSC-CM
maturation by combining electrical stimulation, micropatterning,
and fatty acid-containing medium (Li et al., 2025). Although
micropatterning limited maturation primarily to sarcomere
organization, electrical stimulation was a key maturation factor
for mitochondrial development and metabolic/
electrophysiological maturation. This combination achieved a
level of maturation comparable to the above-mentioned 3D
model in terms of electrophysiological maturation (including a
characteristic notch in the action potential, a resting membrane
potential of −65.6 mV, and a conduction velocity of 27.8 cm/s).

As described in Chapter 2, the existence of numerous indicators
of hiPSC-CM maturation complicates the discussion of which
maturation method most comprehensively promotes hiPSC-CM
maturation. Therefore, it is desirable to develop indicators to
comprehensively evaluate the maturity of hiPSC-CMs.

5 Disease models in vitro

Numerous models of heart disease have been reported using
hiPSC-CMs, including dilated cardiomyopathy (DCM);
hypertrophic cardiomyopathy (HCM); cardiac channelopathies,
such as long QT syndrome (LQTS) and Brugada syndrome
(BrS); and myocardial infarction (MI)/ischemic reperfusion (IR)
injury (Ewoldt et al., 2025). The culture platforms and maturation
approaches used to generate the disease models are listed in Table 1.
Channelopathies are limited to 2D culture platforms, and most
hiPSC-CM maturation methods use long-term culturing (El-
Battrawy et al., 2019; Chang et al., 2021; Sun et al., 2023).
Because these channelopathies cause abnormalities in action
potentials, these models always utilize either a patch clamp, a
multi-electrode assay, or both, to evaluate action potentials. In
contrast, DCM and HCM models predominantly use EHT as
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their culture platform (Fomin et al., 2021; Huang et al., 2023; Ewoldt
et al., 2024). These maturation approaches use various combinations
of co-culture, culture duration, and electrical stimulation. Since
quantifying contractility is crucial for evaluating these disease
models, hiPSC-CM movement was assessed using video
recording. Particularly with EHT, the contractile force can be

estimated by tracing the movement of the EHT post (Seeger
et al., 2019). MI/IR injury models use various culture platforms,
including 2D monolayers, HoC, and cardiac organoids (Gaballah
et al., 2022; Veldhuizen et al., 2022). These models frequently assess
cell survival rates or calcium transients using Cal520 to evaluate
arrhythmias.

TABLE 1 hiPSC-CMs based disease model and drug induced cardiotoxicity model.

Disease model Authors Culture platform Maturation factors

TTNtv-DCM Hinson et al. (2015) Fibrin/Collagen I-based EHT Coculture: hiPSC-CMs, hMSCs (93:7)

Fomin et al. (2021) Collagen I/Matrigel-based EHT Coculture: hiPSC-CMs, hFFs (7:3)
Culture span: 4 weeks (From the formation of the EHT)

Huang et al. (2023) Collagen I/Matrigel-based EHT Coculture: hiPSC-CMs, hCFs (9:1)

LMNA-DCM J.Lee et al., 2019 2D monolayer ―

Shah et al. (2021) 3D micropatterned cardiac cultures ―

Qiu et al. (2024) Fibrin/Matrigel-based EHT ―

HCM Seeger et al. (2019) Fibrin/Matrigel-based EHT Culture span: Day 35–50

Wu et al. (2019) 2D monolayer Culture span: Day 30

Ewoldt et al. (2024) Fibrin/Matrigel-based EHT Coculture: hiPSC-CMs, vCFs (9:1)

Lan et al. (2013) 2D monolayer ―

Wang et al. (2023a) Collagen I/Matrigel/Fibrin-
based EHT

Culture span: hiPSC-CMs, vCFs (10:1)
Electrical stimulation: 1~5.2 Hz
Culture span: 7~10 weeks (From the formation of the EHT)

