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Proteins by and large carry out their molecular functions in a folded state when
residues, distant in sequence, assemble together in 3D space to bind a ligand,
catalyze a reaction, form a channel, or exert another concerted macromolecular
interaction. It has been long recognized that covariance of amino acids between
distant positions within a protein sequence allows for the inference of long range
contacts to facilitate 3D structure modeling. In this work, we investigated whether
covariance analysis may reveal residues involved in the same molecular function.
Building upon our previous work, CoeViz, we have conducted a large scale covariance
analysis among 7,595 non-redundant proteins with resolved 3D structures to assess 1)
whether the residues with the same function coevolve, 2) which covariance metric
captures such couplings better, and 3) how different molecular functions compare in
this context. We found that the chi-squared metric is the most informative for the
identification of coevolving functional sites, followed by the Pearson correlation-based,
whereas mutual information is the least informative. Of the seven categories of the most
common natural ligands, including coenzyme A, dinucleotide, DNA/RNA, heme, metal,
nucleoside, and sugar, the trace metal binding residues display the most prominent
coupling, followed by the sugar binding sites. We also developed a web-based tool,
CoeViz 2, that enables the interactive visualization of covarying residues as cliques from
a larger protein graph. CoeViz 2 is publicly available at https://research.cchmc.org/
CoevLab/.
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INTRODUCTION

Amino acid covariance analysis is a widely used approach to identify protein residues coevolving
through different species. Such coevolving positions are frequently used to impose constraints in
protein 3D structure modeling, assuming the driving force of coevolution for such positions is due to
their direct contacts and steric constraints in the folded state (Marks et al., 2012; de Juan et al., 2013).
On the other hand, different evolutionary forces, such as involvement in the samemolecular function
(MF), are largely understudied.
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Covariance analysis utilizes multiple sequence alignment to
compute couplings between pairs of positions in a protein
sequence. These couplings essentially represent frequencies of
observing a certain type of amino acid at a given position together
with the other amino acid at another position, computed across
all aligned sequences. Some methods also consider gap in the
aligned sequence as an additional amino acid type. These
couplings are then used to compute various covariance scores,
e.g., mutual information.

Many efforts in covariance analysis, collectively called the
direct-coupling analysis (DCA), are dedicated to distinguishing
the direct from indirect couplings of positions. Representative
methods include mpDCA (Weigt et al., 2009), mfDCA (Morcos
et al., 2011) and plmDCA (Ekeberg et al., 2013) that employ
message passing, mean-field approximation and pseudo-
likelihood maximization algorithms, respectively, to eliminate
indirect couplings. Another DCA method, PSICOV uses the
graphical LASSO algorithm (Friedman et al., 2008) to obtain
the estimated sparse matrix inverse of the covariance matrix,
indicative of the significance of empirical couplings (Jones et al.,
2012). Thus adjusted couplings are then used to compute Direct
Information (DI) or PSICOV (PC) scores, respectively.

With the variety of currently available amino acid covariance
methods, the field demonstrates certain trends. 1) Due to the
complexity of statistical models and large matrices of couplings
(e.g., 21L x 21L, where L is the protein sequence length)
employed, only single domain protein sequences are
considered, limiting studies to relatively short sequences. 2) In
an effort to accelerate calculations, average product correction
[APC, (Dunn et al., 2008)] is used to adjust the resulting
covariance matrices for entropic bias (Jones et al., 2012;
Zerihun et al., 2020) as opposed to time consuming weighting
of each alignment to account for phylogenetic bias while
computing position-specific probabilities (Weigt et al., 2009).
3) Most applications are geared toward the identification of inter-
residue contacts in the context of 3D structure modeling, while
the coevolution of functional residues that are not necessarily in
direct contact is underexplored, especially on a large scale.

In this work, we explored whether three different covariance
metrics can reveal the groupings of residues by MF and distinguish
them from other residues. Building upon our previous
implementation (Baker and Porollo, 2016), the covariance
matrices were compared with those processed using graphical
LASSO to obtain estimated covariance matrix and its inverse, and
the state-of-the-art covariance estimationDCAmethods. To visualize
protein sequence as a molecular graph based on covariance data and
to explore residues forming cliques, we developed a web-based tool
CoeViz 2. In contrast to other existing tools, CoeViz 2 can deal with
full length sequences, not just single domains.

MATERIALS AND METHODS

Benchmark Set
The protein set with annotated functional residues was compiled
from the BioLiP database (Yang et al., 2013) using the following
criteria:

• A protein sequence has a reference to UniProt to avoid
synthetic or chimeric sequences.

• A protein structure binds a natural ligand.
• Sequence length is at least 30 amino acids long.
• Sequence alignment against the UniProt UniRef90 database
yields at least 100 homology hits.

• Sequence identity between proteins within the set is less
than 25%.

