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OMPdb (www.ompdb.org) was introduced as a database for β-barrel outer membrane

proteins from Gram-negative bacteria in 2011 and then included 69,354 entries classified

into 85 families. The database has been updated continuously using a collection of

characteristic profile Hidden Markov Models able to discriminate between the different

families of prokaryotic transmembrane β-barrels. The number of families has increased

ultimately to a total of 129 families in the current, second major version of OMPdb. New

additions have been made in parallel with efforts to update existing families and add novel

families. Here, we present the upgrade of OMPdb, which from now on aims to become a

global repository for all transmembrane β-barrel proteins, both eukaryotic and bacterial.

Keywords: beta barrel membrane proteins, Gram-negative bacteria, mitochondria, chloroplast, β-barrels, Hidden

Markov Model, database, sequence analysis

INTRODUCTION

Integral membrane proteins (IMPs) play a vital role in cell tasks and communication. IMPs
represent roughly 20–30% of the human genome (von Heijne, 1999). They can be structurally
divided into two distinct categories, the α-helical membrane proteins and the β-barrel ones (von
Heijne, 1999). While the former are commonly found in the bacterial inner membrane and cell
membranes of all eukaryotic cells, the latter are located exclusively in the outer membranes of
mitochondria, chloroplasts, and Gram-negative bacteria (Cavalier-Smith, 2000). In contrast to
the α-helical proteins, which are the major type of the IMPs, the β-barrel membrane proteins
are fewer, comprising <3% of the proteins encoded in bacterial genomes (Casadio et al., 2003)
(one order of magnitude lower than that of α-helical membrane proteins). However, the β-barrel
membrane proteins participate in crucial biological activities in prokaryotic organisms, as well as
in the eukaryotic organelles.

Endosymbiosis of Gram-negative bacteria ancestors with host cells generated eukaryotic
organelles, chloroplasts (Kleine et al., 2009) and mitochondria (Gray et al., 1999), whose outer
membranes contain pores with β-barrel topology. The eukaryotic β-barrel pores are IMPs and
can be classified into three main functional groups. Firstly, the specific diffusion channels group,
which consists of the voltage-dependent anion channel (VDAC) (De Pinto et al., 2010), the
translocase of the outer mitochondrial membrane (TOM40) (Hill et al., 1998), the outer envelope
protein 21 (OEP21) (Hemmler et al., 2006), the outer envelope protein 23 (OEP23) (Goetze
et al., 2015), the outer envelope protein (OEP37) (Goetze et al., 2006) and the outer envelope
protein 40 (OEP40) (Harsman et al., 2016). Secondly, the non-specific diffusion channels group,
that includes only the outer envelope protein 24 (OEP24) (Pohlmeyer et al., 1998). Thirdly, the
biogenesis/secretion group, that contains the mitochondrial distribution and morphology protein
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10 (MDM10) (Meisinger et al., 2004), the sorting and
assembly machinery (SAM50) (Stojanovski et al., 2007), the
trigalactosyldiacylglycerol 4 (TGD4) (Wang et al., 2012), the
translocon at the outer membrane of chloroplasts 75 (TOC75)
(Hinnah et al., 2002) and the outer envelope protein 80 (OEP80)
(Gross et al., 2020).

OMPdb is a database of bacterial β-barrel outer membrane
proteins (βOMPs). It was launched in 2011 and is until now the
most complete collection of Gram-negative bacteria βOMPs. It
has been updated continuously using a collection of characteristic
profile Hidden Markov Models (pHMMs) as shown in Figure 1.

Up to now, OMPdb (www.ompdb.org) was a repository of
only prokaryotic βOMPs and classified them into the following
eight functional categories (Tsirigos et al., 2011): receptors,
biogenesis/secretion, specific channels, non-specific channels,
structural, adhesion, enzymes, and unknown. Specific and non-
specific diffusion channels, together with biogenesis/secretion
proteins have a crucial role in the bacterial life. Bacterial
diffusion channels are the most abundant type of βOMPs in
the outer membrane. There are two main classes of bacterial
diffusion channels: the non-specific and specific diffusion
channels (Schirmer et al., 1995; Koebnik et al., 2000; Schulz,
2002; Nikaido, 2003; Pagès et al., 2008; Wirth et al., 2009;
Van Den Berg, 2012). The first class of proteins may have 14
strands, as the outer membrane protein G (OmpG) (Galdiero
et al., 2013), 16 strands and permit the flux of hydrophilic
substrates smaller than 600 Kda (Ringler and Schulz, 2002) or 26
strands, as theMtrB, the β-barrel member of the outer membrane
spanning protein complex, MtrAB (Edwards et al., 2020). The
second class members form 12-stranded beta barrels, as in the
oligogalacturonate-specific KdgM channel (KdgM) (Wirth et al.,
2009), 14-stranded, as the long-chain fatty acid transporter FadL
(van den Berg et al., 2004), 16-stranded, like the outer membrane
porin B (OprB) (Van Den Berg, 2012) and OprP (Moraes et al.,
2007) or 18-stranded, as the outermembrane carboxylate channel
(Occ) (Eren et al., 2012; Liu et al., 2012) and maltoporins (Wang
et al., 1997; Forst et al., 1998).

In addition to the aforementioned functions of bacterial
βOMPs, bacterial adhesion is considered as the first step of
biofilm formation and colonization (Dankert et al., 1986).
Biofilm, an accumulated biomass of microorganisms, can be
harmful to human life where it causes pathogen interaction with
host cells (Gristina, 1987; Soto and Hultgren, 1999). Prior to
entering inside, pathogenic bacteria adhere to host cells and
secrete their products to the host. To this end, bacteria attach
to host cells via one of the following three ways: fimbrial (Pili),
which is considered the most common proteinous adhesin of
Gram-negative bacteria (Soto and Hultgren, 1999) (e.g.,Neisseria
gonorrhoeae Wall and Kaiser, 1999), non-fimbrial adhesions
(autotransporters, like e.g., Haemophilus influenzae Girard and
Mourez, 2006), or using other unique nanofibers likeCaulobacter
crescentus (Corpe, 1972) does. Subsequently, pathogenic bacteria
use bacterial secretion as a cellular tool to secrete their virulence
factors (predominantly proteins) for invading their host cells.
Gram-negative bacteria use eight specific secretion types, with

Abbreviations: βOMPs, β-barrel outer membrane proteins.

two of them being the most common, i.e., the general secretion
(termed the Sec-pathway) and the twin arginine translocation
(termed the Tat-pathway Natale et al., 2008; Green and Mecsas,
2016). Despite the high degree of similarity between the targeting
signals that direct secretory proteins to their routes, the secretion
mechanisms are widely different. The Sec-pathway stimulates the
translocation of unfolded proteins, whereupon they fold at the
trans-side of the membrane into their native structure. On the
contrary, the Tat-pathway catalyzes the translocation of folded
proteins (Natale et al., 2008).

