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Many chemotherapeutic drugs target cell processes in specific cell cycle phases.
Determining the specific phases targeted is key to understanding drug mechanism of
action and efficacy against specific cancer types. Flow cytometry experiments, combined
with cell cycle phase and division round specific staining, can be used to quantify the
current cell cycle phase and number of mitotic events of each cell within a population.
However, quantification of cell interphase times and the efficacy of cytotoxic drugs
targeting specific cell cycle phases cannot be determined directly. We present a data
driven computational cell population model for interpreting experimental results, where in-
silico populations are initialized tomatch observable results from experimental populations.
A two-stage approach is used to determine the efficacy of cytotoxic drugs in blocking cell-
cycle phase transitions. In the first stage, our model is fitted to experimental multi-
parameter flow cytometry results from untreated cell populations to identify parameters
defining probability density functions for phase transitions. In the second stage, we
introduce a blocking routine to the model which blocks a percentage of attempted
transitions between cell-cycle phases due to therapeutic treatment. The resulting
model closely matches the percentage of cells from experiment in each cell-cycle
phase and division round. From untreated cell populations, interphase and intermitotic
times can be inferred. We then identify the specific cell-cycle phases that cytotoxic
compounds target and quantify the percentages of cell transitions that are blocked
compared with the untreated population, which will lead to improved understanding of
drug efficacy and mechanism of action.
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INTRODUCTION

The use of flow cytometry and more recently, imaging flow
cytometry are well established as methods for investigating
single cell properties and proliferation in large cell populations
(Vermeulen et al., 2003; Darzynkiewicz et al., 2004; Filby et al.,
2011). These multi-parameter flow cytometry techniques are
particularly useful in assessing the effectiveness of therapeutics
which inhibit progress through the cell cycle (Vermeulen et al.,
2003). Staining asynchronously dividing cells using
CellTraceViolet (CTV), Propidium Iodide (PI) and
phospho-histone H3 (pH3) staining (Filby et al., 2011)
allows the determination of cell numbers in G1, S, G2 and
M phases and the number of division rounds each cell has
undergone. When a therapeutic agent is introduced in-vitro,
the change cell population percentages in each phase at a given
time point, can indicate which phase transitions are inhibited.
However, quantifying the effectiveness of therapeutics is
complicated by the complex dynamics and heterogeneity
within a cell population. Certainly, the asynchronous nature
of a proliferating cell line means that while two cells are in the
same cell cycle phase, they may exist in different rounds of
division and thus are temporally distinct form one another.
This can have a significant impact on interpreting data from
cell cycle inhibitory compounds as both cell cycle phase and
cell division history, may determine therapeutic response
(Filby et al., 2016).

A range of mathematical and computational models have been
developed to predict the dynamics of the cell cycle, both for wild
type populations and populations treated with therapeutics.
Models fall into two categories; explanatory models designed
around specific experiments and used to interpret the results or
predictive models formulated based on theoretical cell cycle
hypothesis (Fuß et al., 2005).

Both types of model rely on an underlying hypothesis and
mathematical formulations. Two commonly used
mathematical schemes are continuous systems of ODE’s
(Sible and Tyson, 2007; Novak et al., 2009) and discrete
Boolean models (Davidich and Bornholdt, 2008; Davidich
and Bornholdt, 2013; Fauré et al., 2006). While these
models are effective in capturing wildtype behavior of
specific cell populations and the effect of modulation of
modeled regulatory systems, they are often found to be too
simplistic to capture the intrinsic processes of the cell cycle
(Chaffey et al., 2014; Fuentes-Garí et al., 2015).

Population balance models (PBM) based on systems of first
order PDE’s, Faraday et al. (2001) and Basse and Ubezio (2007)
are common in the literature. The population of cells in each
phase are modeled by continuous population density functions.
The number of cell cycle phases modeled varies dependent on the
application (Abroudi et al., 2015). The rates of cells entering and
exiting each phase are governed by transition functions, which are
dependent on cell properties, such as cell DNA content (Liu et al.,
2007), mass (Mantzaris et al., 1999), age (Liou et al., 1997; Chaffey
et al., 2014), cell size (Liu et al., 2007; Chapman et al., 2008) and
cyclin content (García Münzer et al., 2014), either individually or
in combination. From a modeling perspective, age-structured

models are advantageous as without defining a maximum phase
time, cells may remain within a phase indefinitely (Chaffey et al.,
2014). However, they can be difficult to verify as cell age is
difficult to measure experimentally, compared with more
easily observable parameters such as DNA content (Liu
et al., 2007).