Residues binding natural and most frequently occurring
ligands in the dataset were considered functional sites. The
actual list of proteins used herein along with sequences and
annotations can be downloaded from the home page of CoeViz 2.

Amino acid composition among ligand binding sites was
assessed using the observed frequencies normalized to the
background distribution of amino acids as follows:

P(a|l) � log
fa,l
Fa

(1)

where P(a|l) is propensity of the amino acid type a to bind the
ligand l; fa,l is its corresponding fraction among the all types of
residues found to bind this ligand across all considered proteins;
and Fa is the overall frequency of a given amino acid in the
assessed protein set.

Covariance Metrics
Covariance matrices have been generated as described in (Baker
and Porollo, 2016). Specifically, mutual information (MI, Eq. 2),
χ2– (Eq. 3), and Pearson correlation (r)-based (Eq. 4) metrics
were computed based on multiple sequence alignments (MSA)
adjusted for phylogenetic bias (Eqs 5–7).

MI(i, j) � ∑
x

∑
y

pij(x, y)log pij(x, y)
pi(x)pj(y) (2)

χ2(i, j) � ∑
x

∑
y

(pij(x, y) − pi(x)pj(y))2
pi(x)pj(y) (3)

r(i, j) � 1
Neff

∑
l

wsl(sil − si)(sjl − sj)
σ iσ j

(4)

p(s) � wsl

Neff + 1
(5)

Neff � ∑
l

wsl (6)

wa
sl �

∣∣∣∣∣{b ∈ {1, . . . ,N}|seqid(Aa,Ab)> 80%}∣∣∣∣∣−1 (7)

where x and y are the amino acid types at positions i and j,
respectively, binned in two categories: 1 if it matches the amino
acid at this position in the query sequence, and 0–otherwise; p(s) is
the observed frequency of state s � {x; y; x,y};Neff is the effective sum
of weights of alignments where both positions are not gaps. wsl is a
weighted count of state s of the alignment l, which, for the phylogeny
weighting scheme used in this work, is a weight for sequence Aa in
the MSA of N total sequences that equals to one over the number of
sequences Ab in the MSA that have at least 80% sequence identity to
Aa. 80% was chosen as a midpoint of the range 70–90%, where there
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is no strong dependence observed on the precise threshold value
(Morcos et al., 2011). sil is a similarity score that quantifies the change
of an amino acid at position i to the one in the aligned sequence l. si
and σ i are mean and standard deviation, respectively, of all similarity
scores of amino acid substitutions for a given position represented
across the all sequences aligned to the query. Similarity scores are
taken from the position specific similarity matrix (PSSM) generated
by PSI-BLAST. Thus generated covariance matrices are
subsequently processed as follows. The χ2 scores are converted
into cumulative probabilities (df � 1). The r scores are taken by
their absolute values.

In this work, for comparison purposes, a 20-letter alphabet (i.e.
x and y are the sets of 20 natural amino acids) has also been
implemented for MI and χ2 metrics, as an alternative to the
original CoeViz p(s) calculations based on the 2-letter alphabet.
Furthermore, all matrices are subjected to the sparse inverse
covariance estimation (Eq. 8) using the fast implementation of
graphical LASSO (R library glassoFast) (Friedman et al., 2008;
Sustik and Calderhead, 2012).

Θ̂ � argmin⎛⎝∑
ij

SijΘij − logdet(Θ) + ρ∑
ij

∣∣∣∣Θij

∣∣∣∣⎞⎠ (8)

where S is the empirical covariance matrix, Θ–its inverse,
ρ–regularization parameter (the higher its value is, the more
zero elements are in the estimated inverse matrix Θ̂). To automate
the process, ρ is chosen to have the minimal value at which both
estimated covariance matrix and its inverse do not have
undefined elements. This value is found using the binary
search in the range (0.01, 0.99).

Distributions of Covarying Functional Sites
For the functional residue at position i, enrichment for residues
(r) involved in the same MF (f) among the all covarying positions
(n) with covariance scores cov(i,j) ≥ given cutoff (c) is quantified
by log odds (LO):

LOf
i � log

rf
cov(i,j)≥c
Rf −1

ncov(i,j)≥c
N−1

(9)

where Rf is the total number of residues with the MF f in a given
protein, N is the total number of residues in the protein; both
adjusted for the residue of interest.

Alternative scores LO(q) are computed based on the graph
cliques:

LO(qk)fi � log
r(qk)fc
Rf −1
n(qk)c
N−1

(10)

where r are residues involved in the same MF (f) among the all
residues (n) in the k-th clique (q) derived for the given cutoff (c);
Rf and N are the same as in Eq. 9. Note, in this formulation, some
functional sites may have no covariance scores with the residue of
interest (i-th) above a given cutoff.