To reach their proper location, the bacterial βOMPs are being
accelerated by the five units (BamA, -B, -C, -D, and -E) of
the β-barrel assembly machine (Bam) (Tomasek and Kahne,
2021). BamA, the core of the machine, forms a 16-stranded β-
barrel in addition to a periplasmic domain with five polypeptide
translocation-associated (POTRA)motifs. It is thought that these
five POTRAmotifs interact with the four lipoproteins of the Bam
complex (Jansen et al., 2015). The Omp85 superfamily of outer
membrane proteins encompasses the translocation machines of
bacterial βOMPs (BamA) (Voulhoux et al., 2003), mitochondrial
βOMPs (SAM50) (Höhr et al., 2018), and chloroplastic ones
(TOC75/OEP80) (Day et al., 2019; Gross et al., 2020).

Lipopolysaccharide (LPS) is substantial for the vitality of
most Gram-negative bacteria. It plays critical roles not only in
the survival of them in severe environments by composing a
biofilm but also in colonizing the infected host and avoiding
attacks from the human immune system (Zhang et al., 2013;
Whitfield and Trent, 2014). LptD, an integral membrane protein,
is considered as one of the largest reported bacterial β-barrel so
far. Its 26 stranded β-barrel together with LptE form the LPS
complex translocon “barrel and plug” at the outer membrane of
the Gram-negative bacteria (Dong et al., 2014; Gu et al., 2015).

All Gram-negative bacteria are always in a crucial need for
large substrates, such as vitamin B12 or iron-siderophore
complexes. Therefore, the outer membrane of Gram-
negative bacteria contains diverse high-molecular-weight
proteins called TonB-dependent transporter (TBDTs) (Braun,
1995) (e.g., FhuA Coulton et al., 1986) and FusA (Grinter
et al., 2016). Furthermore, βOMPs may act as enzymes like
Lipopolysaccharides 3-O-deacylase enzyme PagL (Bishop, 2008).
Also, βOMPs maintain the stability of the outer membrane as
outer membrane protein (OmpA) (Ringler and Schulz, 2002).
Lastly, due to the ever-growing number of sequenced genomes of
Gram-negative bacteria, the number of proteins with unknown
function is relatively small (Tsirigos et al., 2011).

Apart from the typical βOMPs found in the outer membrane
of endosymbiotic organelles (e.g., VDAC Bayrhuber et al., 2008,
TOC75 Soll and Schleiff, 2004, and OmpG Galdiero et al.,
2013), there are also multimeric transmembrane pores formed
either from pathogenic microbes in the host’s cells, called Pore-
forming Toxins (PFTs) (e.g., Aerolysin, which forms heptameric
Iacovache et al., 2016 or non-americ Podobnik et al., 2016 pores
and Hemolysin De and Olson, 2011), whose role is not yet clear,
or from human cells, called Membrane Attack Complex (MAC),
that protect human cells by forming pores in the membrane of
pathogenic Gram-negative bacteria (Menny et al., 2018).
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FIGURE 1 | Growth of OMPdb from 2011 till now.

Because of the biomedical importance of the βOMPs, several
biological databases have been launched to annotate and
organize the βOMPs in several ways. The Protein Data Bank
of Transmembrane Proteins (PDBTM) (http://pdbtm.enzim.hu)
was launched in 2004 as the first comprehensive database for
experimentally verified transmembrane proteins either α-helical
or β-barrels. The database is being updated continuously using
the TMDET algorithm. This algorithm can differentiate between
the non-transmembrane proteins and transmembrane proteins
based on their 3D coordinates. PDBTM (version 2019-02-22)
includes 130 non-redundant βOMPs (Kozma et al., 2013).

TMBB-DB (http://beta-barrel.tulane.edu/) was launched in
2012 as a database for transmembrane βOMPs. TMBB-DB
includes around 50,000 predicted transmembrane βOMPs
(Freeman and Wimley, 2012). To detect the transmembrane
βOMPs, the database uses a compilation of two predictors: the
Freeman-Wimley algorithm (Freeman and Wimley, 2010) and
SignalP5 (Almagro Armenteros et al., 2019).

The Topology Data Bank of Transmembrane Proteins
(TOPDB) (http://topdb.enzim.ttk.mta.hu) was launched in 2008
as a hub for the topology of the 3D solved structure
transmembrane proteins. TOPDB was dependent on the
retrieved data from the Protein Data Bank (PDB) and PDBTM
in parallel with the generated topology prediction by HMMTOP
(Tusnády et al., 2008). In 2015, they improved the generated
topology data by incorporating high throughput techniques like

the sequential positions of N- or O-glycosylations. Further, they
developed a new algorithm for collecting the scattered topology
from various public databases. In addition, they created a new
method for evaluating the reliability of the generated topology
data. TOPDB provides now the topology information for 201
βOMPs (Dobson et al., 2015).

The Transporter Classification Database (TCDB) (http://
www.tcdb.org) is a database of all the transporter proteins. TCDB
provides comprehensive structural, functional and medical
information for all the transporter proteins. Moreover, TCDB
has a specialized software that has been designed and integrated
into the TCDB to focus on the distinctive characteristics of the
transporter proteins, and subsequently their biomedical function.
TCDB classifies 1260 βOMPs into 93 different families (Saier
et al., 2016).

