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During the past five years, deep-learning algorithms have enabled ground-breaking
progress towards the prediction of tertiary structure from a protein sequence. Very
recently, we developed SAdLSA, a new computational algorithm for protein sequence
comparison via deep-learning of protein structural alignments. SAdLSA shows significant
improvement over established sequence alignment methods. In this contribution, we show
that SAdLSA provides a general machine-learning framework for structurally
characterizing protein sequences. By aligning a protein sequence against itself,
SAdLSA generates a fold distogram for the input sequence, including challenging
cases whose structural folds were not present in the training set. About 70% of the
predicted distograms are statistically significant. Although at present the accuracy of the
intra-sequence distogram predicted by SAdLSA self-alignment is not as good as deep-
learning algorithms specifically trained for distogram prediction, it is remarkable that the
prediction of single protein structures is encoded by an algorithm that learns ensembles of
pairwise structural comparisons, without being explicitly trained to recognize individual
structural folds. As such, SAdLSA can not only predict protein folds for individual
sequences, but also detects subtle, yet significant, structural relationships between
multiple protein sequences using the same deep-learning neural network. The former
reduces to a special case in this general framework for protein sequence annotation.
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INTRODUCTION

The amino acid sequence of a protein encodes the information for carrying out its function. One
essential aspect is the tertiary structure of the protein. Indeed, the prediction of protein tertiary
structure from its sequence is a fundamental question in biophysics (Anfinsen and Scheraga, 1975).
In order to predict protein structure at high accuracy, one main challenge is to model the long-range,
many-body effects that collectively dictate a protein’s tertiary structure (Skolnick and Gao, 2021).
Over the past several years, exciting breakthroughs have been made to better address these long-
range interactions (Skolnick and Gao, 2021). Using a deep residual convolutional neural network,
significant success has been demonstrated in predicting contacts between individual residues of a
protein sequence (Wang et al., 2017). Such residue-residue contacts yield both the local secondary
structure and the global fold, and it is the accurate prediction of their synergy that improves model
quality. Subsequently, several groups demonstrated that better residue-residue contact or detailed
distance matrix (distogram) predictions led to significantly improved structure predictions,
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especially for challenging targets (Gao et al., 2019; Hou et al.,
2019; Xu, 2019; Zheng et al., 2019; Senior et al., 2020) In CASP13,
a blind biannual protein structure prediction competition, all four
top-ranked groups in the most challenging, free-modeling
category used residue-residue contacts or distance matrices
predicted via deep-learning . Among them, DeepMind’s
AlphaFold achieved the best performance using a high-quality
distogram to derive statistical folding potentials (Abriata et al.,
2019). In CASP14, many improved deep-learning approaches
using the convolutional residual networks were presented, e.g.,
(Yang et al., 2020), but AlphaFold2 dominated the competition
using a new, end-to-end deep-learning algorithm with an
attention mechanism.

A topic closely related to protein structure prediction is
protein sequence comparison or alignment (Söding and
Remmert, 2011). In the low pairwise sequence identity regime
of less than 30%, two protein sequences may exhibit no apparent
sequence similarity yet display significant fold similarity when
their structures are revealed and superimposed (Chothia and
Lesk, 1986). This observation is attributed to the fact that the
structural space of protein folds is very small for both
evolutionary (Murzin, 1998) and physical reasons (Skolnick
et al., 2014). Traditionally, a variety of sequence alignment
approaches have been developed and applied to assist protein
structure prediction, e.g., Hidden Markov Model (HMM)
(Hildebrand et al., 2009) and “threading” approaches (Jones,
1999; Skolnick et al., 2004; Zhou and Zhou, 2005). These
efforts provide the foundation for template-based modeling
approaches (Zhang, 2008). Conversely, if the structures
encoded in the two sequences are known, their structural
alignment generally leads to a more accurate sequence
alignment than those from classical sequence alignment
approaches. Such an accurate, meaningful alignment is often
the key to understanding what a novel protein sequence does, e.g.,
predicting functional sites (Gao and Skolnick, 2009; Gao and
Skolnick, 2013).

Naturally, this leads to a question: can deep-learning be
directly applied to generate a protein sequence alignment with
an accuracy close to the structural alignment counterpart? If so,
this would not only extend the ability to recognize evolutionarily
distant sequence relationships but also enable a deeper learning of
the folding code. Moreover, it has practical applications for
function and structure prediction and possibly evolutionary
inference. To answer this question, we recently developed
SAdLSA, a sequence alignment algorithm that uses a deep
convolutional neural network to learn many thousands of
structural alignments (Gao and Skolnick, 2020). The advantage
of SAdLSA was demonstrated in benchmark tests against HMM-
based HHsearch (Soding, 2005). For challenging cases, SAdLSA is
∼150% more accurate at generating pairwise alignments and
∼50% more accurate at identifying the proteins with the best
alignments in a sequence library. This allowed the program to
detect remote relationships that may be useful for genome
annotation or functional predictions.