To quantify the overall enrichment for the residues involved in
the same function by a given metric, the LO probabilities P(LO)
are computed as 1–cumulative probability of the empirical LO

density distribution for a given LO cutoff. Naturally, the larger
P(LO) at a higher LO cutoff the stronger grouping of functional
residues a given metric yields.

Web Interface
CoeViz 2 provides an interactive interface to visualize molecular
graphs, where nodes are amino acid residues colored according to
their conservation scores (Shannon entropy), and edges are
pairwise covariance scores. The tool enables identification of
graph cliques by adjusting the covariance cutoff. For easier
navigation, distributions of nodes, edges, cliques and clique
sizes for a precomputed range of covariance cutoffs are
provided as plots at the navigation panel. The user can also
export the currently viewed graph as well as the underlying
covariance matrix and the MSA. The navigation panel also
contains a cross-link to CoeViz for the previously
implemented visual analysis of covariance data, including
interactive heatmaps, hierarchical trees, circular diagrams, and
multi-dimensional scaling (MDS) 3D plots (Baker and Porollo,
2018).

CoeViz 2 is publicly available at https://research.cchmc.org/
CoevLab/. The web interface of CoeViz 2 is based on Python
modules pyviz for the interactive visualization of graphs using
HTML5 canvas, and networkx for the definition of graphs and
identification of cliques.

RESULTS

Summary of the Benchmark Set
The benchmark set encompasses 7,595 non-redundant proteins,
ranging from 30 to 3,005 aa. All natural ligands most frequently
encountered in these proteins according to Protein Data Bank
(PDB) (Berman et al., 2000) fall into seven categories (Table 1).
DNA/RNA and metal binding sites appear to be the most
abundant.

Amino acid frequencies per ligand, normalized to the
background amino acid composition in the benchmark set
(Eq. 1), are summarized in Table 2. Cys (C) appears to have
the highest propensity to bindmetals, and to a lesser degree heme.
Asp (D) is also frequently observed to bind metal ions, while
having strong negative preference to coenzyme A and heme. Glu
(E) is very rarely observed to bind coenzyme A, heme, and
dinucleotides. His (H) frequently binds trace metals followed
by heme. Lys (K) and Arg (R) are most frequently involved in
DNA/RNA binding. Trp (W) has very high propensity to bind

TABLE 1 | Functional sites used for benchmarking.

Category PDB ligand coding Total residues

DNA/RNA NUC 27,381
Metal CA, CU, FE, FE2, MG, MN, ZN 25,548
Dinucleotide NDP, NAD, NAP 11,130
Nucleoside ADP, AMP, ATP, GDP 9,667
Heme HEC, HEM 9,467
Sugar BGC, FUC, GAL, GLC, MAN, NAG 3,457
Coenzyme A COA 1,994
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sugars, while is nearly never observed in interaction with metals.
Remaining amino acids do not show pronounced propensities to
any specific ligand. From the ligand perspective, metals
expectedly demonstrate very low frequencies of interaction
with hydrophobic and positively charged residues (Ala, Ile,
Leu, Val, Tyr, Phe, and Arg, Lys, respectively).

The other measure of interest in the context of amino acid
covariance analysis is how far apart residues binding the same
ligand are located in protein sequence. If ligand binding sites tend
to cluster together, i.e., located in close proximity within the
primary protein structure, motif scanning methods or machine
learning algorithms using relatively short sliding windows could
be more efficient in predicting ligand binding sites. On the other
hand, if these sites are located far apart, the covariance analysis
may appear to be more successful in identifying functional sites,
provided that they coevolve. Table 3 presents the distributions of
distances between positions of residues binding the same ligand.
As can be seen from the table, 23% of metal and sugar binding
sites are located 30 or more amino acids apart. Such distances are
beyond the sizes of sliding windows commonly employed in
prediction methods. The most condensed positions appear for
DNA/RNA and heme binding sites, having 76–79% located
within five amino acids apart. Nevertheless, all ligands appear
to have considerable fractions of binding sites located distantly in

primary structure. Therefore, it is pivotal to determine whether
such approach as covariance analysis may reveal these remote yet
functionally related positions, thereby enhancing the sequence-
based functional annotations of proteins.

Assessment of CoeViz Metrics
All three covariance metrics implemented in CoeViz have been
assessed as to howmany proteins contain functional residues that
co-vary with any other positions. χ2 appears to embrace the
highest number of proteins, whereas MI identifies the fewest,
encompassing only about 40% proteins in the dataset even at the
lowest tested covariance cutoff of 0.1 (Figure 1A). Therefore,
subsequent analyses reported here are based on χ2 (unless stated
otherwise), while the data for other metrics is available in the
supplementary materials for comparison (Supplementary File
S1). LO scores for covarying residues involved in the same
function (Eq. 9) display the highest values within metal
binding sites, followed by sugar binding sites. The remaining
MFs have lower, yet non-zero LO values (Figure 1B).