LQT1 Moretti et al. (2010) 2D monolayer ―

Takaki et al. (2019) 2D monolayer ―

LQT2 Matsa et al. (2011) 2D monolayer Culture span: Day 25~30

Mesquita et al. (2019) 2D monolayer Culture span: Day 30~45

Chang et al. (2021) 2D monolayer Culture span: Day 60

LQT3 McKeithan et al. (2020) 2D monolayer Maturation mediuma

BrS Sun et al. (2023) 2D monolayer Culture span: Day 30~40

El-Battrawy et al. (2019) 2D monolayer Culture span: Day 40~60

Chavali et al. (2019) 2D monolayer Culture span: Day 40

SQT1 El-Battrawy et al. (2018) 2D monolayer Culture span: Day 40~50

MI/IR injury Gaballah et al. (2022) 2D monolayer Culture span: Day 30~60

Hidalgo et al. (2018) 2D monolayer Compounds:10 mM of Galactose, 50 μM of Palmitic acid, and 100 μM of Oleic
acid

Veldhuizen et al. (2022) 3D cardiac tissue on a-chip Coculture: hiPSC-CMs, hCFs (4:1)
Culture span: Day 36

Song et al., 2024 COs Culture span: Day 30

Ellis et al. (2022) HoC Coculture: hiPSC-CMs, hiPSC-ECs (5:1)

Cardiotoxicity Altrocchi et al. (2023) 2D monolayer ―

Jang et al. (2024) COs ―

Liu et al. (2024a) Fibrin-based EHT ―

Micropatterning Culture substrate stiffness: 10 kPa polyacrylamide hydrogel

hMSC: human mesenchymal stem cells, hFFs: human foreskin fibroblasts, hCFs: human cardiac fibroblasts, vCFs: ventricular cardiac fibroblasts, COs: cardiac organoids.
aDMEMwithout glucose supplemented with 3 mM glucose, DMEMwithout glucose supplemented with 3 mM glucose, 10 mM L-lactate, 5 μg/mL Vitamin B12, 0.82 μM biotin, 5 mM creatine

monohydrate, 2 mM taurine, 2 mM L-carnitine, 0.5 mM ascorbic acid, 1x NEAA, 0.5% (w/v) Albumax, 1 × B27% and 1% KOSR.
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When generating models for inherited heart diseases such as
DCM, HCM, and channelopathies, patient-derived iPSCs must be
established (Figure 3) (Huang et al., 2023; Qiu et al., 2024).
Furthermore, the current gold standard involves generating
control hiPSCs by repairing the patient’s genetic mutation using
genome-editing tools such as CRISPR-Cas9. Non-hereditary heart
disease models such as MI/IR injury models are generated by
exposing hiPSC-CMs to environmental factors specific to non-
hereditary heart diseases (Figure 3) (Ellis et al., 2022). In the MI
models, these factors are typically involved in hypoxia.

5.1 Dilated cardiomyopathy

Dilated cardiomyopathy (DCM) is a nonischemic heart disease
characterized by structural and functional abnormalities of the
myocardium. DCM is the most common nonischemic cause of HF
(Gigli et al., 2025). The most common genetic mutation in genetic
DCM is titin truncating variants (TTNtvs), which accounts for
approximately 25% of familial cases (Roberts et al., 2015). Early
studies using TTNtvs hiPSC-CMs demonstrated that titin
mutations disrupt the critical link between sarcomere formation
and adaptive remodeling (Hinson et al., 2015). Recent studies
using hiPSC-CMs have identified two mechanisms underlying the
pathophysiology of DCM: the accumulation of TTNtvs protein
aggregates leads to toxic peptide effects due to abnormalities in the
protein quality control (PQC) system and sarcomere defects caused by
haploinsufficiency (Fomin et al., 2021; Huang et al., 2023). However,
these two studies showed discrepancies in the relative contributions of
proteasome- and autophagy-mediated degradation of TTNtvs
aggregates, suggesting that the selectivity of these two PQC

pathways may vary between different cell lines. Additionally, no
arrhythmic events were reported in these studies, suggesting that
hiPSC-CMs were immature.