The MemProtMD database (http://memprotmd.bioch.ox.
ac.uk) was launched in 2015 acting as a repository for
the membrane-embedded protein structures and their lipid
interactions. MemProtMD provides the molecular dynamics
(MD) simulation results of the protein-lipid interactions for 405
βOMPs (Newport et al., 2019).

The Pfam database (http://pfam.xfam.org/) is a widely used
repository for protein families. Pfam classifies the protein
sequences into clans, families and domains based on specific
pHMM for every family. In Pfam, all the βOMP families are
gathered together in one clan called MBB (CL0193). This clan
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contains 92 families with 1,092,329 protein members (El-Gebali
et al., 2019).

Here, we present the upgraded and updated OMPdb, a
global repository for all βOMPs with experimentally determined
3D structure or not regardless of their location, function and
mechanism of pore formation.

MATERIALS AND METHODS

In order to upgrade OMPdb, new features and novel βOMPs
families, prokaryotic and eukaryotic ones, are included as shown
in Figure 2.

New Families
Initially, our efforts were focused on finding as many new
transmembrane βOMPs families in the literature as possible.
To this end, we based our literature search along two main
axes, adding novel transmembrane βOMPs families and updating
current transmembrane βOMPs ones, either by adding new
functional annotation or by updating their pHMMs as shown in
Figure 3.

First, we performed an extensive literature search to find novel
families of transmembrane βOMPs in Gram-negative bacteria
(not included in OMPdb Tsirigos et al., 2011). Furthermore,
we retrieved all the 3D structures of transmembrane βOMPs
that were not included in OMPdb after a thorough search
in both PDBTM (version 2019-02-22) (Kozma et al., 2013)
and MemProtMD (version 13-10-2019) (Newport et al., 2019).
Additionally, we tried to characterize and assign function to as
many of the Domain of Unknown Function (DUF) families,
members of the MBB clan of Pfam version 33.1 May 2020 (El-
Gebali et al., 2019), as possible. It is important to mention here
that the same procedure was used in both the first OMPdb
publication (Tsirigos et al., 2011) and our recent eukaryotic
transmembrane βOMPs publication (Roumia et al., 2020) to
create new pHMMs for those families without known domains
in Pfam. In brief, the β-barrel domain of the experimentally
verified protein(s) reported in the respective published articles
were used to perform search against the UniProt (The UniProt
Consortium, 2019) database with protein BLAST (Altschul et al.,
1997). Subsequently, Multiple Sequence Alignments (MSAs) of
the best-scoring results for each family were made by Clustal
Omega (Li et al., 2015) and these alignments were refined with
MUSCLE (Edgar, 2004). Finally, we built the corresponding
pHMMs using the refined alignments with HMMER version 3.3
(Eddy, 1998).

For the Autotransporter and TBDTs families, we updated
their pHMMs by adding the new members to their respective
Pfam MSAs, and then, following the above-mentioned method.
For the Omp85 family we built a new pHMM corresponding
only to its bacterial members (BamA/TamA) and mitochondrial
ones (SAM50). To this end, we searched Uniprot (The UniProt
Consortium, 2019) for mitochondrial SAM50 proteins under
Omp85 family, merged the SAM50 search results to the
BamA/TamA members, and then, followed the aforementioned
steps to building the new pHMM.

Finally, we performed a search with our new pHMMs’
collection against the reference proteomes, prokaryotic, and
eukaryotic, retrieved from the Uniprot database (Release
2020_03) (The UniProt Consortium, 2019).

New Features
As part of the upgrade of OMPdb, we decided to include some
new features in the latest version. Providing 3D models for all
seed set alignment members for all the families included in the
database was the first new feature we added. The models were
constructed either via homologymodeling using SWISS-MODEL
(Biasini et al., 2014) (for the families that contained member(s)
with experimentally verified structure) or via de novo modeling
using PHYRE2 (Kelley et al., 2015) (for the families without
any determined 3D structures). As an additional feature, we
now provide, in each entry, information about the signal peptide
and the topology of each βOMP using the SignalP5.0 (Almagro
Armenteros et al., 2019) and the PRED-TMBB2 (Tsirigos et al.,
2016) tool, respectively.

RESULTS

Newly Added Families
In addition to the 11 new eukaryotic transmembrane βOMPs
families (Roumia et al., 2020), we included 19 new or updated
prokaryotic βOMPs families presented in Table 1. These families
are classified into one of the following three categories: novel
βOMPs families not included in the old version of OMPdb,
known families with new functional annotation or known
families with an updated pHMM. Further, for most of the
OMPdb families either updated or not, we added 667 recent
publications focusing on their respective function.

Novel Families
This first category includes nine novel families
presented below.

(i) TP0969 protein shows structural homology with the TolC
protein. TP0969 was predicted as an outer membrane beta
barrel by CELLO (Yu et al., 2006), PSORT (Yu et al., 2010),
HHomp (Remmert et al., 2009), and PRED-TMBB (Bagos
et al., 2004) prediction algorithms and has a signal peptide
based on Signal-CF (Chou and Shen, 2007) and SignalP 4.1
(Petersen et al., 2011) prediction algorithms. Furthermore,
using mass spectrometry analysis, TP0969 was identified
as an outer membrane protein (Cox et al., 2010; Osbak
et al., 2016). According to PRED-TMBB2, it forms 12
transmembrane beta strands (Tsirigos et al., 2016).

(ii) Vibrio parahaemolyticus is a significant Gram-negative
halophilous pathogen. As a result of the consumption of
seafood, it may cause a harmful seafood-borne illness in
humans. In addition, it causes a wide range of diseases in
aquatic animals (Vora et al., 2005; Kawatsu et al., 2006;
Datta et al., 2008). VP1243 is a protective antigen which
shows a high effective antimicrobial activity against the
mentioned organism. VP1243 is widely distributed and
highly conserved among the major Vibrio Species. VP1243
is considered as a hopeful candidate against the Vibrio
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FIGURE 2 | Workflow of the process followed during the upgrade of OMPdb.