To assess whether graph-based cliques differ compared to the
nearest neighbors-based covariance grouping, LO(q)
distributions have also been computed (Eq. 10). The clique-
derived LO scores do not show as prominent groupings of the
functional sites, beginning to display their enrichment only at

TABLE 2 | Amino acid propensities per ligand.

AA Ligand

Coenzyme A Dinucleotide DNA/RNA Heme Metal Nucleoside Sugar

A −0.01 −0.01 −0.7 −0.3 −1.4 −0.48 −0.99
C 0.37 0.37 −0.32 1.62 2.62 −0.32 −0.32
D −1.09 −0.17 −0.68 −1.78 1.35 −0.17 0.42
E −1.21 −1.21 −0.81 −1.91 0.58 −0.52 0.04
F 0.38 −0.31 −0.31 0.79 −1.41 −0.02 −0.02
G 0.31 0.65 −0.2 −0.38 −0.89 0.72 −0.38
H 0.2 0.2 0.49 1.4 2.05 0.2 0.89
I −0.15 0.03 −0.67 0.03 −1.76 −0.15 −1.07
K 0.18 −0.38 0.88 −0.66 −1.07 0.44 −0.38
L −0.28 −0.44 −0.84 0.07 −2.23 −0.62 −1.13
M −0.08 −0.08 −0.08 0.61 −0.77 −0.08 −0.08
N 0.16 0.16 0.34 −0.75 0.16 0.16 0.85
P −0.14 −0.14 −0.14 −0.14 −1.53 −0.43 −0.43
Q −0.18 −0.59 0.33 −0.18 −1.28 −0.59 0.1
R 0.54 0.13 1.17 0.28 −1.66 0.28 0.13
S 0.18 0.31 0.18 −0.38 −0.67 0.31 −0.16
T −0.07 0.4 0.11 −0.07 −0.58 0.4 −0.29
V −0.01 −0.01 −0.85 −0.16 −1.95 −0.34 −0.85
W 0.37 −0.32 0.37 0.37 NA −0.32 1.98
Y 0.36 0.13 0.36 0.13 −1.25 −0.16 0.83

TABLE 3 | Percentage distribution of distances between residues binding same ligands.

Distance range
(Δaa)

Ligand

Coenzyme A Dinucleotide DNA/RNA Heme Metal Nucleoside Sugar

1–4 70.1 68.3 78.7 75.9 51.7 67.8 52.6
5–29 20.3 23.7 15.5 17.9 25.3 17.5 24.5
30–1,000 9.5 8.0 5.8 6.2 23.0 14.8 22.9
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cutoffs χ2 ≥ 0.3 when the numbers of proteins considered are low
(Supplementary File S2). Whether additional residues in cliques
represent noise, e.g., from indirect coupling, or actually play
supporting roles within corresponding functions is subject to
debate, as it is not possible to deduce their relevance in an
automated fashion, even from 3D structure. However, such
‘noisy’ members of cliques may potentially be investigated on
an individual basis per specific proteins, such as for protein design
or mutation analysis. For example, the recent study by Abrusan
and Marsh demonstrates that some allosteric sites coevolve with
ligand binding sites (Abrusán and Marsh, 2019).

Comparison With Other In-House
Covariance Matrices
To evaluate the effect of graphical LASSO covariance estimation
and the size of amino acid alphabet on the enrichment for
covarying functional sites, density distributions of LO scores
for each ligand have been compared with other possible
covariance matrices, including the 2-letter alphabet matrices
estimated with graphical LASSO, as well as empirical and
estimated with gLASSO 20-letter alphabet-based matrices. LO
distribution probabilities P(LO) above a given cutoff, along with
corresponding counts of proteins and functional residues used to
calculate these distributions, are presented in Supplementary
File S3.

While it is difficult to directly compare these four types of
covariance matrices due to the different number of proteins and
residues satisfying any given covariance metric cutoff, there are
few major trends clearly visible. The original 2-letter alphabet
covariance data (as computed in CoeViz) evidently provides
higher enrichment for covarying residues involved in the same
MF, also with stronger couplings. The most prominent grouping
appears between metal binding sites followed by sugar and
nucleoside binding sites. For example, at the χ2 ≥ 0.3 cutoff,
3,222 metal binding sites show very high enrichment for other

metal binding residues within their covarying environment
yielding LO ≥ 3 (37% of 8,707 residues). 2-letter alphabet
matrices after gLASSO estimation maintain strong couplings
of functional residues, however the number of residues
possessing high covariance scores is reduced compared to the
CoeViz matrices. On the other hand, 20-letter alphabet matrices
appear to yield covariance data for much more functional
residues. However, the latter data is very noisy with respect to
enrichment for the same ligand binding sites with majority LO
scores accumulated around 0.