LMNAmutations are also one of the most common genetic causes
of DCM, accounting for 4%–8% of all cardiomyopathies (Schultheiss
et al., 2019). The LMNA gene encodes a protein that is a major
component of the nuclear lamina and plays a crucial role in nuclear
and cytoskeletal organization, mechanical stability, chromatin
organization, signal transduction, gene regulation, genomic stability,
and cell differentiation (Capell andCollins, 2006). Patients with LMNA-
DCM exhibit prominent early onset life-threatening cardiac electrical
abnormalities, such as atrioventricular blocks, ventricular tachycardia,
and fibrillation. A study focusing on arrhythmia phenotypes and their
associated pathways discovered that the platelet-derived growth factor
(PDGF) signaling pathway was activated in LMNA-DCM-derived
iPSC-CMs and that pharmacological and molecular-level inhibition
of the PDGF signaling pathway suppressed arrhythmia phenotypes
(Lee et al., 2019). A lamina–chromatin interaction study suggests that
the lamina network safeguards cellular identity and that LMNA
mutations may cause abnormal gene expression in non-cardiac cell
pathways (Shah et al., 2021). LMNA mutations accelerate the
degradation of SIRT1, leading to mitochondrial dysfunction and
oxidative stress, which in turn activates the
ROS–CAMLII–RYR2 pathway and induces arrhythmia (Qiu
et al., 2024).

5.2 Hypertrophic cardiomyopathy

Hypertrophic cardiomyopathy (HCM) is a hereditary
cardiomyopathy characterized by left ventricular hypertrophy

FIGURE 3
Generation of disease models for inherited and acquired heart disease. This image was created in BioRender. Fujita, T. (2025) https://BioRender.
com/zr1cw9z.
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(LVH) without secondary LVH caused by other diseases (Melas et al.,
2023). This disease is also characterized by myocardial contractility,
diastolic dysfunction, myofibrillar abnormalities, and fibrosis (Marian
and Braunwald, 2017). Of the known causative genes, MYH7 and
myosin-binding protein C (MYBPC3) are the most common,
accounting for approximately half of familial HCM cases (Kaski
et al., 2009; Millat et al., 2010). Seeger et al. demonstrated that
activation of the nonsense-mediated decay (NMD) pathway, a
major pathogenic mechanism in HCM, was shown by the study of
MYBPC3 premature termination codon mutations (Seeger et al.,
2019). Wu et al. proposed the dysregulation of Ca2+ cycling and
elevation of intracellular Ca2+ as central mechanisms underlying
arrhythmic phenotypes in the pathogenesis of HCM (Wu et al.,
2019). Ewoldt et al. demonstrated increased collagen deposition
and tissue stiffness were observed in cardiac microtissues derived
from MYH7 mutant hiPSC-CMs, resulting in impaired contractility
(Ewoldt et al., 2024). They also demonstrated that paracrine signals
secreted by HCM-mutant hiPSC-CMs activated stromal cells and that
inhibiting epidermal growth factor (EGF) signaling suppressed
stromal cell proliferation and ECM remodeling.

In trials using existing drugs, the Ca2+ channel inhibitor,
verapamil, has been reported to substantially improve HCM
phenotypes, including myocardial hypertrophy, Ca2+ handling
abnormalities, and arrhythmias (Lan et al., 2013; Wu et al.,
2019). MYH7 mutant hiPSC-CMs generated on the Biowire
platform exhibited chronic mavacamten treatment effects,
including shortened relaxation time, reduced APD90

prolongation, increased expression of CICR-related genes,
decreased mRNA and protein expression levels of BNP, and
increased sarcomere length and reduced sarcomere disarray,
thereby preventing many pathological features (Wang et al., 2023a).

5.3 Channelopathies

Long QT syndrome (LQTS) is a hereditary disorder characterized
by prolonged ventricular repolarization and increased risk of Torsade
de Pointes-type ventricular arrhythmias. This type of arrhythmia can
cause arrhythmic syncope or sudden cardiac arrest (Moss et al., 1991).
Of the numerous cases of LQTS reported to date, LQT1, caused by
mutations in the KCNQ1 gene; LQT2, caused by mutations in the
KCNH2 gene; and LQT3, caused by mutations in the SCN5A gene,
account for approximately 90% of all cases (Schwartz et al., 2012).
Moretti et al. were the first to use patient-derived hiPSC-CMs for
modeling LQT1 (Moretti et al., 2010). The action potential duration
(APD) of hiPSC-CMs derived from patients with LQT1
(LQT1–hiPSC-CMs) was substantially prolonged compared to that
of control hiPSC-CMs. LQT1–hiPSC-CMs exhibited a 70%–80%
reduction in IKs currents and high susceptibility to isoproterenol-
induced tachyarrhythmias, which were reversed by beta-blockers.
Takaki et al. demonstrated that the LQT1–hiPSC-CM model
accurately reproduced LQT1 phenotypes, including abnormal
channel activity and increased arrhythmogenicity (Takaki et al., 2019).