Given the encouraging benchmarking results of SAdLSA, one
would like to understand why it performs better than classical
sequence comparison approaches. Obviously, the deep-learning

algorithm plays a key role in this improvement, but how does it
work? Previously, we have speculated that SAdLSA implicitly
learns the protein folding code without offering direct evidence.
In this study, we shall further substantiate this claim. We noticed
that when the same sequence was input into SAdLSA, SAdLSA
aligns the sequence against itself, i.e., self-alignment, and outputs
an intra-sequence distogram for the input. This distogram could
encode the fold much like a deep-learning algorithm designed to
predict the distogram for a single query sequence, e.g., DESTINI
(Gao et al., 2019). We shall perform analysis to understand the
distogram generated by SAdLSA self-alignment and demonstrate
that SAdLSA provides a more general framework to learn protein
structures for sequence annotation purposes.

METHODS

For this study, we mainly employ SAdLSA, a deep-learning (DL)
based approach for protein sequence alignment. The details of
SAdLSA and the benchmark results have been described in detail
elsewhere (Gao and Skolnick, 2020). Here, we briefly recapitulate
its key features.

SAdLSA
An overview of SAdLSA is presented in Figure 1. The inputs to
this network are two position-specific sequence profiles, each of
dimension Nk × 20, where Nk is the length of the k-th sequence
(k � 1, 2), and the 20 columns represent the 20 different amino
acids at each residue position (hence position-specific). Here, we
use the profiles generated fromHHblits (Remmert et al., 2011). In
machine-learning language, the sequence profiles are also known
as embeddings. The outer product of these two 1D sequence
features yields a 2D matrix of features, where at position (i, j) of
the matrix the elements are a concatenation of the 20 columns
formed from the i-th residue of sequence 1 and the j-th residue of
sequence 2. Subsequently, these 2D features are fed into a fully
convolutional neural network consisting of up to 34 residual
blocks. The main objective of this neural network model is to
predict residue-residue distances between the two input
sequences that recapitulates their optimal structural alignment,
using observed structural alignments as the training ground truth.
The training distance labels are created from structural
alignments by APoc (Gao and Skolnick, 2013), which takes
advantage of a global alignment provide by TM-align (Zhang
and Skolnick, 2005).

The neural network is composed of multiple residual blocks,
either conventional (Deep residual learning for image
recognition, 2016) or dilated (Dilated residual networks, 2017)
in slightly different design variants. The residual block design is a
key to train a deep neural networkmodel.Within a residual block,
each convolutional layer is composed of about 64 filters with a
kernel size of 3 × 3 or 5 × 5. After the residual blocks, the last 2D
convolutional layer outputs 22 channels, representing 21 distance
bins (1–20 at 1 Å each, and >20 Å) and channel 0 which is
reserved for ignored pairs (e.g., gap residues missing in a
structure, or large distances >30 Å). Finally, a softmax layer
calculates the probability scores for each distance bin. Here,
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the same network was also applied to the same two input. The
mean probability scores of these two runs are the final output
score for this DL model. This ensures that the alignment is
identical if one swapped the position of two input sequences.
For this study, we used the consensus scores from six DL models,
including three models with 14 residual blocks and 64 5 × 5
kernels in each convolutional layer, and three dilated model with
34 residual blocks (alternating 1, 2, 8, 16, 32, dilate rates) and 50
to 75 3 × 3 kernels. The two type of DL models have 2.9 and 2.4
million parameters, respectively.

The outputs from a DL model are the probabilities of distance
bins forming an inter-protein residue-residue distance matrix. To
build an alignment using dynamic programming (DP), we
convert this probability matrix into a mean distance matrix D,
whose element

dij � ∑
n

k�1
pkijbk − c (1)

where i, j are target/template sequence positions, pkij is the
probability for bin k at position (i, j), bk are distance labels
from the sequence (1, 2, ... 20, 22). D is subsequently adapted as
the scoring matrix to obtain the optimal alignment using a Smith-
Waterman-like DP algorithm (Smith and Waterman, 1981). The
distance matrix D is also used to calculate an estimated TM-score
(Zhang and Skolnick, 2004; Xu and Zhang, 2010) for ranking the
significance of an alignment. The constant c is set at one such that
a perfect alignment gives an estimated TM-score of one.

Since we study the self-alignment of a given sequence, we feed
exactly the same sequence profiles into SAdLSA, and the resulting
sequence alignment itself is universally at 100% identity, with a
predicted TM-score ∼1. We focus on the residue-residue distance
matrix D, which is converted from a general inter-sequence
scenario into a special intra-sequence scenario, because the
two input sequences are the same.

