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Predictive models for vaccine design have become a powerful and necessary resource for
the expeditiousness design of vaccines to combat the ongoing SARS-CoV-2 global
pandemic. Here we use the power of these predicted models to assess the sequence
diversity of circulating SARS-CoV-2 proteomes in the context of an individual’s CD8 T-cell
immune repertoire to identify potential. defined regions of immunogenicity. Using this
approach of expedited and rational CD8 T-cell vaccine design, it may be possible to
develop a therapeutic vaccine candidate with the potential for both global and local
coverage.
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INTRODUCTION

The COVID-19 pandemic is a worldwide health emergency. The first cases were believed to have
occurred earlier than December 2019, and as of the beginning of February there have been more than
103,000,000 cases of SARS-CoV-2 infection have been reported worldwide and in excess of 2,200,000
deaths (Update, ecdc.2021). Vaccine development against SARS-CoV-2 is accelerating, and currently
there are more than 130 vaccines in development with some progressing to clinical trials in man
(Mullard, 2020). Of these vaccines the majority are for a prophylactic indication with the spike
glycoprotein being the preferred antigen target.

The full repertoire of immune responses to COVID-19 in patients is still being evaluated but
recent publications indicate a significant role for cell mediated immunity in clearing SARS-CoV-2
and conferring some level of protective immunity (Grifoni et al., 2020). This mirrors observations
made for other coronavirus infections, SARS (Li et al., 2008), MERS (Zhao et al., 2017) and other viral
infections including Ebola (Sakabe et al., 2018) and Lassa virus (Sullivan et al., 2020). Concurrent
with vaccine design and understanding the immune response in patients, significant efforts have
been invested in understanding the virus phylogeny as it progresses around the globe to identify key
sequence changes that may influence vaccine design. The data from this analysis appears to show that
the majority of circulating mutations are neutral or deleterious (van Dorp et al., 2020), although a
D614G mutation identified in the spike glycoprotein may cause an increase in susceptibility to
infection (Korber et al., 2020).

Linking novel sequence data to the use of existing predictive in silico tools for epitope
identification offers an intriguing approach that can complement existing vaccine design
strategies. Previously we hypothesized that incorporating potential immune recognition
information into established models may increase the likelihood of success. We have
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FIGURE 1 | Affinity plots for all predicted peptides with conservation of >2.1% (n = 11,267). (A)-Predicted peptide affinity (Rank Binding) vs. peptide frequency
within transmitted founder proteome. (B)—Predicted peptide frequency vs. primary associated HLA. (C)—Predicted peptide affinity (Rank Binding) vs. primary

shown that within a population, although HLA sequences
show high levels of polymorphism, there are conserved, over-
represented alleles that can be used as representative of larger
allele diversity (Buggert et al., 2012; Hare et al., 2020a).

Previously we have applied NetMHCpan (Nielsen and
Andreatta, 2016) as a proxy to identify putative
CD8 T-cell epitopes contained within the HIV transmitted
founder virus (TFV) identified from the Protocol C clinical
cohort of sub Saharan and East Africa. We have shown that it
is possible to stratify and rank protein and/or proteome
sequences for their contributions of potential T-cell
epitopes (McGowan et al.,, 2020). Here we propose to use
the same approach to evaluate a subset of global circulating
SARS-CoV-2 sequences and, using the predefined analysis
applied to modeling HIV diversity, identify key regions
within the SARS-CoV-2 proteome that could be included
within a therapeutic T-cell vaccine.

METHODS

For genes from each SARS-CoV-2 virus proteome sequence all
8-11 mer peptides were generated. The binding affinity of each
peptide to the HLA alleles described above was predicted using
NetMHCpan-4.1.

Binding predictions below the peptide conservation threshold
were read into PostgreSQLR for analysis. The evaluated set of

predicted binders was determined as peptides that appear in any
virus proteomes, above the peptide conservation threshold of 2.1%.
First the virus proteome with the largest number of unique predicted
binders was identified. Next, the proteome that, when combined
with the previously selected proteome gave the highest increase in
coverage of all predicted peptide binders was included. This iterative
process was repeated until 100% of all predicted T-cell epitopes were
accounted for. For comparison, set-building was performed a second
time using randomly selected proteomes instead of choosing the
proteome that resulted in the greatest increase of peptide coverage.
For more information go to dataspace.iavi.org.

RESULTS

Our approach uses NetMHCpan to predict the HLA/peptide
binding affinity for the selected virus strains and then identify a
set of close binding peptides that are common across the strains.
This algorithm was used to analyze 287 SARS-CoV-2 proteome
sequences collected between and 08 January and April 02, 2020
and downloaded from NCBI SARS-CoV-2 virus database. The
model parameters assessed included a minimum peptide
conservation threshold of 2.1% (as previously defined
(McGowan et al, 2020)) and a rank binding cut-off of 2.0.
Rank binding is used as a metric for peptide:HLA interactions
in place of traditional binding affinity scores as it facilitates the
normalization of prediction scores across different MHC

TABLE 1 | Model parameters and proteome sources.