Matsa et al. generated hiPSC-CMs derived from patients with
LQT2 (LQT2–hiPSC-CMs), and compared the sensitivity of control
hiPSC-CMs and LQT2–hiPSC-CMs to agonists or antagonists of β-
adrenergic receptors and potassium channels (Matsa et al., 2011).
The LQT2–iPSC-CMs exhibited prolonged APD and increased

sensitivity to early after-depolarization (EAD) following
isoprenaline treatment compared to control hiPSC-CMs.
Mesquita et al. used LQT2–hiPSC-CMs and CRISPR/Cas9-edited
healthy hiPSC-CMs with the R534C mutation and demonstrated
that both cell lines exhibited prolonged APD and reduced IKr,
corresponding to the clinical phenotype of patients with LQT2
(Mesquita et al., 2019). Chang et al. generated LQT2-hiPSC-CM
models using CRISPR/Cas9 and demonstrated that these models
exhibited QT prolongation, arrhythmia, and sensitivity to other ion
channel inhibitors (Chang et al., 2021).

LQT3 patient-specific hiPSC-CMs (LQT3–hiPSC-CMs) had a
prolonged APD compared to control hiPSC-CMs (Terrenoire et al.,
2012; Ma et al., 2013). Mexiletine reversed the elevated late Na+

channel current and prolonged APD in LQT3–hiPSC-CMs.
Structural analogs of mexiletine with greater potency and
selectivity for INaL decreased APD prolongation and suppressed
EADs were identified using large-scale functional screening of
LQT3–hiPSC-CMs (McKeithan et al., 2020).

BrS is caused by mutations in the SCN5A gene. Mutations in
SCN10A, which encodes voltage-gated sodium channels and
CACNA1C, which encodes L-type calcium channels, have also been
identified (Begovic et al., 2024). The hiPSC-CMs derived from a patient
with BrS (BrS–hiPSC-CMs) exhibited higher arrhythmia, slower
depolarization, and irregular calcium signaling than control hiPSC-
CMs (Sun et al., 2023). BrS–hiPSC-CMs with SCN10A gene mutations
(c.3803G>A and c.3749G>A) recapitulated the single-cell phenotypic
characteristics of BrS, including a substantially reduced peak sodium
channel current and reduced ATX II-sensitive and A-887826-sensitive
late sodium channel currents compared to the control hiPSC-CMs (El-
Battrawy et al., 2019). The CACNA1C-p.N639T mutation was
introduced into healthy hiPSC lines using CRISPR/Cas9 and
differentiated the cells into hiPSC-CMs; the mutation caused
prolonged action potentials and delayed voltage-dependent
inactivation of the calcium channel V1.2 (Chavali et al., 2019).

SQT is typically associated with mutations in six genes that encode
potassium and calcium channels (KCNQ1, KCNH2, KCNJ2, CACNA1C,
CACNB2, and CACNA2D1). Of these gain-of-function mutations,
KCNH2 causes the most common subtype, SQT1 (Fernández-
Falgueras et al., 2017). The first hiPSC-based model of SQT1 was
reported by El-Battrawy et al., using hiPSC-CMs derived from a
patient with SQT1 (SQT1–hiPSC-CMs) with the KCNH2 N588K
mutation, which reproduced the single-cell phenotype of SQT (El-
Battrawy et al., 2018). SQT1–hiPSC-CMs with a T618I missense
mutation in the KCNH2 gene exhibited abnormal AP phenotypes
compared to the control and gene-corrected hiPSC-CMs.

In summary, hiPSC-CMs derived from patients with cardiac
channelopathies or edited using CRISPR/Cas9 reproduced the
in vitro electrophysiological characteristics of ion currents, action
potentials, calcium transients, and proarrhythmic and arrhythmic
events, providing physiologically-relevant disease models and drug-
screening platforms.