Data Sets
We employed the same test and training sets from the original
SAdLSA study (Gao and Skolnick, 2020). Both sets are curated
from the SCOP database (Fox et al., 2014). The training set is
composed of 79,000 pairs from a SCOP30 set of ∼5,000 domains.
These training protein domain sequences share less than 30%
identity. The test set is an extrinsic test set of the sequences of 593
randomly selected protein domains from 391 SCOP folds.
Homologs of the testing sequences at 30% sequence identity
or higher, or with a BLAST E-value <0.1, are excluded from the

training set. In this study, we employed SAdLSA models trained
on this training set and conducted SAdLSA self-alignments on
each of the 593 test sequences.

Analysis
Distogram Assessment
It has been well-established that residue-residue contacts
characterize a protein structural fold (Gao et al., 2019;
Skolnick and Gao, 2021). The most common definition of a
protein contact is based on the distance between Cα or Cβ atoms.
That is, a contact between a pair of protein residues i and j is
defined if the Euclidean distance between their Cα (or Cβ) atoms
is less than a cutoff value, typically at 8 Å. A popular contact
metric adopted by the CASP assessors (Schaarschmidt et al.,
2018) is the precision of the top L/k Cβ−Cβ contact predictions
within short, medium or long ranges, where L is the length of the
target and k � 1, 2, and 5, and the sequential distance sij of
residues i and j, sij ≡

∣∣∣∣i − j
∣∣∣∣ defines the range: short [sij ∈ (6, 11)],

medium [sij ∈ (12, 23)], and long [sij ∈ (24, ∞)], i.e., nonlocal
residue pairs. Since SAdLSA was trained on the distances between
Cα atoms, we use Cα−Cα contacts with an 8 Å cutoff as our
definition of protein inter-residue contacts and consider only
those belonging in either themedium or long-range regime, i.e., sij
∈ [12, ∞). The predictions are ranked by the probability of
forming a Cα−Cα contact. To obtain the probability, one simply
sums the probabilities for distance bins from 0 to 8 Å, since the
SAdLSA DLmodels output a probability matrixD for 21 distance
bins. This probability score is then employed for the precision
analysis as outlined above. The precision is defined as TP/(TP +
FP), where TP is the number of true positives, i.e., native contact
observed in an experimental structure, and FP is the number of
false positives within the top L/k contact predictions evaluated.

In addition, we introduce the Mean Absolute Error (MAE) of
the predicted distogram vs. the ground truth distogram.
Specifically, we calculate the MAE using the coordinates of the
Cα atoms of nonlocal residue pairs, i.e., the sequential distance of
residue pairs is no less than six. The overall MAE for a distogram
is defined as

dMAE � ∑
i,j

∣∣∣∣∣dpreij − dnatij

∣∣∣∣∣/M (2)

where (i, j) are the indexes of a pair of nonlocal residues separated
up to 20 Å in the native distogram,M the total of such pairs, dpreij
the predicted distance by the SAdLSA self-alignment, and dnatij the
distance observed in the native distogram. Additionally, for each

FIGURE 1 | Flowchart of SAdLSA, a deep-learning algorithm for protein sequence alignment. In this study, the same sequence input is supplied to the SAdLSA
pipeline, resulting in an intra-sequence Cα-Cα distogram prediction of a single protein, instead of a typical application scenario, whereby the inter-sequence distogram
portraying the superimposition of two different proteins is predicted and utilized for deriving their sequence alignment using dynamic programming.
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target, we also obtain the MAE values within each distance bin
from 4 to 20 Å. If a target does not have any nonlocal residue pair
within a specific 1 Å bin, the MAE calculation is skipped for
this bin.

In order to estimate the statistical significance of dMAE, we
consider its expected value using a background distribution based
on the pairwise residue distances observed in the training
distograms. For each distance bin, we count the residue pairs
within this bin as observed in the training ground truth
distograms, and then obtain the observed frequency f k for this
distance bin by dividing the count against all counts of all bins
from 1 to 21 (inter-residue distances between 20 and 30 Å are
used for bin 21 as they are what collected for training).
Substituting f k for pkij in Eq. 1, we obtain the expected value of
dij, dexpij � 15.5 Å for any (i, j) according to this reference
distribution. Note that our training ground truth distograms
are of inter-sequence residues, in comparison to the
distograms of intra-sequence residues from the self-alignment.
But, since the inter-sequence distograms are actually employed
for SAdLSA training, it is appropriate to use the distance
distribution collected from these distograms as the reference
background. This leads to a naïve way to calculate the expect
dMAE, d

exp
MAE � ∑i,j

∣∣∣∣∣dexpij − dnatij

∣∣∣∣∣/M, yielding a mean dexpMAE of 3.07 Å
and a standard deviation of 0.20 Å by applying the formula to
4,661 structures employed in the training set. Likewise, for
comparison the same formula is applied to the test set,
including the overall error and errors for individual distance
bins. Using the one-tailed test for a normal distribution, one can
calculate the p-value of an dMAE value using the background
distribution derived from the training set.

