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Thanks to the availability of multiomics data of individual cancer patients, precision
medicine or personalized medicine is becoming a promising treatment for individual
cancer patients. However, the association patterns, that is, the mechanism of
response (MoR) between large-scale multiomics features and drug response are
complex and heterogeneous and remain unclear. Although there are existing
computational models for predicting drug response using the high-dimensional
multiomics features, it remains challenging to uncover the complex molecular
mechanism of drug responses. To reduce the number of predictors/features and make
the model more interpretable, in this study, 46 signaling pathways were used to build a
deep learning model constrained by signaling pathways, consDeepSignaling, for anti–drug
response prediction. Multiomics data, like gene expression and copy number variation, of
individual genes can be integrated naturally in this model. The signaling
pathway–constrained deep learning model was evaluated using the multiomics data of
∼1000 cancer cell lines in the Broad Institute Cancer Cell Line Encyclopedia (CCLE)
database and the corresponding drug–cancer cell line response data set in the Genomics
of Drug Sensitivity in Cancer (GDSC) database. The evaluation results showed that the
proposed model outperformed the existing deep neural network models. Also, the model
interpretation analysis indicated the distinctive patterns of importance of signaling
pathways in anticancer drug response prediction.
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INTRODUCTION

Precision medicine or personalized medicine is becoming feasible and widely adopted in cancer treatment
due to the availability of multiomics data that comprehensively characterize individual cancer samples. For
example, comprehensive multiomics data, like gene expression, copy number variation (CNV), genetic
mutation, methylation, and proteomics, as well as clinical outcome information of over 20,000 cancer
patients across 33 cancer types and subtypes are available in the cancer genome atlas (TCGA) program
(Goldman et al., 2018). On the other hand, the cancer cell lines are important experimental models for
evaluating important biomarkers and screening effective drugs in laboratories. The comprehensive
multiomics data of >1,000 cancer cell lines were generated and available in the Broad Institute Cancer
Cell Line Encyclopedia (CCLE) database (Barretina et al., 2012; Wang et al., 2019). In addition, the drug
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response of ∼1,000 cancer cell lines against ∼100 drugs and
compounds is available in the Genomics of Drug Sensitivity in
Cancer (GDSC) database (Garnett et al., 2012; Yang et al., 2013),
with the aim of uncovering the potential associations between genetic
biomarkers and drug response. Also, about 5,232 drug combination
screening of 104 drugs against 60 cancer cell lines are available in the
NCI-ALMANACDrug Combination database (Holbeck et al., 2017).
These valuable data sets provide a basis for fully understanding the
potential molecularmechanism of cancer heterogeneity and diversity,
as well as for understanding the potential mechanism of response
(MoR) to anticancer drug treatments.

However, it remains challenging to integrate and interpret the
diverse and large number of data points in the high-dimensional
multiomics data in a biologically meaningful manner. Though
associations between individual biomarkers and drug response
have been identified, it is still challenging to decode and uncover
the complex signaling networks (interactions of a group of
molecules to control specific cellular functions) that regulate
the anticancer drug response based on the high-dimensional
multiomics data sets. For example, an elastic net model was
employed in CCLE and GDSC data analysis to associate the
individual biomarkers to the drug response (Barretina et al., 2012;
Garnett et al., 2012; Yang et al., 2013; Wang et al., 2019). A
support vector machine (SVM)–based model was proposed to
predict drug response based on chemical structures and
multiomics-based cancer cell line similarity (Wang et al.,
2016). Also, drug–cancer cell line similarity–based network
models (Sheng et al., 2015; Zhang et al., 2015) were proposed
to predict the drug response, and the recommender system was
used for drug response prediction (Suphavilai et al., 2018).

Deep learning models have also been proposed for drug response
prediction. For example, chemical structure features and omics data
have been used as the input of an auto-encoder to reduce the
dimension of features and then predict the drug response using
deep neural network (DNN) (Li et al., 2019). In addition, a DNN
framework was developed to predict anticancer drug response based
on gene expression data (Sakellaropoulos et al., 2019), and the results
showed that the DNN models outperformed the current machine
learning frameworks. Similar models were also proposed to predict
drug combination response to anticancer drugs. For example,
DeepSynergy (Preuer et al., 2018) and AuDNNsynergy (Zhang
et al., 2018) were proposed by integrating chemical structure and
genomics features of cancer cell lines and cancer patients in auto-
encoders. To understand the mechanism of model prediction in the
“black boxes” of deep learning models, the visible neural network
(VNN)models (e.g., DCell and DrugCell) (Yu et al., 2018; Kong et al.,
2020; Kuenzi et al., 2020) were proposed, using large hierarchical deep
learning architecture to model the hierarchical organization of
biological processes and to predict drug response with important
biomarkers. In DrugCell, large-scale omics data and chemical
structure data were used. However, the pathway-level activity was
not specifically investigated. Moreover, PASNet (Hao et al., 2018) and
Path-DNN (Deng et al., 2020)were proposed to incorporate biological
network information. In PASNet, cancer patients’ survival was
predicted based on gene expression data. In Path-DNN (Deng
et al., 2020), the gene expression data of a set of landmark genes
and all general KEGG pathways were used to predict drug response.