In contrast to the continuous population distributions utilized
in PBMs, cell ensemble models (CEM) model the population as
an ensemble of individual cells (Henson, 2005). Simulating cells
discretely allows heterogeneity of key cellular parameters across
the population to be captured. Altinok et al. (2011) develop a
stochastic CEM to study the desynchronization of cell
populations and entrainment into the circadian clock. The
effects of changing mean interphase times and variability are
analyzed. While similar in structure to the model presented
herein, Altinok et al. (2011) do not compare directly to
experimental data.

Cadart et al. (2018) develop a mathematical frame work to
investigate the relative contributions of growth rate and cell cycle
duration modulation to mammalian cell size homeostasis. Linear
regression is used to fit the growth rate and duration modulation
coefficients to experimental data in a balance equation. Designing
the model and experiment in tandem is clearly advantageous to
confirm model accuracy and identifying key parameters
pertaining to cell population growth.

Many models attempt to quantify the efficacy of cancer
therapeutics and determine optimal treatment plans. Fuentes-
Garí et al. (2015) compare three different cell cycle models to
evaluate their suitability for modeling the effect of chemotherapy
treatments on leukemia cell populations, demonstrating the
difficulty of selecting models that accurately replicates
experimental results while producing meaningful biological
quantities.

The mode of action of therapeutics often modifies processes
only during certain phases of the cell cycle e.g., DNA synthesis
(Schwartz and Dickson, 2009). Therefore, to assess the efficacy of
the intervention it is essential to determine at what points in the
cell cycle the cells are affected. Given the number cells present in
all phases in an asynchronous cell population and the
heterogeneity of the timings of cell cycle transition processes it
is difficult to determine and quantify which phases have been
affected.

In previous work we have shown the effectiveness of
explanatory stochastic data driven models to assess the
distribution of quantum dots markers in asynchronously
dividing cell populations, where more traditional statistical
analysis has been unsuccessful (Brown et al., 2010; Errington
et al., 2010). Virtual in-silico cell populations, containing large
numbers of cells, are initialized and optimized to match
experimentally determined phase populations. These models
capture the variability and heterogeneity of individual cell
cycles and events, giving greater insight into population
dynamics than population statistics approaches.

In this work we present an explanatory virtual in-silico cell
population cell cycle model. The model is used as an analysis tool
to extract information from imaging flow cytometry experimental
data, extracting inter-phase and inter-mitotic times and
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quantifying the efficacy of therapeutics in inducing arrest in cell
cycle phases.

The model consists of two main steps. The first step requires
experimental data from untreated cell populations to
determine cell-cycle parameters defining distributions
governing the time that cells reside in each cell-cycle phase.
The parameters values are obtained by fitting the measured cell
precursor frequency (cpF) of the experimental data to the cpF
of the virtual population. The second step uses experimental
data from the same population of cells plus the addition of a
therapeutic after a set number of hours after at the initiation of
the experiment. The parameters governing inter-phase time
from the untreated populations are used in the model for the
treated population. To account for therapeutic induced cell-
cycle-phase arrest a blocking probability is assigned to each
cell cycle phase, which gives the probability that any attempted
transition to the next cell cycle phase is blocked. The values of
the blocking parameter are determined by fitting the cpF of the
treated in-silico population to the treated experimental
population.

We demonstrate the effectiveness of this approach
using 4 different cytotoxic agents known to target specific
cell cycle phases. The model identifies the cell cycle phases
targeted by the agents and quantifies the percentage
of transitions blocked in each phase compared to the
untreated population.