FIGURE 3 | Workflow used for including new prokaryotic βOMPs families into OMPdb.

infections. Western blot analysis revealed that VP1243 is
an outer membrane protein (Gao et al., 2020). The first
19 amino acids function as a signal peptide according to
SignalP 5.0 (Almagro Armenteros et al., 2019). Further,
VP1243 forms 10 transmembrane beta strands based on
PRED-TMBB2 prediction (Tsirigos et al., 2016).

(iii) PgaA controls the translocation of de-N-acetylated poly-
β-1,6-N-acetyl-d-glucosamine (dPNAG) polymer into
the outer membrane of Escherichia coli k-12. dPNAG
is crucial for biofilm adhesion and has an important
role in the maintenance and development of biofilms
integration for various bacterial species. The PgaA β-
barrel domain (513–807) consists of 16 antiparallel
transmembrane β-sheets with β1 and β16 strands
interlocking (Wang et al., 2016).

(iv) The Gram-negative Fibrobacteres-Chlorobi-Bacteroidetes
superphylum has a protein export pathway termed the
type 9 secretion system (T9SS), which is considered as
an important determinant of pathogenicity in serious
periodontal disease (Lasica et al., 2017). These bacteroidetes
are famous for the quick and unique gliding motility
where their cell surface adhesins move on helical tracks
(Shrivastava et al., 2016). Cryo-electron microscopy
revealed that SprA is the translocon of T9SS. Furthermore,
SprA consists of a large transmembrane β-barrel of
36 strands. The SprA barrel has a lateral entry to the
external membrane surface because the barrel pore on the
extracellular end is closed (Lauber et al., 2018).

In addition to the monomeric βOMPs, we also included
the multimeric transmembrane βOMPs to the OMPdb

Frontiers in Bioinformatics | www.frontiersin.org 5 April 2021 | Volume 1 | Article 646581

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


Roumia et al. OMPdb: Database for Beta-Barrel Proteins

TABLE 1 | Newly added prokaryotic β-barrel families in OMPdb.

FamilyCategory Representative

member (Uniprot

or PDB Acc.)
References

Function Pfam domain

TP09691 R9UUH1 (Cox et al.,

2010; Osbak et al.,

2016)

Biogenesis/Secretion No domains

found

VP12431 Q87QA7 (Gao et al.,

2020)

Active transporter No domains

found

PgaA1 4Y25 (Wang et al.,

2016)

Biogenesis/Secretion No domains

found

SprA1 6H3I (Lauber et al.,

2018)

Biogenesis/Secretion PF14349

Hemolysin1 3O44 (De and

Olson, 2011)

Non-specific

diffusion channel

PF12563;

PF07968

Aerolysin1 5JZH (Iacovache

et al., 2016)

Non-specific

diffusion channel

PF01117;

PF03440;

PF07968

Lysenin1 5EC5 (Podobnik

et al., 2016)

Non-specific

diffusion channel

No domains

found

MAC1 6H04 (Menny et al.,

2018)

Non-specific

diffusion channel

PF01823

CsgG1 3X2R (Cao et al.,

2014)

Biogenesis/Secretion PF03783

NilB2 D3VIY6 (Bhasin

et al., 2012)

Adhesion PF04575

Cj0561c2 Q0PAV5 (Guo et al.,

2008)

Adhesion PF11059

COG43132 A5W3Z9 (Belchik

et al., 2010; van den

Berg et al., 2015)

Specific diffusion

channel

PF13557

PorP_SprF2 Q11YQ4 (Zhu and

McBride, 2014)

Biogenesis/Secretion PF11751

OMP_b-brl2 2LHF (Edrington

et al., 2011)

Adhesion PF13505

TSA2 P22940 (Lin et al.,

2012; Trung et al.,

2019)

Adhesion PF03249

Oms382 O51379 (Thein

et al., 2012)

Non-specific

diffusion channels

No domains

found

Autotransporter3 FabF (5O67) (Rouse

et al., 2017) and

Hapβ (P45387)

(Hendrixson et al.,

1997; Meng et al.,

2011)

Biogenesis/Secretion PF03797

TBDTs3 4ZGV (Grinter et al.,

2016)

Active transporter PF00593

Omp85 3 P0A940 (Kim et al.,

2007), O32625

(Flack et al., 1995),

Q51930 (Ruffolo and

Adler, 1996) and

Q9K1H0 (Volokhina

et al., 2009)

Biogenesis/Secretion PF01103

1This category corresponds to the novel β-barrel protein families which were not included

in the previous version of OMPdb.
2This category corresponds to families with a new functional annotation.
3This category corresponds to families for which we built new pHMMs.

families. There are five such families: Hemolysin, Aerolysin,
Lysenin,MAC, and CsgG. The first three families act as PFTs
(De and Olson, 2011; Iacovache et al., 2016; Podobnik et al.,
2016). The MAC family protects the human cells against
bacterial attack (Menny et al., 2018) and the CsgG family
is involved in protein secretion (Cao et al., 2014).

PFTs attracted the interest of structural biologists and
microbiologists early on due to their ability to act as soluble
proteins and transmembrane complexes. PFTs are secreted
as water soluble monomers, and later on they connect to the
membrane of target cells. There they gather into circular
oligomers and enable the insertion into the membrane
causing the pore forming and finally the resultant cell death
(Anderluh and Lakey, 2008).

(v) Hemolysin, a heptameric porin, is secreted by Vibrio
cholerae. The heptamer comprises a ring-like structure with
an outer diameter of 135. The channel pore consists of
an upper large vestibule formed by β-prism and cytolysin
domains, and the stem domains which form a 14-strand
β-barrel (De and Olson, 2011).

(vi) Aerolysin is a heptamer where seven monomers form a β-
barrel with 14 strands at the outer membrane of Aeromonas
hydrophila. The aerolysin pore is more stable due its
concentric β-barrel fold (Iacovache et al., 2016).

(vii) Lysenin is a PFT of Eisena fetida and a member of the
aerolysin family. It is a non-amer and forms an 18-strand
smooth-walled tubular β-barrel attached to the outside by
the C-terminal domains. It is a mushroom-like structure
which has a transmembrane pore with a central stem built
of a long β-barrel. Having a uniform and stable β-barrel
through the entire length of protein makes lysenin an
exception among PFTs (Podobnik et al., 2016).