5.4 Myocardial infarction/ischemic
reperfusion injury

MI is a cardiovascular disease characterized by high incidence
and mortality rate, arising from the progressive narrowing of the
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coronary arteries. Coronary artery occlusion disrupts the oxygen
and nutrient supply to the myocardium, leading to the
accumulation of waste products. This is followed by CM
death, which triggers fibrosis, inflammation, and ventricular
remodeling, ultimately resulting in heart failure (Liu et al.,
2024b). Gaballah et al. evaluated the effects of hypoxic stress
on hiPSC-CM functionality by exposing hiPSC-CMs to hypoxic
conditions (1% O2, 5% CO2, and 94% N2). Hypoxia induced
marked arrhythmia and reduced Ca2+ transient amplitude in
hiPSC-CMs, whereas addition of the Ca2+ enhancer,
levosimendan, ceased the arrhythmia (Gaballah et al., 2022).
Damage to the heart tissue that occurs when blood flow is
restored to the infarcted tissue is called IR injury (He et al.,
2022). Recently, modeling of this IR injury has also been reported.
Hidalgo et al. reported that hiPSC-CMs cultured in a maturation
medium rich in fatty acids exhibited substantially increased
sensitivity to oxygen concentration changes compared to
hiPSC-CMs cultured in standard media, with an
approximately 25% difference in cell death occurring after
hypoxia (Hidalgo et al., 2018). AdCMs rely primarily on fatty
acid β-oxidation, and this increased dependence on
mitochondrial respiration is considered key to their
susceptibility to hypoxia and reperfusion injury. Veldhuizen
et al. developed a microfluidic device using hiPSC-CMs
matured via patterning techniques and co-culture with cardiac
fibroblasts. They observed no difference in cell death under
hypoxic conditions between this and a monolayer culture
platform after 24 h of exposure to a 1% O2 hypoxic
environment. However, a marked increase in cell death was
observed in their model after 1 h or 24 h of reperfusion,
successfully modeling IR injury (Veldhuizen et al., 2022). Song
et al. reproduced hypoxia-induced ischemia by culturing hiPSC-
COs in glucose-depleted medium supplemented with 50 μM
cobalt chloride (CoCl2) (Song et al., 2024). They reproduced
ischemia–reperfusion (IR) by exposing cells to a high-glucose and
high-calcium environment. This model reproduced acute MI
characterized by cardiomyocyte death, functional impairment,
collagen deposition, and impaired calcium ion handling. Ellis
et al. created an IR injury model by culturing hiPSC-CMs and
hiPSC-ECs on a HoC under anoxic conditions (0.1% O2) without
flow for 3 h, followed by the reintroduction of flow (Ellis et al.,
2022). Their MI-on-chip model showed similar increases in miR-
1, miR-208b, and miR-499 levels compared to human plasma
samples collected before and after IR.

In summary, the MI and IR injury models used diverse culture
conditions and platforms, requiring caution when comparing their
respective results. However, these models closely approximate
disease phenotypes by mimicking the disease environment.
Advanced model standardization and high-throughput
capabilities have the potential to replace preclinical trials.

6 Drug-induced cardiotoxicity

Many drugs have been withdrawn from the market due to drug-
induced cardiotoxicity, highlighting the need for robust
cardiotoxicity testing models to reduce the risk of cardiotoxic
drugs in human clinical trials (Destere et al., 2024). Current

preclinical models are heavily reliant on animal models, which
are costly and have low throughput. Given the tendency toward
reduced animal model use, in vitro models are becoming
increasingly essential. Unlike animal models, hiPSC-CMs exhibit
no differences in gene expression and can be produced indefinitely,
making them promising models for novel toxicity testing (Pognan
et al., 2023). Altrocchi et al. developed a cardiotoxicity assessment
model using a 48-well multi-electrode array (MEA) plate (Altrocchi
et al., 2023). They used this model to evaluate acute and delayed
drug-induced cardiotoxic effects of reference compounds on
clinically-known cardiotoxic outcomes. The evaluated drugs
included not only known classical cardiotoxic agents
(doxorubicin and BMS-986094) but also low-cardiotoxicity agents
(erlotinib) and high-cardiotoxicity tyrosine kinase inhibitors
(sunitinib, vandetanib, and nilotinib). This assay could reproduce
various cardiotoxicities, including prolonged field potentials, altered
beating rates, arrhythmic events, and decreased impedance. Jang
et al. generated COs from patients with breast cancer who developed
doxorubicin-induced cardiotoxicity (DIC) and those who did not
and evaluated the drug responses in individual patients (Jang et al.,
2024). Compared to COs from patients with breast cancer who did
not develop DIC, those from patients who developed DIC showed
increased sensitivity to doxorubicin, reduced survival rates, elevated
expression of apoptosis-related genes, and a more pronounced
decrease in beating frequency. Liu et al. identified carbonic
anhydrase 12 (CA12) as a promising drug target that could
mitigate DIC by combining hiPSCs with CRISPR interference
and activation screening (Liu et al., 2024a). Genetic inhibition
and deletion of CA12 protected hiPSC-CMs from DIC-induced
cell death, abnormal myogenic segmentation, impaired calcium
signaling, and electrophysiological abnormalities. Furthermore,
they identified indisulam as a CA12 antagonist using a molecular
docking approach and demonstrated its ability to attenuate DIC in
EHT and DIC mouse models.