t-SNE Aanalysis
We performed t-distributed Stochastic Neighbor Embedding
(t-SNE) (Van der Maaten and Hinton, 2008) to analyze the
factors that contribute to the precision of contact predictions
by SAdLSA self-alignment. This is a nonlinear dimensionality
reduction tool more suitable for this analysis than a classical
principal component analysis. Five features were used for this
analysis including i) the best training pair for each target
measured by their TM-score (Schaarschmidt et al., 2018), ii)
the ratio of the total observed native contacts (combining both
medium- and long-range contacts, i.e., sij ∈ [12, ∞)) over the
sequence length, whether the best training pair belongs to iii)
the same fold or just the iv) superfamily as the target according
to the SCOP classification, and v) the sequence diversity of the
multiple sequence alignment of the target. The TM-score is a
protein length-independent metric ranging from 0 to 1, and a
TM-score >0.4 indicates a statistically significant alignment
(Zhang and Skolnick, 2005). We use (0,1) to represent the
logical variables (e.g., is it a member of the same SCOP fold or
not). The sequence diversity is calculated with the Multiple
Sequence Alignment (MSA) of the target and defined as
ln(Neff /

��
L

√ ) taken from (Gao and Skolnick, 2020), where
Neff is the number of effective sequences in the MSA
without length normalization. In our t-SNE analysis, we
employed the default parameters including the perplexity
parameter set at 30.

DESTINI2
For comparison purposes, we employed DESTINI2 to conduct
inter-residue distance prediction on the same test data set,
i.e., 593 SCOP domain sequences, used to benchmark
SAdLSA. DESTINI2 improves DESTINI by using a deeper,
dilated convolutional residual network model. In this study,
we used 39 dilated residual blocks similar to the one
implemented in SAdLSA. For training, about 10,000 crystal
structures with <2.5 Å resolution were taken from a March
2020 release of PISCES (Wang and Dunbrack Jr., 2003), which
were curated from the PDB database (Berman et al., 2000). For a
fair comparison, we retrained DESTINI2 models by removing the
test set entries and their close homologs from the original
DESTINI2 training set using the same criteria as that used for
the SAdLSA test.

RESULTS

We conducted self-alignments for 593 target sequences with
SAdLSA, using deep-learning models trained without obvious
homologs to any of the 593 target sequences (see Methods). As
one would expect, SAdLSA returns a sequence alignment at 100%
identity and a predicted TM-score close to one. This seems trivial.
But, if one carefully inspects the residue-residue distogram
prediction, it not only contains information giving rise the
identical alignment, but also contains inter-residue distance
information to structurally characterize the fold encoded by
the sequence itself.

SAdLSA Self-Alignment Generates a
Fold-Depicting Distogram
Figure 2 illustrates an example of a SAdLSA self-alignment
prediction. This 205 AA target sequence encodes a classic
Rossman fold, which is composed of an βαβ alternating
secondary structural segments found in many nucleotide-
binding proteins (Hanukoglu, 2015). The characteristics of this
fold are displayed in the distance plot calculated between the Cα
atoms determined in the crystal structure (Figure 2, top left
panel). The remaining residue-residue distance plots are
generated by the SAdLSA self-alignment of the same sequence.
These are from the 21 scoring channels designed to predict the
probability of each pair of Cα atoms falling into each distance bin
from 0 to beyond 20 Å. The first three channels are straight
diagonal lines, which give rise the 100% identity in the sequence
alignment and are not the focus of this study. Starting from plots
≥4 Å, one recognizes inter-residue distance relationships. First,
the immediate neighboring residues are shown between 3–4 Å.
Then, the main secondary structure elements including the fold’s
six α-helices and seven β-strands exhibit their patterns in the 4–5
and 5–6 Å plots. The packing between these secondary structural
elements becomes clear in the subsequent three plots from 6–9 Å.
The detailed packing orientations among secondary structural
elements are further delineated in the remaining distance plots up
to 20 Å. Finally, the highlights in the >20 Å plot signal the regions
that are distant from each other. The top Lmedium or long-range
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contact predictions for this case have a precision of 86%, which is
sufficient to reconstruct a high-resolution structural model whose
TM-score >0.7 (Skolnick and Gao, 2021). The mean absolute
error dMAE, calculated from the Cα−Cα distances of all nonlocal
residue pairs separated up to 20 Å, is only 1.57 Å from the native
distogram.