Comparison With DCA Methods
To compare with the state-of-the-art methods for covariance
analysis, a recently published implementation of DCA has been
used–pydca v1 (Zerihun et al., 2020). This Python package
computes mean-field (mfDCA) and pseudo-likelihood
maximization (plmDCA) inverse statistical approaches of
DCA, both in the form of raw matrices and adjusted with
APC. We have run pydca to generate matrices of the all four
DCA types for all proteins in our benchmark set using the same
MSA data generated for our in-house covariance methods,
trimming the alignment gaps in the query sequence. As
mentioned in Introduction, complex statistical approaches
cannot handle large sequences, and we were able to obtain
results for the following protein subsets: n � 2,578 for
mfDCA(raw) and mfDCA(apc); and n � 2,495 for
plmDCA(raw) and plmDCA(apc). Protein sequence length
ranges 30–1,412 aa.

Given these four DCA methods yield covariance scores in
different scales, LO probabilities were computed for 9 equally
incremented covariance cutoffs between 0 and maximal scores
across all assessed proteins (Supplementary File S4). Of the DCA
approaches, mfDCA(raw) reveals the most number of couplings
between ligand binding sites, though the number of proteins with
such covarying sites is low. The APC adjustment improves
enrichment for covarying residues binding the same ligand,

FIGURE 1 |Covariance analysis of functional residues in proteins. (A)Counts of proteins that have at least one ligand binding site with coupling to any other position
above the given covariance cutoff. (B) Density distribution of LO scores for functional residues binding the same ligand among all covarying positions for a given residue
(Eq. 9). Here, χ2 metric with cutoff ≥ 0.3 is used. LO density distributions for other metrics and cutoffs can be found in Supplementary File S1.
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but it further lowers the number of assessed proteins and
residues. For example, at the covariance cutoff ≥ 4, there are
1,595 and 383 covarying functional residues for metal binding
sites yielded by mfDCA(raw) and mfDCA(apc), respectively
(Supplementary File S4). Overall however, all DCA methods
yield strong couplings for the dramatically fewer numbers of
functional residues compared to CoeViz (Supplementary File
S3). Of note, the direct comparison of LO probability
distributions between CoeViz χ2 and DCA methods is
hindered as there is little overlap of proteins and covarying
functional residues for any metric cutoff. Table 4 illustrates this
problem for CoeViz and mfDCA(raw) at cutoffs yielding
comparable LO distributions.

Example of the CoeViz 2 Analysis
To illustrate how CoeViz 2 can be used to identify groups of
functional sites, let us consider a fungal protein Laccase 1 that
contains multiple copper binding sites (UniProt ID: Q9Y780).
Both from the UniProt annotation and available resolved 3D
structure (PDB ID: 1hfu), there are 10 residues binding 3 copper
ions. Some of these residues are located hundreds of residues
apart in the protein primary structure and therefore hard to
identify using a short motif scanning search or mapping from the
protein family evolutionary profile. For example, ScanProsite (de
Castro et al., 2006) could not pin point any specific residues
binding copper, whereas Conserved Domains Database [CDD
(Marchler-Bauer et al., 2015)] was able to locate 7 out of 10 metal
binding sites.

From the CoeViz 2 analysis, 9 of the 10 metal binding sites
appear to form a distinct clique from the rest of the graph
(Figure 2A, highlighted with rectangle). While the clique
contains four other residues (N59, H82, D241, P415), most
metal binding sites are interconnected (Figure 2B). Their
couplings are also supported by high values of the
corresponding LO scores suggesting strong enrichment for
residues of the same molecular function (Supplementary File
S5). The same protein sequence was also analyzed by the DCA
methods (Supplementary File S5). Table 5 compares LO scores
for each copper binding site based on covariance data generated
by these methods using the highest cutoffs (assessed in previous
section) that allow to compute LO for the maximal number of
metal binding sites. As can be seen from the table, both plmDCA
methods do not yield groupings for 3 to 5 sites even at the lowest
assessed cutoff. mfDCA methods miss H84 residue, whereas

CoeViz 2 misses H417 at the corresponding chosen cutoffs.
On average, the χ2 metric yields higher LO scores.

CoeViz 2 provides a web interface for the interactive analysis
of residue groupings resulted from the application of different
covariance cutoffs. Figures 2C–F illustrates precomputed charts
for Laccase 1 to guide the user on the number of nodes, edges,
cliques and clique sizes per a given cutoff.