(viii) The MAC is a structure formed at the outer membrane
of pathogen cells resulting from activation of the host’s
complement system. It is one of the immune system’s
first responders. MAC forms damaging transmembrane
channels at the cell membrane of pathogens causing cell
lysis and death (Charles A Janeway et al., 2001). It is a
multiprotein complex, comprised of six polypeptide chains
(C5b, C6, C7, C8α, C8β, and C8γ) together with multiple
copies of C9 monomer that are arranged in a split-washer
configuration, composing a ring in the membrane which
permits free flux of molecules in and out of the cell. The
cell dies when enough pores are formed (Sharp et al., 2016).
Membrane Attack Complex-Perforin (MACPF) domain
(PF01823) is a common domain in all C6-C9 (Tschopp
et al., 1986). MAC assembly into the membrane starts
when C7 connects to C5b6 (a complex formed by C5b
and C6) to compose MAC precursor C5b7 (DiScipio et al.,
1988). Subsequently, C8 connects irreversibly to the former
complex forming the membrane-inserted C5b8 (Steckel
et al., 1983). Then, C5b8 binds to 22 C9 monomers to form
C5b9 and polymerizes to finish the MAC pore formation
(Podack et al., 1982). In the end, the β-barrel pore is
composed after transforming the helical bundles in the
MACPF domains into transmembrane β-hairpins through
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an unknown mechanism (Shepard et al., 1998; Shatursky
et al., 1999; Rosado et al., 2007). According to the cryo-EM
structure, the formed barrel consists of 88 strands (Dudkina
et al., 2016).

(ix) In Escherichia coli Xuzhou21, curli subunits are produced
and secreted into the outer membrane through the CsgG
secretion channel. Curli are a unique group of functional
amyloids, which are crucial for host cell adhesion, biofilm
formation and colonization of inert surfaces (Barnhart and
Chapman, 2006). They are involved in harmful diseases in
humans, since they share similar structural and biochemical
characteristics with amyloid fibers (Sunde et al., 1997;
Moreno-Gonzalez and Soto, 2011). The crystal structure of
CsgG showed that it is a symmetric nonameric channel,
composed of monomers each having four strands spanning
the outer membrane. A 36-stranded β-barrel is formed
from nine CsgGmonomers. CsgG could perhaps reduce the
biofilm formation by controlling Curli secretion and that is
why it is studied as a putative antibiotics target (Cao et al.,
2014).

Families With Updated Information
From the literature search, we also were able to assign functional
annotation to seven families that had unknown function
until now.

(i) NilB (DUF560) is a surface-exposed outer membrane
protein of Xenorhabdus nematophila. Expression of NilB is
suppressed by NilR and growth in nutrient-rich medium.
Members of this family exist in diverse bacteria and
are common in the genomes of mucosal pathogens.
Bioinformatic analyses reported that NilB is the only
characterized member of a family of proteins distinguished
by a conserved C-terminal domain of unknown function
(DUF560) and N-terminal region tetratricopeptide repeats
(TPR). Insertion and deletion mutational analyses revealed
that NilB forms a β-barrel with 14 transmembrane strands
and seven extracellular surface loops, and an N-terminal
globular domain. The globular domain and surface loop
6 play a crucial role in the nematode colonization.
Epifluorescence microscopy of these mutants revealed that
NilB is necessary at early stages of colonization (Bhasin
et al., 2012).

(ii) Cj0561c (DUF2860) is a probable membrane fusion protein
and contributes to intestinal colonization. Cj0561c is
the only characterized member of DUF2860. Cj0561c
is encoded as a membrane transporter gene whose
transcription is inhibited by CmeR in Campylobacter jejuni
(Guo et al., 2008). Based on PRED-TMBB2, Cj0561c is
predicted to have 14 beta strands (Tsirigos et al., 2016).

(iii) COG4313 (Phenol_MetA_deg) proteins comprise a huge
and widespread family of outer membrane channels
and have been involved in the uptake of a set of
hydrophobic molecules (van den Berg et al., 2015).
The first studied member of COG4313 proteins was
the TcpY, an outer membrane protein that eases the
uptake of polychlorophenols across the outer membrane of

Cupriavidus necator JMP134 (Belchik et al., 2010). Pput2725
is another member of the family and forms a 12-stranded
barrel at the outer membrane of Pseudomonas putida with
experimentally verified 3D structure. It is suggested that
Pput2725 mediates the uptake of hydrophobic aromatic
compounds (van den Berg et al., 2015).

(iv) SprP (PorP_SprF) is associated with the outer membrane of
Cytophaga hutchinsonii. It is suggested that SprP is involved
in protein secretion, a hypothesis made due to its sequence
similarity with PorP that is responsible for the secretion
of gingipain protease virulence factors in Porphyromonas
gingivalis type IX secretion system (T9SS) and SprF that is
crucial for the delivery of the gliding motility machinery
components to the cell surface (Zhu and McBride, 2014).
According to PRED-TMBB2, it is predicted to have 14
transmembrane strands (Tsirigos et al., 2016).

(v) The Outer membrane protein beta-barrel domain (OMP_b-
brl) domain is found in a wide range of outer membrane
proteins, found mainly in Alphaproteobacteria. The Major
Outer Membrane Protein (ompP1) is found in various
strains of Coxiella burnetti with typical porin properties.
It is heat-modifiable and has a channel activity. ompP1 is
predicted to form a β-barrel; Omp3b from Brucella abortus
and homologs from various Alphaproteobacteria that are
believed to be involved in bacterial surface control and
host cell interactions. In Pseudomonas aeruginosa, OprH
forms a transmembrane β-barrel protein which consisted
of eight strands with four extracellular loops of unequal
size. Moreover, in vivo and in vitro biochemical studies
revealed that OprH interacts with LPS in P. aeruginosa outer
membranes (Varghees et al., 2002; Edrington et al., 2011).