How accurate is the SAdLSA self-alignment for predicting
residue-residue distances in general? If one examines the dMAE,
the overall number looks good with a mean of 2.43 Å, and 92.7%
of targets are below 3 Å (Figure 3 insert). By comparison, if one
naively assigns distance distribution according to the observed
fractions from the training set (see Methods), one obtains a mean
expected error, dexpMAE at 3.08 Å. Overall, 96.6% of targets have a
smaller distance prediction error by SAdLSA than the value from
the naïve reference approach. Moreover, about 408 (69%) targets
have a significant dMAE below the p-value cutoff of 0.05. Figure 3
further details the distributions of MAE between the SAdLSA
predicted and the corresponding native distograms for individual
distance bins from 4 to 20 Å. It is clear that residues forming
direct contacts within the first five bins are most challenging to

predict and exhibit large variations, with the mean MAE
gradually decreasing from 6.6 Å in the 3–4 Å bin to 3.4 Å in
the 8–9 Å bin. But these distance predictions by SAdLSA are
actually highly significant in comparison to the expected values
whose MAE errors are up to 8 Å higher on average than SAdLSA
predictions. On the other hand, the large distance bins from 14 to
18 Å yield relatively small MAE values <2.5 Å, but it is not
surprising as the expected MAE is below 2 Å.

From a structural perspective, direct inter-residue contacts are
the most important. Moreover, one only needs to predict a
fraction of the total number of contacts in order to obtain a
correct fold prediction (Gao et al., 2019). We therefore turn our
focus to inter-residue contacts. According to the benchmark
results on 593 protein sequences, the mean precisions are 40.3,
52.6, and 63.7% for the top L, L/2, L/5 predictions of medium or
long-range inter-residue Cα contacts, respectively (Table 1). The
detailed distributions of individual predictions are shown in
violin plots (Figure 4). For instance, in the middle top L/2
plot, about half of the sequences have a precision value >50%,
which is sufficient to derive the correct fold for a single-domain

FIGURE 2 | An example of predicting residue-residue distance matrices by SAdLSA self-alignment. The native (experimental) structure (PBD ID: 1hdo, chain A;
SCOP ID: d1hdoa_) of the target sequence, human Biliverdin IXβ reductase, encodes a classic Rossman fold shown in the cartoon representation using the red-green-
blue color scheme from the N to C-terminus. For each pair of residues, its experimentally observed (native) Cα-Cα distance is shown in the upper left corner. The
remaining 21 probability density plots are generated by SAdLSA self-alignment for the target sequence. Each plot predicts the probability of Cα-Cα distance within a
distance bin from 0 to 20 Å at 1 Å spacing, and the probability >20 Å in the last plot.
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using these predictions (Gao et al., 2019). At L/5, 107 (18%)
entries have 100% precision, and the median precision is at 69%.
These numbers are not as good as the deep-learning approaches
specifically trained to predict residue distograms, e.g., they are
about 25% worse than DESTINI2 (Table 1). Given the fact that
SAdLSA was not trained to predict residue distances for a single

structure (see more reasoning in Discussions), but rather to
recognize the similarity between pairs of structures, these
results are encouraging and clearly demonstrate the generality
of the SAdLSA framework for learning protein structures.

What Contributes to Successful Distogram
Prediction by SAdLSA Self-Alignment?
Next, we seek to understand the factors that affect the accuracy of
distogram predictions by SAdLSA self-alignment. Like all
machine-learning algorithms, the capability of distogram
predictions must come from the training data of SAdLSA.
Although SAdLSA was not trained to learn individual protein
folds, we hypothesize that the fold-depicting distogram provided
in the SAdLSA self-alignment comes from learning the training
pairs sharing fold similarity as the target sequence. During
SAdLSA training, it mainly focuses on aligned residues across
two different sequences, but the network also observes the relative
positions among aligned residues. As a result, SAdLSA learns the
folding code of individual protein sequences, provided that they
exhibit significant fold similarity. The more similar in their

FIGURE 3 |Mean absolute error of predicted distogram vs native distogram for 593 test cases. The main plot displays the distribution of MAE values within each
Cα-Cα distance bin from 4 to 20 Å for nonlocal residue pairs. Each bin has a spacing of 1 Å and each blue point represents a target protein. Violin contours are
proportional to the counts of targets at different MAE levels with a bin width of 0.025. Black boxes and bars represent the second and third quartiles (25–75% ranked by
MAE values) and the median of the distributions. The red stars represent the mean values.comparison, the expected MAE distributions are shown in orange error
bars, which are centered at the mean and extended to ±sd. The insert shows the histograms of the dMAE values in two separate assessments, calculated (purple) from
the SAdLSA self-alignment and expected (teal) from the background distribution. For each target, its dMAE value is For calculated from all nonlocal residue pairs up to
20 Å as observed in the native distogram.