In this study, we aimed to improve these models, by developing a
deep learning model constrained by signaling pathways,
consDeepSignaling, which investigated the activity of 46 signaling
pathways (the 45 pathways named with signaling pathways plus the
cell cycle pathway) collected from the KEGG signaling pathway
database (Ogata et al., 1999; Kanehisa and Goto, 2000; Feng et al.,
2020; Zhang et al., 2020) using both the gene expression and copy
number variation data of individual genes. Besides that, we leveraged
the powerful tool to interpret our models in a global view, which will
facilitate the study of signaling pathways in the biomedicine field. In
cancer studies, signaling pathways are important concepts that define
the signaling cascades among a set of gene/proteins and are therefore
biologically meaningful and interpretable to explain the drug
response (Sanchez-Vega et al., 2018). For example, the 10 major
cancer-related signaling pathways were analyzed using the
comprehensive multiomics data of TCGA cancer samples
(Sanchez-Vega et al., 2018). The analysis results indicated that
about 89% of cancer samples had at least one driver alteration
among these signaling pathways. Therefore, we aim to investigate
the possibility of using a deep learning model constrained by 46
signaling pathways to predict anticancer drug response. The
proposed model was evaluated and compared with existing
models using the omics data of cancer cell lines in CCLE and
drug response data in the GDSC data set.

MATERIALS AND METHODOLOGY

Genomics of Drug Sensitivity in Cancer
Fitted Dose Response Data and
Multi-Omics Data
The drug–dose response and omics data of cancer cell lines were
obtained from theGDSC database (Table 1). From this data set, the
area under the experimental dose–response curve of a given cancer
cell line was used to indicate drug effects on the cancer cell line,
with a 3-element tuple: < DA, CB, AUCAB >. We selected the
cancer cell lines that had both gene expression and copy number
data. For gene selection, we filtered out those genes which had over
1/3 zero values (missing data) in all cell lines and selected the genes
with both gene expression and copy number data. Finally, we
obtained 929 gene RNA sequence data (rnaseq_fpkm) and copy
number data (cnv_gistic) of 791 cancer cell lines.

Drug–Target Information
There are 54 common drugs between DrugBank (Wishart et al.,
2018) and GDSC data set. The drug target information was
derived from DrugBank database; and 24 out of the 54 drugs
were selected for this study, whose target genes are on the 46
signaling pathways (see Table 2).

Kyoto Encyclopedia of Genes and Genomes
(KEGG) Signaling Pathways
In the KEGG signaling database, 46 signaling pathways were
collected (the 45 pathways named with signaling pathways plus
the cell cycle pathway). These signaling pathways were MAPK,
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FoxO, TGF-beta, ErbB, VEGF, Ras, Rap1, p53, Hippo, TNF,
mTOR, PI3K-Akt, estrogen, NF-kappa B, notch, JAK-STAT,
Wnt, hedgehog, HIF-1, T-cell receptor, adipocytokine,
sphingolipid, B-cell receptor, oxytocin, phospholipase D,
apelin, Fc epsilon RI, glucagon, relaxin, calcium, toll-like
receptor, neurotrophin, AGE-RAGE, cGMP-PKG, NOD-like
receptor, insulin, cell cycle, cAMP, AMPK, RIG-I–like
receptor, GnRH chemokine, C-type lectin receptor, prolactin,

IL-17, and thyroid hormone. There were 929 genes that had both
gene expression and copy number variation data in these 46
signaling pathways.

The ConsDeepSignaling Model
Figure 1 illustrated the overview architecture of the
consDeepSignaling model. We denote the input layer node vector
with byX � [x1,f1, x1,f2, . . . x1,fK , . . . , xi,fk . . . , xn,fK]T ∈ RKn×1, where

TABLE 1 | Data sets collected from public GDSC database.