DISCUSSION

Molecular functions of proteins are multi-pronged and can be
viewed at different levels of granularity (refer to molecular
function categories used in gene ontology, i.e. GO MF terms).
The same protein may exert different MF simultaneously. For
example, protein-protein interaction, DNA and small
molecule ligand binding are common functions for most
transcription factors. Such multi-functionality is generally
achieved by the dedicated groups of amino acid residues
located at specific positions scattered across protein
primary structure but brought in close proximity in
tertiary structure. Identification of such groupings of
residues involved in the same function remains one of the
important problems in computational biology.

The large scale analysis presented in this work clearly
suggests that multiple sequence alignment provides a
strong coevolutionary signal for positions that are involved
in the same MF, such as ligand binding. We would like to
point out, though, that the ability of any covariance method
in revealing the clusters of coevolving ligand binding sites
should be assessed using three parameters at the same time:
how strong the covariance scores (couplings) are between the
positions of interest, what is the enrichment for residues
involved in the same function among the all covarying
positions for a given residue at a given covariance cutoff
(Eq. 9), and how many proteins and clusters of functional
residues can be revealed given the first two parameters. Such
complexity of assessment hinders the direct comparison of
the presented covariance metrics, especially given that DCA
methods yield covariance scores in different scales.
Nevertheless, when comparing data in Supplementary
Files S1, S3, S4, a few trends are observed. 1) As the
covariance cutoff increases, the groupings of functional
sites with the same MF become more prominent for any

TABLE 4 | Intersection of proteins and functional residues for CoeViz χ2 and mfDCA(raw) at their 0.3 and 3.0 respective cutoffs yielding comparable LO distributions.

Ligand CoeViz χ2 mfDCA(raw) Intersection

Proteins Residues Proteins Residues Proteins Residues

Coenzyme A 99 617 32 260 24 95
Dinucleotide 478 3,817 167 1,176 158 599
DNA/RNA 1,020 11,762 386 5,582 317 2,513
Heme 330 3,866 119 2,118 103 987
Metal 2,336 8,707 831 3,488 496 1,545
Nucleoside 562 3,208 143 657 122 306
Sugar 213 1,364 121 772 60 306
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metric, though the number of proteins possessing such strong
couplings rapidly drops. 2) While mutual information may be
useful for select proteins in this context, other covariance
metrics, specifically χ2, appear to be more informative and
applicable to a dramatically larger number of proteins to
reveal such groupings of functional residues. 3) A reduced
amino acid alphabet, i.e. 2-letter vs. traditionally used 20-
letter alphabet, proves to yield less noise in covariance data,
especially for metal binding sites. It may be attributed to the
fact that only limited types of amino acids predominantly
bind metal ions (Table 2). Consequently, contrasting these
few types of amino acids against any other types amplifies the

signal for coevolving metal binding residues. However, as the
example with the Laccase 1 analysis illustrates, the reduced
alphabet is not the only reason for high performance of the χ2
metric: the protein contains 19 histidines and 5 cysteines, yet
the coupling was identified among the metal binding sites
only, being confused just with one non-metal binding
histidine residue, H82 (Table 5 and Figure 2B). On a large
scale, the low confusion rate is further supported by high
P(LO) values for the large number of residues derived from
the CoeViz matrices (Supplementary File S3).

It should be noted that the seven categories of ligands
considered here as a proxy to distinguish molecular functions

FIGURE 2 | Example of the CoeViz 2 covariance analysis. (A) Cliques identified within fungal Laccase 1 (UniProt ID: Q9Y780) using χ2 metric based on 2-letter
alphabet with cutoff ≥ 0.5 applied. (B) A zoom-in view of the clique highlighted by rectangle on panel A that contains 9 of 10 residues known to bind copper ions and
involved in catalytic activity. Nodes are colored according to their conservation scores expressed by position specific Shannon entropy. (C–F) Distributions of graph
nodes, edges, cliques and clique sizes per covariance cutoff, respectively. These charts are precomputed for each query to guide the user on the selection of cutoff
to visualize a resulting protein graph.
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of residues is an approximation, to simplify the problem to be
amenable to a large scale analysis. The categories chosen are
based on chemical nature of the ligands, their abundance in
the benchmark dataset, and available contact annotation in
the BioLiP database. The actual molecular functions of the
same ligand may vary. For example, copper ions are
frequently observed as structural factors facilitating a
protein to maintain its 3D fold. But such ions can also be
integral part of an active site to catalyze redox reactions. For
another example, nuclear receptors have to bind a ligand first
in a distinct ligand binding domain, in order to dimerize and
subsequently recognize the targeted DNA transcription site
by their DNA binding domain. Therefore, residues
recognizing a natural ligand may also be considered as
those involved in DNA transcription. All these nuances
undoubtedly convolute the problem of defining molecular
function any given residue is involved in, and skew the
assessment of covariance data. However, the goal of this
study is to assess whether there is and how strong a
coevolutionary signal for functional sites on a large scale.
Details on coevolving residues as to why they show couplings
can be further explored with such visualization tools as
presented here CoeViz 2 in conjunction with other protein
annotation resources.