Parameter

SARS-COV-2 proteomes

Binding threshold

HLA allele contributions

HLA haplotype weighting

Rank binding

Peptide conservation threshold (%)
Peptide length

Values

Brazil (1), China (13), France (1), Greece (1), Iran (1), South Africa (1), Spain (10), Sweden (1), Taiwan (1), Turkey (1), USA

(238), Unknown (16), Vietnam (2)
1%

46 alleles (16 x HLA-A, 19 x HLA-B, 11 x HLA-C)

None
<2.0
2.1%
8,9, 10, and 11 mers
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FIGURE 2 | Cumulative coverage distribution plots of full length
transmitted founder gag sequences using a 3-select coverage model and a
2% Binding Threshold, 3-Select best (red)) and 3-Select random (blug).

molecules and enables inter-specific MHC binding prediction
comparisons (Reynisson et al., 2020). Figure 1 summarizes the
output dataset which includes only those peptides that are present
in 6 or more virus proteomes (epitope frequency) and have low
rank binding scores although they may represent multiple HLA/
peptide interactions (see Table 1 for input sample data and full

Sampling SARS-CoV-2 Proteomes

These frequency and binding thresholds identified 10,982 unique
SARS-CoV-2-specific predicted CD8 T-cell epitopes and identified a
range of predicted binding profiles for the different peptide-HLA
interactions with the majority of peptides associating to selected
HLA-A and HLA-B alleles (Figures 1A,B-HLA Ids 1-36) and few
primary associations to HLA-C alleles.

These predicted peptides can be used to assess diversity by
assigning a coverage gain value to each sequence. These values
can then be used to rank each virus proteome for the coverage it
provides within the sample population and by extension identify
the sequences that are necessary to obtain the optimum level of
epitope restricted sequence coverage (Figure 2).

This model may be used to target and prioritize individual
proteomes from which vaccine targets could be derived. In our
population of 287 SARS-CoV-2 proteomes each proteome offers
an individual coverage gain of 72.2-98.3% against the total
landscape of predicted CD8 T-cell epitopes. Using this model
eight key proteomes are required to reach 100% epitope coverage
within the sample population. It would require an 8-fold increase
in virus sequences to achieve 100% coverage if sequences had
been selected at random (n = 68 p < 0.0001).

Interestingly, of the 10,982 unique predicted CD8 T-cell
epitopes (Supplementary Table S1), 409 are contained in all
287 proteomes. These peptides map to four genes within the
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FIGURE 3 | Mapping of predicted epitopes with 100% conservation showing location and number of predicted responses across the proteome and cumulative
number of precited epitopes per 250aa. (A)— Predicted responses mapped across the ORF1ab polyprotein (with NSP genes identified). (B)—Predicted responses
mapped across the spike glycoprotein.
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polypeptide and  spike
Supplementary Table S2).

glycoprotein  (Figure  3;

DISCUSSION

Evaluating predicted CD8 T-cell epitopes within the SARS-CoV-
2 proteome revealed a high level of conservation between
proteomes, with each proteome representing 72-98.3% of all
predicted T-cell epitopes; however, using our model it is possible
to reach 100% epitope coverage using eight defined proteomes.
This is in contrast to HIV where it would take 83 proteomes to
achieve 100% epitope coverage on a comparable sample size
(McGowan et al., 2020). The enhanced conservation of epitopes is
in concordance with the observed sequence diversity to date and
indicates that no bias has been introduced in to the analysis
through modeling with reduced input data.

Moreover, the elevated conservation can be used as a guide to
identify regions within the proteome that should be included
within a therapeutic T-cell vaccine. Recent data has indicated that
naturally occurring T-cell responses in convalescent COVID-19
patients preferentially target the spike glycoprotein and ORFla
polypeptide (Grifoni et al., 2020; Peng et al., 2020). However,
limitations in both these studies including that ORF1lab peptides
were not examined in one study, the sample size in both was
small, peptides were generated from the reference strain and the
HLA Class 1 distribution was limited, may mean that potential
regions of interest have been overlooked.

We identified 409 predicted CD8 peptides that have 100%
conservation within our sample set with >90% of the predicted
epitopes contained within either the ORFlab polypeptide or spike
glycoprotein. Furthermore, the predicted epitopes appear to
cluster within a ~550 a. a region of the spike glycoprotein
(amino acid 319-865) and within two regions of the ORFlab
polypeptide (amino acid positions 2,750-3,250 and 4,500-5,500).
Future experimental testing of these epitopes would confirm
whether natural infection induces CD8 T-cell responses
targeting these regions, but from an in silico perspective they
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