Data set Link

GDSC dose response http://ftp.sanger.ac.uk/pub/project/cancerrxgene/releases/current_release/GDSC2_fitted_dose_response_25Feb20.xlsx
GDSC RNAseq https://cog.sanger.ac.uk/cmp/download/rnaseq_20191101.zip
GDSC copy number variation https://cog.sanger.ac.uk/cmp/download/cnv_20191101.zip

TABLE 2 | Twenty-four drugs used in the proposed model.

Afatinib Crizotinib Dabrafenib Daporinad Dasatinib Erlotinib
Gefitinib Lapatinib Leflunomide Linsitinib MK-1775 Navitoclax
Nilotinib Osimertinib Palbociclib Ribociclib Ruxolitinib Sorafenib
Staurosporine Tamoxifen Trametinib Ulixertinib Vinblastine Vorinostat

FIGURE 1 | Schematic architecture of the proposed consDeepSignaling model.
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K equals the number of features for each gene, n equals the
number of genes, and xi,fk denotes the kth feature of ith gene.
For each gene, we have K features. Therefore, one set of gene
features can be denoted as xi � (xi,f1, xi,f2, . . . , xi,fK) ∈ RK×1.
Then, we have X � (x1|x2| . . . |xi| . . . |xn) ∈ RKn×1. We denote
the gene layer node vector byG � (g1, g2, . . . , gi . . . , gn) ∈ Rn×1,
where n equals the number of genes and gi denotes ith gene.
Thus, we denote the weight parameter between X and G with
matrix WXG ∈ RKn×n. Since we only make connection between
certain gene features and their corresponding genes, we will
create a gene features connection matrix with CXG ∈ RKn×n.
The elements ci,j, (i � 1, 2, . . . ,Kn, j � 1, 2, . . . , n), in this
matrix follow the rule that ci,j � 1, for i � K(j − 1) +
m, (m � 1, 2, . . . ,K). Then, the matrix CXG ∈ RKn×n is as
follows.

CXG �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1,1 0
« «

cK ,1 0
/

0
«
0

« « 1 «
0 0
« «
0 0

/
cKn−K+1,n

«
cKn,n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and then we use matrix CXG as a mask matrix to forward
information from the input layer to gene layer by

(CXG ·WXG)TX � G

Similarly, the pathway layer is denoted by
P � (p1, p2, . . . , pi, . . . , ps) ∈ Rs×1, where s equals the number
of signaling pathways. Thus, we denote the weight parameters
between G and P using the matrix WGP ∈ Rn×s. Here, we will use
the gene–pathway connection matrix CGP ∈ Rn×s to demonstrate
the connection. Therefore, we use matrix CGP as a mask matrix to
forward information from the gene layer to pathway layer by

(CGP ·WGP)TG � P

From the pathway layer to the output layer, all of the layers are
fully connected to obtain a scalar with a value which is our
prediction ŷ.

For this specific study, in the “input layer,” there were 3 input
features, that is, gene expression (rnaseq_fpkm), copy number
(cnv_gistic), and is_target_of_Drug (0: this gene is not a target of
a drug; 1: this gene is a target of a drug), for each of 929 genes on
cancer cell lines. Therefore, we have f1 for gene expression, f2 for
copy number, and f3 for is_target_of_Drug; and here, K � 3 and
n � 929. There were 929 genes connected with the 46 signaling
pathways (denoted by using the weight matrixWGP). Hence, we get
s � 46. (See the Supplementary Table S1,
TS1_drug_gene_pathway.csv). The output of the “46 signaling
pathways” was used as the input of the deep belief network
(DBN) (densely connected). The output layer was the predicted
AUC value of drug effectDA on cancer cell lineCB. Themean square
error (MSE) was used as the loss function. For the DBN, there were 3
hidden layers, which were 3rd, 4th, and 5th hidden layers in the whole
model: 3rd hidden layer had 256 nodes with the ReLU activation
function; the 4th hidden layer had 128 nodes with the ReLU

activation function; and the 5th hidden layer had 32 nodes with
the ReLU activation function. The linear activation function was
used in the output layer. At last, to investigate the importance of
individual signaling pathways to the drug response prediction, the
SmoothGrad model in the “iNNvestigate” package (Alber et al.,
2018) was employed to interpret the deep learning model at the
pathway layer. SmoothGrad (Smilkov et al., 2017) was developed to
extract the gradients from the trained model to indicate the feature
importance. The code and data are available at https://github.com/
SynergisticDrugCombinationPrediction/ConsDeepSignaling.