(vi) The Type Specific Antigen (TSA) consists of several
antigenic variants in the genera Rickettsia and Orientia
that belong to the family Rickettsiaceae. Rickettsiaceae,
intracellular bacteria, are the causative agent of the
Rickettsioses which are an arthropod-borne zoonoses. The
TSA of 56-kilodaltons located on the rickettsial surface is
responsible for the variation.Orientia tsutsugamushi are the
causative agent of scrub typhus, is an obligate intracellular
pathogen. In O. tsutsugamushi, there are three major
outer membrane proteins: TSA56, TSA47, and TSA22. The
TSA56 is the major outer membrane protein responsible for
O. tsutsugamushi adhesion (Lin et al., 2012; Trung et al.,
2019).

(vii) Relapsing fever is a worldwide, endemic disease caused by
several spirochetal species belonging to the genus Borrelia.
Oms38 (outer membrane-spanning protein of 38 kDa) is
present in the outer membranes of B. duttonii, B. hermsii,
B. recurrentis, and B. turicatae as well. Characterization of
Oms38 was performed using the black lipid bilayer method,
which demonstrated that Oms38 forms small, water-filled
channels of 80 pS in 1M KCl that did not exhibit voltage-
dependent closure. The Oms38 channel is slightly selective
for anions and shows a ratio of permeability for cations
over anions of 0.41 in KCl. Analysis of the deduced amino
acid sequences revealed that Oms38 contains an N-terminal
signal sequence which is processed under in vivo conditions.
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Oms38 is highly conserved within the four studied relapsing
fever species, sharing an overall amino acid identity of 58%
and with a strong indication for the presence of a ß-barrel
formation (Thein et al., 2008). DipA (BB_0418) forms a
specific porin for dicarboxylates. It is suggested that DipA
plays a crucial role for the flux of specific nutrients toward
different Borrelia species (Thein et al., 2012).

Families With Updated pHMMs
During the update of OMPdb, we identified proteins with
the same biological function as two pre-existing beta barrel
families, namely the Autotransporter (PF03797) and the
TBDTs (PF00593) families. Interestingly, the Pfam profiles
were unable to detect these proteins, so we updated the
respective profiles.

For the Autotransporter family, two new members were
added in the seed set, the functional amyloid transporter from
Pseudomonas, FabF (PDB: 5O67) (Rouse et al., 2017), and the
Haemophilus influenzae Hap β-barrel domain, Hapβ (Uniprot:
P45387) (Hendrixson et al., 1997; Meng et al., 2011), and
the pHMM was rebuilt. FapF is a new class of secretion
system similar to type V secretion in the autotransporter
proteins (AT-1). FapF is characterized by a C-terminal, 12 β-
stranded, helix-blocked pore in the closed state. In contrast to
other autotransporters which completely pass the pore, the N
terminus of the truncated FapF structure exits the barrel on
the periplasmic side (Rouse et al., 2017). Hapβ is the β-barrel
domain of self-associating autotransporters (SAATs). SAATs is a
set of virulence factors that enhance bacterial biofilm formation
(Klemm et al., 2006). The Haemophilus influenzae Hap SAAT
consists of three domains: residues 1–25 correspond to the
signal peptide, residues 26-−1036 refer to the Haps called the
passenger domain, and residues 1037−1394 form the 14 β-
stranded barrel at the C-terminal (Hendrixson et al., 1997; Meng
et al., 2011).

TBDTs pHMM was updated by adding the respective
members of FusA in the seed set. FusA is used by the
phytopathogenic Pectobacterium spp. as a new class of TBDTs.
FusA is a 22-stranded transmembrane β-barrel responsible
for importing pectocin and ferrodoxin in Pectobacterium spp.
(Grinter et al., 2016).

Finally, we created a new pHMM for BamA/TamA and
SAM50 families. Previously, BamA/TamA and SAM50, along
with TOC75 and OEP80 constituted the Omp85 family
(PF01103). Since we were able to create two separated
chloroplastic pHMMs for TOC75 and OEP80 (Roumia et al.,
2020), we decided to build the new pHHM and now we have
the ability to easily distinguish members of the three eukaryotic
families (TOC75, OEP80, and SAM50) when searching against
eukaryotic proteomes.

Figure 4 summarizes the Pfam annotation of the 129 families
in OMPdb. 72.9% of the families belong to the outer membrane
beta-barrel protein superfamily (MBB clan), while 10.8% of the
families are in Pfam but not in MBB clan. Interestingly enough,
for 16.3% of OMPdb families, there was no information at all in
the Pfam database.

Search Using the OMPdb pHMMs’
Collection Against Reference Proteomes
In Figure 5, we display the detected proteins by the two
pHMM libraries, eukaryotic and prokaryotic, against the
retrieved reference proteomes from Uniprot (Release 2020_03).
The eukaryotic pHMM library detected at least one protein
in 96.97% of the eukaryotic reference proteomes and the
number of detected proteins for each family is depicted in
Figure 5A. As shown in Figure 5B, the detected prokaryotic
proteins were distributed functionally into eight categories.
Most of them belong to the receptor category followed by the
biogenesis/secretion category, while the enzymes category shows
the lowest number of detected proteins.

As a next step, we followed the taxonomy to classify the
bacterial reference proteomes according to the NCBI Common
Taxonomy Tree (Sayers et al., 2009). The bacterial reference
proteomes are classified into 16 main taxonomic groups, three
groups from Gram-positive bacteria, Actinobacteria, Firmicutes
and other bacteria, and the rest 13 groups from Gram-negative
bacteria. As shown in Figure 6, Gram-negative bacteria are
classified into six main groups: Cytophaga, Fusobacterium, and
Bacteroides group (CFB group), Proteobacteria, Cyanobacteria,
Mycoplasmas, Negativecutes, and other bacteria. All taxonomic
groups that account for <1% of the total reference proteomes
in both classes, Gram-positive or Gram-negative bacteria, are
classified under “other bacteria.”

CFB group has the highest average of detected proteins
followed by the Proteobacteria group of Gram-negative bacteria.
In line with what we expected, Actinobacteria and Firmicutes,
the two main Gram-positive bacteria taxonomic groups,
have few representatives of the above-mentioned functional
categories. Nevertheless, it is clear that the Firmicutes group has
representatives relatively more than the Actinobacteria group as
shown in Figure 6.