TABLE 1 | Mean precision of Medium/Long-range inter-residue contacts for 593
targets.

Method Medium/Long-range Contacts*

L L/2 L/5

SAdLSA (Cα—Cα) 0.403 0.526 0.637
DESTINI2 (Cα—Cα) 0.645 0.777 0.858
DESTINI2 (Cβ—Cβ) 0.678 0.803 0.879

*Medium/Long-range Contacts denote residue-residue contacts whose sequential
distance are in either the medium or long-range regime. Contact predictions are
converted from the distogram predicted by each method. All deep-learning models were
re-trained to exclude the test set and their close homologs from the original training sets
(see Methods).
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structures, ideally the same fold as the training pair, the more
likely the distogram pattern is learned for this specific fold.

Presence of the Same Fold as a Target in the Training
set Is Important
To explore the validity of this hypothesis, for a target structure
and a pair of training structures, we introduce T, defined as the
minimal TM-score of the two training structures with respect to
the target structure, using the target to normalize the TM-score.
For each target, we find the highest T, denoted as T*, among all
pairs in the training set. Figure 5 shows the correlations between
T* and the precision for the top L/2 residue-residue contact
predictions. The violin plots demonstrate a clear upward trend in
precision from the low T* regime to high T* regime. When there
is a lack of obvious training structures that are similar to the
target, e.g., when T* < 0.4, the median precision is only at 39%.
The same metric increases to 52% if T* ∈ [0.5, 0.6), and
dramatically to 82% if T* > 0.7. The Pearson correlation
coefficient between T* and the precision of all targets is 0.34,
which clearly shows the dependency of precision on T*, despite
the indication that other factors are also in play.

For example, Figure 5 shows that there are still very good
distogram predictions in the low T* regime. How could SAdLSA
accurately predict a distogram when there is no similar training

structure? There are 11 target sequences with L/2 precision >60%
within T* < 0.4. If one examines these structures, some of them
are composed of multiple domains or subdomain structures. For
example, one target, with SCOP ID d3u7qb, is a 522 AA sequence
composed of three Rossman folds and two helical bundle
domains, despite the fact that SCOP defines it as a single
domain. Although there is no other structure in the training
set that resembles the overall structure of this target, the folds of
its individual domains can be learned separately. As shown above,
the Rossman fold is relatively easy to learn (Figure 2). As a result,
the overall precision prediction is 76% and the dMAE is 2.44 Å
(p-value � 8.0 × 10–4) for this query sequence. More interesting
examples are analyzed below.

Evolutionary Relationships Facilitate Fold-learning
What are the other possible contributing factors? In addition to
T*, we further consider four other features including the ratio of
total observed native contacts (within either the medium or long-
range) over the sequence length, whether the T* training pair
belong to the same fold or superfamily according to the SCOP
classification and the sequence diversity of the multiple sequence
alignment of the target. The Pearson correlation coefficient
between each of these four additional features and the contact
precision is 0.55, 0.30, 0.33, and 0.33, respectively. Figure 6 shows

FIGURE 4 | Precision of inter-residue contact predictions via SAdLSA self-alignment. The precision of the top L (light green), L/2 (green), and L/5 (gold) are shown
as circles for each target sequence. Violin contours are proportional to the counts of targets at different precision levels with a bin width of 0.01. Black boxes, median bars
and means are represented following the same plotting scheme as in Figure 3.
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the results from t-SNE analysis of these five features. Three big
clusters emerge and represent targets whose T* training pair are
from the same SCOP superfamily (240 entries), the same SCOP
fold but not the same superfamily (40 entries), and different
SCOP fold (313 entries). They exhibit different levels of difficulty
for contact prediction, at mean precision values of 64%, 60%, and
43%, respectively. This result makes sense as the sequence profiles
from the same superfamily are similar and relatively easy to learn
for a neural network model, whereas sequence profiles from
remote families or those without an apparent evolutionary
relationship are much harder to learn. In the same
superfamily cluster, there are very few “bad” predictions, e.g.,
41 (17%) targets at L/2 have a precision <30%. One explanation is
the structural variation between the target and the training
structures, despite the fact that they are from the same
superfamily. On the other hand, even for cases where the
evolutionary relationship might not be clear, it is still possible
to predict a fold-depicting distogram reasonably well with
SAdLSA, as is evident in the clusters where the SCOP
superfamilies are different. In particular, we note that SAdLSA
performs very well for a target structural fold if there are training
structures originated from the same SCOP fold but not
necessarily the same SCOP superfamilies, as is evident in the
mean precision of 60% among 40 such entries, close to the value
of 64% in the cluster representing the same superfamily.