To conclude, we would like to note that CoeViz 2 is not a
method for predicting molecular function, but a method for
the quick analysis of the protein sequence as a molecular
graph and identification of residue couplings with an
emphasis on functional residues. Building prediction
models based on coevolving residues lies beyond the scope
of this work and subject of future studies. Nevertheless,
covariance data shows a great promise to be served as
input for new methods of amino acid function prediction,
augmenting the local environment derived from flanking
residues with the information from distant covarying
positions.

DATA AVAILABILITY STATEMENT

The protein sequences (FASTA format) included in the
benchmark set can be found at https://doi.org/10.6084/m9.
figshare.13578125.v1, and their corresponding ligand binding
site annotations projected in to the seven ligand categories can
be found at https://doi.org/10.6084/m9.figshare.13578122.v1.

AUTHOR CONTRIBUTIONS

DC implemented the CoeViz 2 web-site. NM, SS, and FB
generated and analyzed the data. JH implemented software for
computing different covariance metrics. AP conceived of the
study and analyzed the data. All authors reviewed the manuscript.

FUNDING

This work was supported by the National Institutes of Health
(grant numbers R21AI143467, R01HL146266, R01AI106269).

ACKNOWLEDGMENTS

We are grateful to the CCHMC Division of Biomedical
Informatics for providing computational resources to conduct
this computationally intensive study and for hosting the web-site
that provides interface to CoeViz 2.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fbinf.2021.653681/
full#supplementary-material

TABLE 5 | LO scores (Eq. 9) for the copper binding residues in Laccase 1 protein (UniProt ID: Q9Y780) yielded by CoeViz χ2 and DCA methodsa.

Residue χ2 ≥ 0.5 mfDCA(raw) ≥ 2 mfDCA(apc) ≥ 2 plmDCA(raw) ≥ 0.2 plmDCA(apc) ≥ 0.2

H84 3.73 NA NA NA NA
H127 4.09 1.79 2.70 1.38 2.99
H129 4.09 1.61 2.99 1.26 2.99
H414 3.91 2.48 2.99 2.48 2.99
H417 NA 2.59 2.70 2.48 2.99
H419 3.69 2.70 2.70 2.48 2.99
H469 3.69 4.09 4.09 NA NA
C470 3.69 4.09 4.09 4.09 NA
H471 3.69 4.09 4.09 4.09 NA
H475 3.77 4.09 4.09 NA NA

aNA–LO score could not be computed due to 0 or undefined argument to logarithm (Eq. 9).

Frontiers in Bioinformatics | www.frontiersin.org June 2021 | Volume 1 | Article 6536818

Corcoran et al. Protein Graphs From Covariance Data

https://doi.org/10.6084/m9.figshare.13578125.v1
https://doi.org/10.6084/m9.figshare.13578125.v1
https://doi.org/10.6084/m9.figshare.13578122.v1
https://www.frontiersin.org/articles/10.3389/fbinf.2021.653681/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fbinf.2021.653681/full#supplementary-material
https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


REFERENCES

Abrusán, G., and Marsh, J. A. (2019). Ligand-Binding-Site Structure Shapes
Allosteric Signal Transduction and the Evolution of Allostery in Protein
Complexes. Mol. Biol. Evol. 36 (8), 1711–1727. doi:10.1093/molbev/msz093

Baker, F. N., and Porollo, A. (2016). CoeViz: a Web-Based Tool for Coevolution
Analysis of Protein Residues. BMC Bioinformatics 17, 119. doi:10.1186/s12859-
016-0975-z

Baker, F. N., and Porollo, A. (2018). CoeViz: AWeb-Based Integrative Platform for
Interactive Visualization of Large Similarity and Distance Matrices. Data
(Basel). 3 (1), 4. doi:10.3390/data3010004

Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., et al.
(2000). The Protein Data Bank. Nucleic Acids Res. 28 (1), 235–242. doi:10.1093/
nar/28.1.235

de Castro, E., Sigrist, C. J. A., Gattiker, A., Bulliard, V., Langendijk-Genevaux, P. S.,
Gasteiger, E., et al. (2006). ScanProsite: Detection of PROSITE Signature Matches and
ProRule-Associated Functional and Structural Residues in Proteins.Nucleic Acids Res.
34 (Web Server issue), W362–W365. doi:10.1093/nar/gkl124

de Juan, D., Pazos, F., and Valencia, A. (2013). Emerging Methods in Protein Co-
evolution. Nat. Rev. Genet. 14 (4), 249–261. doi:10.1038/nrg3414

Dunn, S. D., Wahl, L. M., and Gloor, G. B. (2008). Mutual Information without the
Influence of Phylogeny or Entropy Dramatically Improves Residue Contact
Prediction. Bioinformatics 24 (3), 333–340. doi:10.1093/bioinformatics/btm604