EXPERIMENT RESULTS

To evaluate the performance of the proposed consDeepSignaling
model, the drug responses of 24 drugs on the 791 cancer cell lines
collected data from the GDSC database were used. For all of the
following models, we leveraged five-fold cross-validation. In the
1st to 4th splits of training and test data sets, it contained 13,409
and 3,352 points, respectively, and in the 5th split of training and
test data set, it contained 13,408 and 3,353 points. For the
proposed model, to avoid oscillation, we used varying learning
rate schedule to adjust the learning rate in different stages of
epoch: for 1–30, 31–40, 41–50, 51–70, and 71–100 epochs, the
learning rates 1 × 10− 3, 1 × 10− 4, 5 × 10− 5, 1 × 10− 5, and 1 × 10− 6
were used, respectively. Figure 2 shows the MSE Loss and the
Pearson correlation coefficients on the five-fold cross-validation
training and validation data sets using the consDeepSignaling
model. On average, the proposed consDeep Signaling achieved
about 0.98 and 0.85 Pearson correlation coefficients on the
training and testing data sets on the five-fold cross-validation,
respectively. Figure 3 showed the scatterplots of the training
(upper panel) and test (bottom panel) data sets of the five-fold
cross-validation, respectively.

We further compared the proposed model with the deep
neural network (DNN) model. The input layer still contained
the same information as the proposed model. For 1st and 2nd
hidden layers, we set 256 nodes in each layer, and we used fully
connected layers with LeakyReLU as activation functions by
setting the parameter α � 0.3 and the dropout rate with 0.1.
For the 3rd, 4th, and 5th fully connected hidden layers, we set 256,
128, and 32 nodes in the DNN model. To avoid oscillation, we
used varying learning rate schedules to adjust the learning rate in
different stages of epoch: for 1–15, 16–30, 31–50, 51–70, and
71–100 epochs, the learning rates 1 × 10− 3, 1 × 10− 4, 5 × 10− 5,
1 × 10− 5, and 1 × 10− 6 were used, respectively. The DNN model
achieved about 0.80 and 0.74 for Pearson correlation coefficients
on the training and testing data sets of five-fold cross-validation,
which are lower than our proposed model. Moreover, we also
compared our model with pathway-guided models. In Path-
DNN, we used gene expression data and drug targets
information in the input layer for 929 genes. Then, we used
corresponding gene–pathway connection matrix to forward
information from the input layer to the 46-pathway layer.
From the pathway layer to the output layer, we used two fully
connected layers with 512 and 32 nodes with ReLU as activation
function. The linear activation function was used in the output
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layer to make prediction. In PASNet, we used gene expression
data in the input layer for 929 genes, connected to the 46-pathway
layer. From the pathway layer to the output layer, there was only

one hidden layer in PASNet. In the hidden layer, the ReLU
function was implemented as the activation function with the
dropout rate of 0.1. For the output layer, the activation function

FIGURE 2 | Average MSE loss (upper panel) and Pearson correlation coefficients (bottom panel) on the 5 training and testing data sets of four models.

FIGURE 3 | Scatterplots of the predicted and experimental drug response scores on the five-fold training (upper panel) and test (bottom panel) data sets.

Frontiers in Bioinformatics | www.frontiersin.org April 2021 | Volume 1 | Article 6393495

Zhang et al. AI for Cancer Drug Prediction

https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


was the linear function. Both the hidden layer and the output
layer used the L2 regulaizer with the parameter as 0.01. The 5-fold
cross-validation test results for all aforementioned four models

(consDeepSignaling, DNN, Path-DNN and PASNet) can be
found in Supplementary Tables S2–S5 (TS. 2–5, respectively).
Figure 2 shows the averaged value of MSE loss (upper panel)

FIGURE 4 | Importance of score distribution patterns of the 46 signaling pathways in all samples by pooling all the testing data sets of the five-fold cross-validation.
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and Pearson correlation coefficients (bottom panel) on the 5
training and testing data sets of the four models. As seen, the
proposed model outperformed the other models. We also
tested the consDeepSignaling predictions using the 10 sets
of randomly permuted labels of the samples to simulate the
random prediction. The average Pearson correlation
coefficients on the randomly permutated training and
testing data sets were very low, that is, 0.24 and 0.001. The
p-values and FDRs of observing the Pearson correlation
coefficients on the real testing data sets are all 0, calculated
using the empirical cumulative distribution function estimated
using the Pearson correlation coefficients of the randomly
permutated data sets, which indicate that the predictive
models are much reliable than random prediction.