Moreover, the sequence diversity correlates positively with the
contact precision at a correlation coefficient of 0.33. There are 53
cases with T* < 0.4, i.e., when there is a lack of similar fold in the
training set for these targets. Among them, those with high
diversity, e.g., 28 targets with Neff > 1,000, have an average L/2
contact precision of 47% vs. 30% for 25 cases with smaller
sequence diversity. Likewise, for cases when similar folds are
present in the training set, e.g., T* > 0.6, but the Neff is low <100,
the mean contact precision is at 42%, much lower than 64%,
which the mean value for cases at the same T* > 0.6 criterion but
with higher sequence diversity.

Delineation of Protein Folds via Deep-learning Across
SCOP Folds
Notably, even when the best training structures are from a
different SCOP fold, there are still many highly accurate
distogram predictions as exhibited in Figure 6. Indeed, there
are 102 (33%) such cases in the different fold cluster with
precision >60% among top L/2 predictions. Three
representative examples are displayed in Figure 7. One main
reason for this observation is that they may still have reasonably
close or even a highly similar fold present in the training set,
despite the different SCOP classifications. For 102 targets, 91/62%
of them have T* > 0.4/0.5, respectively. Figure 7A illustrates one
such case, which is the C-terminal domain from pyruvate kinase

FIGURE 5 | Precision of inter-residue contact prediction vs T*, the highest TM-score to all structures in the pairs found in the training set. The violin and box plots
follow the same scheme as in Figure 3.
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of Leishmania mexicana (Morgan et al., 2010). Even though there
is no structure belonging to the same SCOP fold as the target,
there are 12,239/498/10 training structures with TM-score >0.4/
0.5/0.6 to the target structure, and the precision for contact
prediction is at 98% with dMAE of 1.68 Å (p-value � 2.5 ×
10–12) from the native distogram. A second example is
delineated in Figure 7B for a domain from Bacillus subtilis
Q45498 with unknown function. It has a T* value of 0.47,
among 151 training structures in the TM-score regime 0.4 to
0.5 but none higher. SAdLSA self-alignment makes a good
prediction at 85% and dMAE of 2.29 Å (p-value � 5.1 × 10–5).
For these examples, it is reasonable to conceive that SAdLSA
learns to predict this fold at high precision values through the
training on the comparison of these structures.

In addition, there are 127 targets that do not share the same
SCOP fold with any member in the training set. Yet, for 32/41
cases, SAdLSA can predict residue-residue contacts at >50/60%
precision. One such example is shown in Figure 7C. The target
sequence is the hemophore HasA from Yersinia pestis (Kumar
et al., 2013). The distogram prediction via SAdLSA alignment is at
67% with a dMAE of 2.88 Å (p-value � 0.17). While the results are
not as good as the above two cases, one can still find correct
predictions between the main secondary structure elements.

Here, the long-range interactions by SAdLSA are fuzzy and
imprecise. Nevertheless, the result is remarkable giving that no
training structure shares a TM-score >0.4, and its T* is at 0.38. In
these cases, SAdLSA likely learns the packing pattern for the
subdomains or fragments of a target sequence from its training
structures, which may share relatively low overall structure
similarity but high similarity to some individual domains,
subdomains or fragments, like the example in 3.2.1, but here it
is more general and subtle without a clear definition of the
domain.

Lastly, one technical reason why some targets have low
precision is due to the definition of this metric, which
penalizes the case where very few medium or long-range
contacts are present in the observed native structure, e.g.,
coiled-coil structures. With relatively few or even no true
positives in extreme cases, the L/n normalization will bring
down the precision value. In fact, the ratio of native contacts
over the length of the sequence has the strongest correlation
(0.55) with the contact precision among all five features
considered. There are 22 cases whose ratio <0.25 between the
number of native medium/long-range contacts and the length of
protein. Their mean precision at L/2 is only 9%. However, 15 of
22 have a significant dMAE < 2.68 Å (p-value < 0.05). Moreover,
due to the lack of long-range contacts, such structures (e.g.,
#contacts/L < 0.5) are likely more flexible than compact folds,
and therefore, are challenging for structure accurate prediction.
In the same superfamily/different fold cluster, there are 12/49
cases forming the reddish subclusters at the edge in Figure 6. Of
these 62 cases in total, 18 have a dMAE ≥ 2.68 Å. Thus, the reason
for a few of these poor predictions might reflect the intrinsic
propensity towards disorder for some proteins.