Figure 7 shows in detail the average of detected functional
proteins for all bacterial taxonomic groups either Gram-
negative or Gram-positive ones. Except for the Mycoplasmas
group, all Gram-negative bacteria taxonomic groups have a
significant number of representatives of the active transporters,
biogenesis/secretion, specific diffusion channels, and unknown
function categories. For the Cyanobacteria group, the non-
specific diffusion channels category is almost absent as shown
in Figure 7.

New Features
Beside re-designing the user interface, we now provide structural
information through 3D models for all seed set members of
each family and this feature gives deep and concise information
about the respective family. In total, we provide 3,264 models for
families with at least one member with experimentally verified
crystal structure and 2,116 models for families without any
previous knowledge about their 3D structure. In addition, we
provide an introductory structure image structure at the main
page of the respective family, for every family including members
with experimentally verified 3D. Moreover, for all the OMPdb
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FIGURE 4 | The Pfam annotation of OMPdb β-barrel protein families.

FIGURE 5 | (A) Detected proteins by the eukaryotic pHMM library against eukaryotic reference proteomes (Uniprot release 2020_03). (B) Detected proteins by

prokaryotic pHMM library against bacterial reference proteomes (Uniprot release 2020_03).

entries, we present the predicted features of the signal peptide and
β-barrel topology using SignalP5 and PRED-TMBB2 predictors.

DISCUSSION

In this work, we presented the new content and updated features
of OMPdb, a global hub for all βOMPs using 128 characteristic
pHMMs. This collection of pHMMs includes 11 eukaryotic

and 117 prokaryotic families in addition to the Treponema
pectinovorum ATCC 33768 mompA family (Walker et al., 1997)
that lacks a pHMM due to missing known homologues of its
representative member.

OMPdb in its second version, still has a clear advantage
against all the other databases that contain βOMPs. As shown
in Table 2, OMPdb is currently the most complete resource
for transmembrane β-barrels, since it has the highest number
of protein and family entries, provides numerous literature
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FIGURE 6 | Average of detected functional proteins per genome for the different bacterial taxonomic groups.

references, offers sequence annotation, cross-references with
many related databases and the ability to use search and
prediction tools. Due to the discontinuation of TMBETA
GENOME (Gromiha et al., 2007), PRNDS (Katta et al., 2004),
HHompDB (Remmert et al., 2009), and TMPDB (Ikeda et al.,
2003) databases since the first version of OMPdb, we excluded
them from the comparison. In contrast, we included in the
comparison two new databases, Mpstruc (White, 2009) and
MemprotMD (Newport et al., 2019).

Based on whether a family exists in Pfam, and specifically if
it is a member of the MBB clan, the OMPdb families can be
classified into three categories as shown in Figure 4. The first one
includes 94 families belonging to the MBB clan in Pfam. In this
category, we updated the pHMMs of MDM10 (PF12519), TBDTs
(PF00593) and Autotransporter (PF03797), while the Porin_3
(PF01459) pHMM was replaced with two new pHMMs, VDAC,
and TOM40 (Roumia et al., 2020). Furthermore, the pHMM of
Omp85 (PF01103) was updated to contain only BamA/TamA and
SAM50 proteins due to having two specific pHMMs for TOC75
and OEP80 families (Roumia et al., 2020). The second category
refers to 14 families which are in Pfam but not in the MBB clan.
Although Hemolysin and SprA families had Pfam pHMMs, we
updated their respective pHMMs. For Hemolysin, the respective
pHMM (PF12563) did not cover all the transmembrane barrel
region, while, in the SprA family (PF14349), the transmembrane
barrel part was intermittent. Therefore, we built two novel

pHMMs for Hemolysin and SprA families. The third category
(families not included in Pfam), consists of 5 eukaryotic (Roumia
et al., 2020) and 16 prokaryotic families. Interestingly, for these
21 families, there is no information in Pfamwhatsoever and these
novel families can only be found in OMPdb.

In OMPdb we focus on offering as much information about
the nature of the transmembrane barrel part in each family to
the user as possible. To this end, we re-designed the OMPdb user
interface to include various new features. The first one is adding
an introductory structure image for 44% of the OMPdb families
that presents to the user the β-barrel features of these families at
one glance.

The 3D structure dictates the biological function of every
protein. Knowing the 3D structure of a protein provides a higher
level of understanding of its molecular action. This knowledge
allows us to create hypotheses on controlling, modifying or
affecting on this protein. We now provide a 3D model for each
of the seed set members of every OMPdb family. For the families
including members with experimentally verified 3D structure (57
families), we constructed the models using homology modeling
via the SWISS-MODEL server (Biasini et al., 2014). We provide
the used template as the representative structure for each family.
We used de novomodeling through PHYRE2 (Kelley et al., 2015)
for the rest of the families (71 families).

The nascent βOMPs either eukaryotic (Rapoport, 2007) or
prokaryotic (Nouwen et al., 2007) have signal peptides to be
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FIGURE 7 | Heatmap of the average of detected functional proteins in all bacterial taxonomic groups.

recognized by the Sec or Tat pathways. After or during the
assembly of the transmembrane proteins, the signal peptides are
being cleaved by signal peptidase (SPase). The Tat substrates
can be cleaved by SPase I or II while the Sec substrates can be
processed by SPase I, II, or III. SignalP5 is the first predictor
that provides a deep neural network-based method for predicting
the signal peptide cleaved by (Sec/SPI), (Sec/SPII), and (Tat/SPI)
(Almagro Armenteros et al., 2019). PRED-TMBB2 is a predictor
for the β-barrel topology based on Hidden Markov Models. It
excels the best available β-barrel predictor by 7% (Tsirigos et al.,
2016) (Tsirigos et al., 2016). Both predictors are therefore used to
provide the topological features of each protein.

For the detection of βOMPs in the reference proteomes,
we used the collection of OMPdb’s pHMMs after excluding all

the DUF families (19 families) that do not have any literature
information regarding their function (Supplementary Table 1).
It is worth noting that the updated Omp85 pHMM was
used twice, in both the eukaryotic library to detect the
SAM50 members and the prokaryotic library to detect the
BamA members.