METHODS

Experiment
To generate the experimental dataset, we perform imaging flow-
cytometry measurements on populations of T-lymphocyte cells,
from the Jurkat cell-line. Cells were stained using CellTraceViolet
(CTV), Propidium Iodide (PI) and phospho-histone H3 (pH3) to
determine the number of cells in G1, S, G2, and M phases. Using a
gating strategy previous defined (Begum et al., 2013) we
determine the cumulative precursory frequency (cpF), defined
as the percentage of the total cell population in each cell cycle
phase for each division round. Successive rounds are normalized
by a factor of 2n where n is the division round, n � 0
corresponding the initial undivided population. For further
experimental details see supplementary information. Figure 1
shows experimental cpF’s for an untreated Jurkat cell population
measured at times T � 0, 32, 48 and 72 h, generated by the
methods discussed above and in our previous work (Barteneva
et al., 2016). It is evident that cells become increasingly dispersed
throughout different phases and division rounds as measurement
T increases.

Using the same methodology, further experiments were
performed where a cytotoxic drug is introduced to cell
populations after 32 h. The cpF is measured at the time the
drug is added and again at 48 h. Four different therapeutic
treatments were used; Nocodazole, Demecolcine, 5-
Fluorouracil, and Etoposide.

All experiments were carried out in triplicate and the mean
and standard deviation of the proportion of cells in each phase
calculated. As with previous work (Begum et al., 2013; Filby et al.,
2011) we observed very small errors, especially with the shorter
cell cycle phases, therefore we choose to take a pessimistic
approach and assume an error for each phase equal to the
largest percentage error observed which was 14% (Figure 1).
However, we note that the least squares cost function for fitting
the model is robust to the inclusion of Gaussian errors (especially
small and uncorrelated errors observed in these experiments)
which makes this approach easily applicable.

Model
To determine cell phases targeted by each therapeutic, we have
developed a transient cell cycle model utilizing a discrete in-silico
cell population. The model was developed using MATLAB
(Mathworks Inc., 2016). Each cell in an in-silico is represented
by three parameters; i) its current cell-cycle phase (G1, G2, S or
M), ii) the time it has resided in the current cell cycle phase, t, and
iii) the number of division rounds the cell has undergone, N
(undivided cells are labeled as division round 0). The transition of
cells to their next cell-cycle phase is a stochastic process, governed
by time dependent probability distribution functions (PDF),
f Np (t) (where subscript p denotes the cell-cycle phase). In this
work, generalized extreme value (GEV) distributions are used to
define the cell cycle PDFs. GEV distributions are characterized by
the location parameter μNp , scale parameter σNp and the shape
parameter ξ. The shape parameter was fixed at 0.68 for all PDF’s,
resulting in a long-tailed distribution. The chosen distribution is

FIGURE 1 | Experimental and model cpF for untreated sample. Light
blue bars show cpF from experimental population and dark blue bars show
cpF from in-silico population at (A) 0 h, (B) 32 h, (C) 48 h, and (D) 72 h (note
at 0 h cpF of in-silico population is matched to experimental population).
Error bars on experimental data show the largest percentage error for any
population observed in the control data. Error bars on model data show
standard error from fits of 100 in-silico cell populations.
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appropriate as cell-cycle phase transitions are intrinsically long-
tailed (Brown et al., 2010; Errington et al., 2010). Furthermore,
the use of extreme value distributions as a suitable
parameterizable model for S-phase inter-phase times have
been demonstrated previously (Zhang et al., 2017). To assess
the effect of drug treatment an additional routine is incorporated
into the model, where each cell cycle phase is assigned a division
round independent blocking factor bp between 0 and 1. The
blocking parameter represents the probability that an attempted
phase transition is blocked due to the therapeutic.

Initialization
For each run of the model, an in-silico population of 20,000
individual cells is initialized with cpF matched to experimental
data at time T � 0. The values of t for each cell in the
experimental population cannot be obtained from the
experimental data. Therefore, for each cell, t is drawn
randomly from a uniform distribution, lower bounded by 0
and upper bounded by a predefined limit which is equal to
the upper limit set on μNp for the fitting routine (see
Supplementary Table S3).