DISCUSSIONS

What structural information does one wish to obtain from a
machine-learning algorithm, given an input protein sequence?
Very recently, numerous approaches have employed deep-
learning techniques to predict tertiary protein structure,
notably through an inter-residue distogram (Skolnick and Gao,
2021). One may argue that a more general machine-learning
approach should go beyond the prediction of the tertiary
structure for a single sequence to predict structural
relationships between multiple protein structures, which may
lead to a deeper understanding of their sequence or functional
relationships. For this purpose, we introduced SAdLSA, which
predicts protein sequence alignments by learning their structural
alignment via deep-learning (Gao and Skolnick, 2020). In this
contribution via a self-alignment analysis, we extended the
previous study and explicitly demonstrate that SAdLSA learns
the protein folding code. The key to understanding the deep-
learning folding code lies in the analysis of the distogram
prediction. Indeed, we obtain distogram predictions at
surprisingly high accuracy for many folds, at a mean precision
of 52% for the top L/2 contact predictions and a mean absolute
error of 2.43 Å in inter-residue distogram predictions. In terms of
dMAE, about 97% of predicted inter-residue distograms are better

FIGURE 6 | T-SNE analysis of factors affect the precision of inter-residue
distance predictions. Each point in the plot represents one of 593 target
sequence, color-coded according to its precision value of the top L/2 Cα-Cα
contact prediction for those belonging in the medium or long-range
regime. The template pairs structurally most close to the target sequence
found in the training set are classified according to their SCOP fold and
Superfamily assignments. The brackets < · > denote the mean among all
targets within the same cluster circled by dashed lines.
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than expected from a background prediction, and 74% are
statistically significant. This explains the advantage of SAdLSA
over the classic approaches as up to a 100% improvement was
observed in benchmark tests (Gao and Skolnick, 2020).

How does SAdLSA obtain its fold-depicting capability? The
most important contribution comes from similar fold structures
subjected to training. The algorithm was designed to pay
attention to the distances between aligned residues. When
these two training structures share a similar fold, the

distogram of such fold can be learned, as evident in the
correlation between the target and training structures
(Figure 5). Additionally, if a training sequence is
evolutionarily related to a target sequence, even remotely, it
facilitates fold learning. More interestingly, SAdLSA can learn
from training structures that go beyond the SCOP fold, e.g., cases
that share no similar SCOP fold or even no similar overall fold
whose TM-score >0.4 in the training set. This seems surprising at
first but may be partially explained as follows: First, a target may

FIGURE 7 | Examples of distogram predictions by SAdLSA self-alignment in comparison to native protein structures. Each panel is one example taken from targets
whose fellow SCOP fold members (if any) were not present in the training set. The same scheme as Figure 2 was adopted to display the native structure and its
distogram. Black lines in the native distograms belong to gap or non-standard amino acids in a crystal structure. The predicted distogramwas calculated using the mean
residue-residue distance matrix D formulated in the Methods. The precision values are for the medium/long-range residue contacts within top L/2 predictions. The
value of dMAE is obtained with Eq. 2.
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have many structural analogs with high structural similarity that
escapes human manual classification. Second, the protein’s
structure may consist of multiple-domains, subdomains, or
smaller fragments whose packing pattern may be learned
individually and separately from many training structures. As
with all machine-learning based algorithms, since the prediction
capability of SAdLSA comes from the training set, the key
question is how general is the resulting model? The success in
this SAdLSA self-alignment benchmark that includes many
challenging cases is a good indication of its generality. But
ultimately, it needs the validation in real-world, large-scale
applications, ideally at the proteome-level.

Despite this success, we note that the fold-prediction ability
of SAdLSA self-alignment is not as accurate as deep-learning
algorithms specially designed to predict protein structures, e.g.,
DESTINI2. There are two main reasons for this reduced
performance. First, the training of SAdLSA is on the inter-
sequence, inter-residue distances between a pair of
superimposed structures, rather than the intra-sequence,
inter-residue distances observed in a single structure. As
such, SAdLSA self-alignment performs well when a pair of
structures sharing a highly similar fold are present in the
training set. But this requirement is not always true,
especially as our training set is derived from ∼5.000 SCOP
domains, which is half the size of the training set for protein
structure prediction, e.g., ∼10,000 structures for DESTINI2’s
training. Only 41% of the testing targets have a close training
pair at T* > 0.6. Second, the current version of SAdLSA uses
sequence profiles as its only input features, whereas many more
features, especially the direct co-evolutionary signals that are
essential for the success of DESTINI2 and the like, are not
employed for a technical reason. Nevertheless, more recent
deep-learning algorithms, such as AlphaFold2, directly learn
from the multiple sequence alignment with an “attention”
mechanism. Since the same multiple sequence alignment was
used to derive the sequence profile used by SAdLSA as in
DESTINI2, in principle, one may design a next generation,
SAdLSA-like algorithm with a similar attention mechanism. It

will not only predict protein tertiary structure via self-
alignments, but also compare structures encoded by two
different sequences at high precision. Such work is now
underway.
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