Ekeberg,M., Lovkvist, C., Lan, Y.,Weigt,M., and Aurell, E. (2013). Improved Contact
Prediction in Proteins: Using Pseudolikelihoods to Infer Potts Models. Phys. Rev.
E Stat. Nonlin Soft Matter Phys. 87 (1), 012707. doi:10.1103/physreve.87.012707

Friedman, J., Hastie, T., and Tibshirani, R. (2008). Sparse Inverse Covariance
Estimation with the Graphical Lasso. Biostatistics. 9 (3), 432–441. doi:10.1093/
biostatistics/kxm045

Jones, D. T., Buchan, D. W. A., Cozzetto, D., and Pontil, M. (2012). PSICOV:
Precise Structural Contact Prediction Using Sparse Inverse Covariance
Estimation on Large Multiple Sequence Alignments. Bioinformatics 28 (2),
184–190. doi:10.1093/bioinformatics/btr638

Marchler-Bauer, A., Derbyshire, M. K., Gonzales, N. R., Lu, S., Chitsaz, F., Geer, L.
Y., et al. (2015). CDD: NCBI’s Conserved Domain Database. Nucleic Acids Res.
43 (Database issue), D222–D226. doi:10.1093/nar/gku1221

Marks, D. S., Hopf, T. A., and Sander, C. (2012). Protein Structure Prediction from
Sequence Variation. Nat. Biotechnol. 30 (11), 1072–1080. doi:10.1038/nbt.2419

Morcos, F., Pagnani, A., Lunt, B., Bertolino, A., Marks, D. S., Sander, C., et al.
(2011). Direct-coupling Analysis of Residue Coevolution Captures Native
Contacts across many Protein Families. Proc. Natl. Acad. Sci. 108 (49),
E1293–E1301. doi:10.1073/pnas.1111471108

Sustik, M. A., and Calderhead, B. (2012). GLASSOFAST: An Efficient GLASSO
Implementation. UTCS Tech. Rep., 1–3.

Weigt, M., White, R. A., Szurmant, H., Hoch, J. A., and Hwa, T. (2009).
Identification of Direct Residue Contacts in Protein-Protein Interaction by
Message Passing. Proc. Natl. Acad. Sci. 106 (1), 67–72. doi:10.1073/
pnas.0805923106

Yang, J., Roy, A., and Zhang, Y. (2013). BioLiP: a Semi-manually Curated Database
for Biologically Relevant Ligand-Protein Interactions. Nucleic Acids Res. 41
(Database issue), D1096–D1103. doi:10.1093/nar/gks966

Zerihun, M. B., Pucci, F., Peter, E. K., and Schug, A. (2020). Pydca v1.0: a
Comprehensive Software for Direct Coupling Analysis of RNA and Protein
Sequences. Bioinformatics 36 (7), 2264–2265. doi:10.1093/bioinformatics/
btz892

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Corcoran, Maltbie, Sudalairaj, Baker, Hirschfeld and Porollo. This
is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums is
permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Bioinformatics | www.frontiersin.org June 2021 | Volume 1 | Article 6536819

Corcoran et al. Protein Graphs From Covariance Data

https://doi.org/10.1093/molbev/msz093
https://doi.org/10.1186/s12859-016-0975-z
https://doi.org/10.1186/s12859-016-0975-z
https://doi.org/10.3390/data3010004
https://doi.org/10.1093/nar/28.1.235
https://doi.org/10.1093/nar/28.1.235
https://doi.org/10.1093/nar/gkl124
https://doi.org/10.1038/nrg3414
https://doi.org/10.1093/bioinformatics/btm604
https://doi.org/10.1103/physreve.87.012707
https://doi.org/10.1093/biostatistics/kxm045
https://doi.org/10.1093/biostatistics/kxm045
https://doi.org/10.1093/bioinformatics/btr638
https://doi.org/10.1093/nar/gku1221
https://doi.org/10.1038/nbt.2419
https://doi.org/10.1073/pnas.1111471108
https://doi.org/10.1073/pnas.0805923106
https://doi.org/10.1073/pnas.0805923106
https://doi.org/10.1093/nar/gks966
https://doi.org/10.1093/bioinformatics/btz892
https://doi.org/10.1093/bioinformatics/btz892
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles

	CoeViz 2: Protein Graphs Derived From Amino Acid Covariance
	Introduction
	Materials and Methods
	Benchmark Set
	Covariance Metrics
	Distributions of Covarying Functional Sites
	Web Interface

	Results
	Summary of the Benchmark Set
	Assessment of CoeViz Metrics
	Comparison With Other In-House Covariance Matrices
	Comparison With DCA Methods
	Example of the CoeViz 2 Analysis

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