Transition Through Cell Cycle
Starting at T � 0, the model is incremented through time with
time step δT . At each time step, t is incremented by δT for each
cell. The probability of it having transitioned between phases
since the last time step, is evaluated using the Hazard function,
defined as

PN
p (δT , t) �

FN
p (t + δT) − FN

p (t)
1 − FN

p (t)
(1)

where FN
p (t) is the cumulative distribution function (CDF) of

f Np (t). GEV CDF’s were generated using the MATLAB gevcdf
function (Mathworks Inc., 2016). The Hazard function gives the
probability of a cell transitioning into the next phase of its cell
cycle between time points t and t + δt, given that it has not
transitioned previously. To assess phase transitions in the current
time-step, a uniform random number between 0 and 1 is
generated for each cell. If the random number of a cell is less
than PN

p (δt, t), a phase transition occurs, the cell’s phase is
updated and t is set to 0. If a cell transitions from the M
phase to the G1 phase the number of division rounds it has
undergone is incremented by 1 and a daughter cell, with
parameters set equal to the original cell, is added to the
population, representing mitotic events.

By using GEV PDF’s with ξ > 0, the maximum probability
of transition occurs when t � μNp (see Supplementary Figure
S3). For t > μNp , the probability of transition to the next phase
decreases with T , so the longer a cell resides within a cell-cycle
phase the less likely it becomes to exit the phase in the next
time step. When a cell enters a phase, there is a finite time for
which PN

p � 0, so cells must reside in a cell phase for some
finite duration before exiting, as would be the case for physical
cell populations (see Supplementary Material for further
details). If the blocking routine is used, a second uniform
random number between 0 and 1 is generated for any cell due

to undergo phase transition. If this random number is lower
than bp for the cells current phase, the transition is blocked.
The cell remains in its current phase and t is incremented by
δT . A complete ordered list describing the iterative steps of the
model is given in supplementary information.

Fitting to Experimental Data
Model Applied to Untreated Population
To obtain optimal values of μNp and σNp , for each cell-cycle
phase, we fitted the cpF of in-silico cell populations to
the untreated experimental populations. A differential
evolution (DE) algorithm (Storn and Price, 1997), was used
to minimize the sum of squares between experimental and
model cpF’s, at the experimental measurement timepoints of
32, 48, and 72 h, with μNp and σNp as fit parameters. Upper and
lower limits on the range of values which the fitting parameters
were permitted to take are defined in Supplementary Table S3.
During fitting of the untreated population, models were run
over 200 time-steps for a virtual period of 72 h (δT � 0.36 h). A
full description of the fitting scheme is given in
Supplementary Material.

Initially, we used separate values of μNp and σNp for each
division round, resulting in 2 × 4 × N fitting parameters. We
take N as 4, as there are no cells in division rounds higher
than 3 for any of the experimental datasets, resulting in 32 fit
parameters. It was found that the standard deviation of the G2

and M phases did not affect the goodness of fit measurements
significantly, so these were fixed at 0.1, resulting in 24 fit
parameters. The resulting fits are shown in Supplementary
Figure S2. Fitting the data in this way showed similar fit
values for G1 and S in division rounds 1 and 2, whereas G2

and M had similar fitted values across all division rounds (see
Supplementary Figure S3).

Given the similarities of the fit parameters across different division
rounds, the number of fit parameters was reduced by using the same
values of μNp and σNp for multiple division rounds. For phases G2 and
M, μ0G2

� μ1G2
� μ2G2

� μ3G2
and μ0M � μ1M � μ2M � μ3M . For G1 and S

phases, μ1G1
� μ2G1

� μ3G1
≠ μ0G1

, σ1G2
� σ2G2

� σ3G2
≠ σ0G2

, μ1S � μ2S �
μ3S ≠ μ0S and σ1S � σ2S � σ3S ≠ σ0S . This reduces the final number of
fit parameters to 10.

In the experimental cpF plots it is evident that a small
percentage of cells are arrested in division round 0 for the
duration of the experiment (see Figure 1, panels C and D).
These arrested cells are considered within the model, by
randomly selecting a subset of cells from the initial population
that cannot transition from their original phase or division round.
The cpF of the total population of in-silico cells arrested is
matched to the experimental data.

Model Applied to Treated Population
To quantify the effect of therapeutics on cell cycle
progression, we fitted the cpF of in-silico cell populations
to the treated experimental populations, using the DE
algorithm (Storn and Price, 1997). The values of μNp and σNp
were fixed to the values obtained from the untreated fits, and
the phase transition blocking probabilities, bp, were the fit
parameters.
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In the experiments, therapeutics were added at 32 h.
Correspondingly, for T < 32 h, we set bp � 0 for all cell cycle
phases, before assigning a value between 0 and 1 for T > 32°h. At
72°h significant amounts of cell death was observed in the
experimental population. As the current model does not
account for cell death, fits of the model cpF to experiment
were only performed at 48°h. We performed fits for four
cytotoxic drugs, Nocodazole, Demecolcine, 5-Fluorouracil, and
Etoposide.