To understand the predictive importance of individual
signaling pathways and drug response, the “SmoothGrad”
model in the “iNNvestigate” package was employed to
interpret the deep learning model at the signaling pathway
layer. Figure 4 showed the importance score distributions of
individual signaling pathways of all the samples, by pooling the
importance scores of individual signaling pathways in all
samples in the 5 testing data sets. The important
distributions were a global analysis of the signaling
pathways using all the samples. As seen, compared with
other signaling pathways, the ErbB, Ras, Calcium, FoxO,
mTOR, Wnt, hedgehog, NOD-like receptor, T-cell receptor,
Fc epsilon RI, neurotrophin, insulin, prolactin, and cell cycle
signaling pathways have much larger range of importance
scores, which indicated the importance of these signaling
pathways in anticancer drug response prediction.

DISCUSSION AND CONCLUSION

Large-scale and high-dimensional multiomics data, like gene
expression, copy number variation, methylation, genetic
mutation, and microRNA, of individual cancer patients and
>1,000 cancer cell lines have been generated, which provide
the basis to fully understand the molecular mechanisms of
tumor heterogeneity and diversity, as well as the
heterogeneous response to anticancer drugs. It also enables
precision medicine or personalized medicine selects the right
and optimal treatments for individual patients based on their
omics profiles and biomarkers. A few databases have been
generated and publicly available to access these valuable data
resources, like CCLE (Barretina et al., 2012; Wang et al., 2019),
and GDSC (Garnett et al., 2012; Yang et al., 2013).

Though the machine learning– and deep learning–based
association studies have been reported to identify potential
biomarkers correlating with distinct drug response, it remains
challenging to integrate the large-scale and high-dimensional
data features in a biologically meaningful manner and to further
decode and uncover the mysterious molecular mechanisms of drug
response for the purpose of precision medicine. In this study, we
proposed a novel deep learningmodel–constrained integrating gene
expression and copy number data constrained by signaling
pathways, consDeep signaling, to model the pathway activity

and their capacity to predict the drug response. The advantages
of the consDeepSignaling are 1) it used a small set of genes and
modeled the gene activity using multiomics data; 2) it used only 46
signaling pathways to predict the drug response, which has a smaller
number of parameters than the existing DNNmodels; 3) the model
was more interpretable; and 4) the model interpretation analysis
was conducted to identify the potentially important signaling
pathways to inhibit the tumor growth. The evaluation and
comparison results indicated that the proposed model
outperformed the existing models.

It is an exploratory study to integrate biologically
meaningful signaling pathways with the deep learning for
anticancer drug response on the 791 cancer cell lines. There
are some limitations to be further investigated. For example,
though it might be challenging, further functional analysis on
the important signaling pathways of individual cancer cell
lines might be able to identify the specific cancer cell
line–specific dysfunctional targets that are responsible for
drug response. Also, in addition to the signaling pathways,
more biological processes (BPs), for example, the gene
ontologies (GOs) (Ashburner et al., 2000) should be
considered. Then, more drugs whose targets are not on the
46 signaling pathways could be included. Moreover, the graph
neural network (GNN) model might be able to model the
signaling cascades directly to identify the unknown molecular
mechanisms (in terms of signaling network modules) that are
responsible for the drug response. We will investigate these
challenges in future work. In the analysis, it is assumed that
drugs with the same targets should have similar effects. The
status of target genes will be decided (learned by the model) by
the gene expression, copy number, and if it is a drug target (not
drug-specific). Then, the status of the target genes will affect
(parameters to be learned by the model) the pathway activities
to influence the drug response prediction. It is interesting to
study the drug-specific effects on the target genes. Moreover,
different drugs and cell lines could have drug- and cell-specific
signaling pathways that are informative for the drug response
prediction. Thus, it is interesting and important to investigate
the drug- and cell-specific pathway activity as well as identify
the potentially important genes that can affect the activity of
individual signaling pathways. As seen in the results, a larger
difference in performance between the training and test sets in
the proposed model, than other models, indicated the
overfitting on the training data sets. We will systematically
evaluate some widely used techniques to reduce the overfitting
problem, for example, early stopping, adding noise to the
input data, and adding a penalty term to control the
nonzero parameters.
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