Very few proteins were detected in the Mycoplasmas group,
although they are Gram-negative bacteria, and the reason is
the absence of a cell wall in this taxonomic group (Cimolai,
2001) (Figures 6, 7). On the other hand, the Firmicutes
group, a group of Gram-positive bacteria, shows a significant
number of detected proteins. Firmicutes is a bacterial phylum,
in which most of its organisms are Gram-positive bacteria.
However, Firmicutes contains a class called Negativecutes,
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which is classified as Gram-negative bacteria (Sutcliffe, 2010).
Interestingly enough, around 51.67% of the detected proteins
at the Firmicutes group (1588 proteomes) belong to the 59
Negativecutes proteomes.

Our analysis showed that the biogenesis/secretion category
was the largest one in comparison with the other functional
categories The Outer membrane Factor family (OMF) comprises
40.5% of all detected proteins. These proteins are involved in the
type I secretion pathway (Sec-independent), which is widespread
and permits the secretion of proteins of different sizes and
functions using uncleaved secretion signal at the C-terminal
(Delepelaire, 2004). Around 9% of all detected proteins belong
to each of the following families: Secretin, Autotransporter (AT),
Porphyromonas gingivalis PorT and Outer Membrane Protein
Insertion Porin (OmpIP/Omp85). The members of these four
families are involved in type II and type III secretion pathway
(Collins et al., 2004), type V secretory pathway (Desvaux et al.,
2004), secretion of gingipains from Porphyromonas gingivalis
(Nguyen et al., 2009) and the translocation of βOMPs into
the outer membrane of Gram-negative bacteria (Noinaj et al.,
2015), respectively. As for the active transporters category, it
consists of five families (Supplementary Figure 2). It should be
noted that the TBDTs family detects around 99.83% of all active
transporter proteins. The aforementioned family represents
the TBDTs transport system, which is involved in the active
transport mechanism of nutrients through the outer membrane
of Gram-negative bacteria (Higgs et al., 2002). It is noteworthy
that the existence of active transporters, biogenesis/secretion,
specific diffusion channels, and non-specific diffusion channels
categories in all taxonomic groups of Gram-negative bacteria
are in line with the findings of Nikaido (Nikaido, 2003), who
revealed that the general part of βOMPs is acting as channels
and transporters. The only inconsistency is the absence of non-
specific diffusion channels in the Cyanobacteria group. The
adhesion to the host cell is the first step bacteria take to
establish a successful infection. The bacterial adhesion may occur
directly via monomeric adhesins (Soto and Hultgren, 1999) or
via highly advanced machines like the type III secretion systems
(Autotransporter) (Pizarro-Cerdá and Cossart, 2006), which
belongs to the biogenesis/secretion category, or by using special
nanofibers (Corpe, 1972). Although there are multiple ways of
bacterial adhesion (e.g., autotransporter and special nanofibers),
there are 14 families for which their main function is adhesion.
The OMP_b-brl forms around 72.74% of the detected adhesion
proteins. The representative member of the aforementioned
family, OprH, is involved in the stability of the outer membranes
of Gram-negative bacteria by interacting with the LPS (Edrington
et al., 2011) (Figure 7 and Supplementary Figure 3).

The widespread existence of specific and non-specific
diffusion channels in all Gram-negative bacteria reflects the
effective role of porins on the bacterial cell life. In addition
to acting as passages for the nutrients into the Gram-negative
bacteria, porins are affecting the bacterial pathogenicity due
to their high prevalence at the bacterial surface structure
(Naumann et al., 1999; Achouak et al., 2006; Galdiero et al.,
2013; Choi and Lee, 2019) (Supplementary Figures 4, 5). In
Cyanobacteria, the absence of the non-specific diffusion channels

Frontiers in Bioinformatics | www.frontiersin.org 12 April 2021 | Volume 1 | Article 646581

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


Roumia et al. OMPdb: Database for Beta-Barrel Proteins

category reflects the low permeability of the cyanobacterial outer
membrane (Figures 6, 7). The reason why the cyanobacterial
outer membranes are highly impermeable is to prevent the flux
of toxic compounds into the cell and this is an advantage for the
cyanobacterial autotrophic lifestyle (Kowata et al., 2017). In the
structural category (Supplementary Figure 6), the OmpA family
counts around 71.35% of the proteins. This high percentage gives
consideration to the critical effect of this domain on the structural
strength and shape of bacterial cells (Höltje, 1998), due to the
non-covalent interaction between the respective domain with the
peptidoglycan layer (Grizot and Buchanan, 2004).

As expected, the enzyme category has the lowest number of
detected proteins, because only a limited number of βOMPs act
as enzymes (Bishop, 2008). 44.69% of the enzyme proteins belong
in the Outer membrane-localized lipid A 3-O-deacylase (PagL)
family that is widespread among Gram-negative bacteria (Rutten
et al., 2006) (Figure 7, Supplementary Figure 7).

Due to the significant progress that has been made toward the
annotation of Gram-negative bacteria genomes, the “unknown”
category comprises only around 1.08% of our analysis (Figure 7,
Supplementary Figure 8). Around 22% of Pfam proteins belong
to DUF families (El-Gebali et al., 2019). Generally, there is an
enormous number of proteins with unknown function and the
reason is the difficulty of assigning function to proteins, which is a
major goal of structural biology, biochemistry and bioinformatics
(McKay et al., 2015).

CONCLUSIONS

The OMPdb database is a thorough, up-to date and continuously
updated βOMPs database. OMPdb, in its second version,
contains two different libraries of pHMMs that cover all the kinds
of βOMPs. As of September 2020, it has around 1.2million entries
whose domains are classified into 129 different β-barrel families
either prokaryotic or eukaryotic ones. OMPdb operates for more
than 10 years and will be continuously updated in the future. The
database participates in ELIXIR-GR, the Greek National Node
of the ESFRI European RI ELIXIR, a distributed infrastructure
that will allow the life science research community across Europe

to share and store their research data as part of an organized
network, whereas, at the same time is in close collaboration with
other specialized protein databases (Babbitt et al., 2015; Holliday
et al., 2015).
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