RESULTS

Untreated Population
Figures 1A-D show cpF’s of model and experimental
populations at 0, 32, 48 and 72 hours respectively. There is
good correspondence between the cpF’s of the model and
experimental data for all cell cycle phases and division
rounds. The final values of μNp and σNp were obtained by
averaging over 100 individual fits of the data (see
Supplementary Material). The fitted values of μNp and σNp for
each cell cycle phase and IMT are shown Table 1. Since μNp
represents the time of maximum transition probability of a cell
exiting a cell-cycle phase, we interpret μNp as the interphase times
and IMT as the sum of μNp over each division round.

The time of transition through division round 0 is
expected to be shorter than for other division rounds, as
cells in the experimental are not synchronized and already
part way through their current cell cycle. For G1 phase, μ0G1

is
7.1 h, compared with 14.8 h for μ1,2,3G1

, corresponding to the
expected behavior. However, for S phase μ0S1 is 14.8 h for
division round 0, significantly longer than the 8.1 h for μ1, 2,3S1 .
The reason for the discrepancy in parameters between
division round 0 and rounds 1 and 2 is due to the random
initialization of cell interphase times (this is required by the
model because in this first measurement we have no
reference to the amount of time that a cell has spent in its
current phase). Division round 0 allows the model to adjust
to account for the discrepancy between the randomly
initialized model phase times and the unknown
experimental phase times. Parameters obtained for
proceeding division rounds represent the steady state
solution, confirmed by the similarity in results obtained
from division rounds 1 and 2 (see Supplementary Figure
S3). Therefore, parameters from division round 0 should not
be taken to represent the experimental population. We
obtain an intermitotic time (IMT) of 29.43 h for division
rounds 1 and 2. From the experimental cpF data is it clear
that the mean IMT of the experimental population is >24 h,
as most cells are in division round 2 at 72 h.

Treated Population
The cpF of in-silico populations fitted to experimental data after
48 h for the four therapeutics, Nocodazole, Demecolcine, 5-
Fluorouracil, and Etoposide is shown in Figure 2. There is
clear correspondence between model and experimental cpF’s.
The assumption that the phase transition PDF’s of the untreated
population can be used for the treated populations is shown to be
reasonable given the quality of the fits of the in-silico populations
cpF to experiment (Figure 2). The blocking factors for each phase
gives a measure of the probability of a cell attempting to transition
into its next phase being blocked. If a transition is unsuccessful
the phase time t is not reset and it is still able to attempt a
transition in a later time step. This approach is designed to
capture delay in transitions due to the therapeutic, rather than
explicitly capturing cell cycle arrest. However, due to the use of
GEV PDF’s (with ξ > 0), the blocking parameter can limit
transitions when PN

p peaks, pushing t to a regime where PN
p

tends to 0, implicitly applying cell arrest.

TABLE 1 | Mean vaues of transition PDF location, µ, and scale parameters, σ, for final untreated model, averaged over 100 individual fits.

Division round μ G1 (h) μ S (h) μ G2 (h) μ M (h) σ G1 (h) σ S (h) Intermitotic time (h)

0 7.11 (±0.65) 14.76 (±0.17)
4.84 (±0.18) 1.69 (±0.21)

0.18 (±0.13) 0.37 (±0.19) 28.41 (±0.73)
1, 2 14.76 (±0.13) 8.14 (±0.2) 2.33 (±0.20) 3.91 (±0.79) 29.43 (±0.37)