As described above, various culture platforms are used to
evaluate DIC (Table 1). However, DIC studies using hiPSC-CMs
have rarely included maturation approaches, indicating that the
hiPSC-CMs used in these studies could be considered immature. As
discussed in Chapter 2, immature hiPSCs and AdCMs differ widely
in morphology, electrophysiology, and metabolism. Therefore, not
all drugs exhibit the same behavior in both cell types. Consequently,
unless cardiotoxicity is evaluated at the developmental stage, it is
preferable to enhance the maturity of hiPSC-CMs before DIC
assessment.

7 Limitations for clinical translation

The primary limitation in producing disease models using
hiPSC-CMs is their immaturity compared with AdCMs. As
described in Chapter 4, various maturation approaches have been
developed; however, even when combined, they do not achieve the
same level of maturity as AdCMs (Ronaldson-Bouchard et al., 2018;
Li et al., 2025). Maturation of these hiPSC-CMs is particularly
important for producing models of diseases such as TTNtv-
DCM, which typically occurs in older patients, and diabetic
cardiomyopathy (DbCM), which is characterized by
hyperglycemia and insulin resistance. The TTNtv-DCM models
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are generally produced using EHT. Although these models reduced
contractility and appeared as a DCM phenotype, arrhythmia
phenotypes did not emerge (Roberts et al., 2015; Fomin et al.,
2021; Huang et al., 2023). In DbCM models, immature hiPSC-
CMs may typically show resistance to the harmful effects of
hyperglycemia because they utilize glucose metabolism (Bowman
et al., 2019; Purnama et al., 2022).

Another limitation of these studies is the lack of established,
standardized methods for differentiating, maturing, and
producing disease models using hiPSC-CMs. This hinders
their application in preclinical models. Disease and toxicity
testing models reported to date have utilized hiPSC-CMs
produced using different media and differentiation induction
methods. Differences were also observed in the combinations of
hiPSC-CM maturation approaches and culture platforms used
for disease model production. For example, differences in the
culture medium used for maintaining hiPSCs can lead to
variations in the subtypes of cardiomyocytes produced
(Nakashima and Tsukahara, 2025). The accumulation of small
differences in each of these factors could potentially cause large
variations between the models. For large-scale preclinical studies
requiring robust validation and reproducibility, it is necessary to
establish standardized models to avoid such variability. However,
once these two limitations are resolved, the model will be
superior to animal and cell models traditionally used in
preclinical testing.

8 Conclusion

Due to the limited availability of human heart tissue, there is a
need for an easily-obtainable and scalable human-derived cell/tissue
system that expresses structural and functional characteristics similar
to those of native CMs and carries patient genetic information. The
hiPSC-CMs have the potential to meet these requirements and serve
as powerful tools for disease modeling and drug discovery. They can
be used to elucidate disease mechanisms and predict the effects of
candidate compounds by focusing on the electrophysiology, cellular
signaling, metabolism, and contraction mechanisms of CMs.
However, it is important to recognize several differences between
AdCMs and hiPSC-CMs in studies that target diseases that develop in
adults. These differences include variations in ion channel dynamics,
contractile function, structural differences, sarcomere isoforms, and
metabolic function. This review summarizes the main characteristics
of hiPSC-CM maturation, known regulatory factors of this process,
and disease models produced using these factors. Future efforts to
enhance the maturity of hiPSC-CMs and develop high-throughput,
reproducible, and three-dimensional culture platforms will lead to
improved robustness and accuracy, thereby contributing to
advancements in disease modeling, drug efficacy, toxicity testing,
and mechanistic studies.
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