FIGURE 2 | Experimental and model cpF results for cell populations
treated with different inhibitor drugs. Experimental (light blue bars) and model
(dark blue bars) cpFs after 48 h, after introducing therapeutics; (A)
Nocodazole (B) Demecolcine (C) 5-Fluorouracil (D) Etoposide at 32 h.
Error bars on experimental data show the largest percentage error for any
population observed in the control data. Error bars on model data show
standard error from fits of 100 in-silico cell populations.
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The values of bp for each drug in each phase, averaged over
100 fits are shown in Figure 3 (also see Supplementary Table
S1). For each treatment the cell-cycle phases targeted
correspond to known behaviour. Figure 3A) shows the
percentage of transitions blocked by nocodazole treatment.
Nocodazole is a antineoplastic agent which interferes with the
polymerization of microtubules. Treated cells are arrested in
the G2 and M phases (Ben-Ze’ ev et al., 1979; Blajeski et al.,
2002). This behavior is reflected in the model population, with
81.1% of transitions from M phase and 16.2% of transitions
from G2 blocked.

Figure 3B shows the percentage of transitions blocked for
Demecolcine treatment. Demecolcine depolymerizes
microtubules and limits microtubule formation arresting cells
in the M phase. This depolymerization effect can also cause the
breakdown cytoskeletal structures resulting in arrest in other
phases (Mukhtar et al., 2014). This behavior is reflected in the
blocking percentages of each phase with 63.2% blocked on the M
phase and smaller but high percentages blocked in the other three
phases (see Supplementary Table S5).

Figure 3C the shows percentage of transitions blocked for 5-
Fluorouracil treatment. 5-Fluorouracil is principally a thymidylate
synthase inhibitor, blocking synthesis of pyrimidine thymidine and
in consequence disrupting DNA replication (Miura et al., 2010).
Cells are predominately arrested in the S phase. This is reflected by
the model with 58.7% of transitions from the S phase blocked,
while the percentage of transitions blocked in the other phases are
negligible.

Figure 3D shows the percentage of transitions blocked for
Etoposide treatment. Etoposide inhibits DNA re-litigation
(Montecucco et al., 2015), causing apoptosis of cells in the S

phase. Errors in the DNA due to a sub-optimal re-litigation
process can result in arrest in other phases, particularly at the G2

phase DNA damage checkpoint (Nam et al., 2010). The model
shows that 61.3% of transitions from the S phase are blocked,
99.7% of transitions from the G2 phase are blocked. This indicates
that even if re-litigation does occur the damage caused to DNA by
Etoposide is too significant to pass the DNA checkpoint for all
effected cells.

The phases targeted by each inhibitor drug predicted by the
model correspond well with expected behavior, indicating that
the model is successfully capturing the dynamics of the cell
population and the effect of blocking drugs. The efficacy of
inhibitor drugs is quantified using a simple and easily
interpretable parameter bp.

DISCUSSION

Extraction of population wide statistical quantities from cell
proliferation experiments is difficult due to heterogeneity and
limitations of measurement techniques. Explanatory models can
be used to extract information from experimental data sets which
cannot be obtained directly from measurements.

In this work we present an explanatory modeling approach
which is used as a data analysis tool to quantify the efficacy of
therapeutics which cause arrest in specific cell-cycle phases.
We validate the modeling approach using four different
therapeutics on cpF data from imaging flow cytometry
experiments on the Jurkat cell line. For both treated and
untreated populations, the predicted cpF’s of the in-silico
population closely match experimental population at the

FIGURE 3 | Percentage of transitions blocked from each cell phase of treated cell populations compared with the untreated population. Box plots show median
(red horizontal line), interquartile range (blue boxes), range of data points within a factor of 1 of the interquartile range (whiskers) and outliers (red crosses) of the blocking
factors for (A) Nocodazole (B) Demecolcine (C) 5-Fluorouracil (D) Etoposide blocking drugs.
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measurement time points. The model accurately identifies the
cell cycle phases targeted by each therapeutic. In addition, the
efficacy of the treatment in arresting cells in each cell-cycle
phase is quantified by the percentage of phase transitions
blocked compared with the untreated population.

For compounds with unknown mechanisms of action or drug
combination therapies, this information provides far greater
insight into how cell-cycle phases are targeted when compared
with simply assessing the difference in accumulation of cells in
different cell-cycle phases in treated and untreated samples.
Assessing targets based on accumulation alone may ignore
subtle effects where a high percentage of cells being arrested in
one phase masks arrest events in other phases. This could be
particularly important for setting optimal does in combination
therapies where multiple phases are targeted by the different
treatments.
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