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Lymphocytes are the central actors in adaptive immune responses. When challenged with
antigen, a small number of B and T cells have a cognate receptor capable of recognising
and responding to the insult. These cells proliferate, building an exponentially growing,
differentiating clone army to fight off the threat, before ceasing to divide and dying over a
period of weeks, leaving in their wake memory cells that are primed to rapidly respond to
any repeated infection. Due to the non-linearity of lymphocyte population dynamics,
mathematical models are needed to interrogate data from experimental studies. Due to
lack of evidence to the contrary and appealing to arguments based on Occam’s Razor, in
these models newly born progeny are typically assumed to behave independently of their
predecessors. Recent experimental studies, however, challenge that assumption, making
clear that there is substantial inheritance of timed fate changes from each cell by its
offspring, calling for a revision to the existing mathematical modelling paradigms used for
information extraction. By assessing long-term live-cell imaging of stimulated murine B and
T cells in vitro, we distilled the key phenomena of these within-family inheritances and used
them to develop a new mathematical model, Cyton2, that encapsulates them. We
establish the model’s consistency with these newly observed fine-grained features.
Two natural concerns for any model that includes familial correlations would be that it
is overparameterised or computationally inefficient in data fitting, but neither is the case for
Cyton2. We demonstrate Cyton2’s utility by challenging it with high-throughput flow
cytometry data, which confirms the robustness of its parameter estimation as well as its
ability to extract biological meaning from complex mixed stimulation experiments. Cyton2,
therefore, offers an alternate mathematical model, one that is, more aligned to
experimental observation, for drawing inferences on lymphocyte population dynamics.
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1 INTRODUCTION

B and T lymphocytes are central contributors to the adaptive
immune response. When exposed to a foreign pathogen with
epitopes that are complementary to their B or T cell receptors,
they respond by proliferating to create a clone army capable of
recognising the threat. These cells differentiate into effector cells
to fight the invasion, and into memory cells primed to fend off
repeated insults. The population size of their response, the
proportion of cells allocated to distinct differentiated effector
types, the cytokines that they produce, and other key
characteristics of the immune response are known to be
heterogeneous but regulable (Kaech et al., 2002; Duffy et al.,
2012; Buchholz et al., 2013; Gerlach et al., 2013). Variables that
influence the outcome include the affinity of the receptor
interaction and the provision of costimulatory signals from
other cells (Marchingo et al., 2014). In the quest to better
understand immune responses and therapeutic intervention, it
remains an essential question to determine how signals are
integrated to alter cell fate and how the cells process such
information to yield diverse, yet appropriate outcomes.
Answering this question requires an understanding of
operational aspects of lymphocyte population dynamics, and
the influence of signals on individual fates. When known,
quantitative models and analytical techniques can be
developed and used to monitor lymphocyte control under
different conditions; they can recreate, and predict outcomes
for complex situations (Duffy et al., 2012; Hodgkin, 2018).

Much of the understanding regarding lymphocyte population
dynamics has come from assessing in vitro experiments. When
isolated ex vivo, B and T cells are small, non-dividing, resting cells
that die after a period of time if placed unstimulated into culture.
The provision of activating signals leads to changes that
reprogramme survival times and initiate cell division in
quantitative manner (Gett and Hodgkin, 2000; Hawkins et al.,
2007). After an initial period of intense transcriptional changes
and cellular programming, activated cells initiate and undergo
division repeatedly, before their offspring return to a non-
dividing, quiescent state followed ultimately by death if no
further signals, such as from cytokines, are received. Thus
mathematical models for immune dynamics must have
features that match biological processes and allow the
alteration of division times, the number of cell divisions, the
likelihood of cell death, and rules for how these parameters are
altered by changes in signalling conditions.

Advances in experimental technologies have provided detailed
data on lymphocyte population dynamics that have informed
modelling frameworks. A key development came in 1994 with the
discovery that cell divisions could be followed and enumerated by
flow cytometry with fluorescent dye carboxyfluorescein diacetate
succinimidyl ester (CFSE) (Lyons and Parish, 1994), with
subsequent developments deriving distinct colours (Quah and
Parish, 2012) including CellTrace™ Violet (CTV). After a short
period of culture with these dyes cells become intensely
fluorescent and measurable by flow cytometry. On division,
their offspring inherit half their parent’s dye and so fluoresce
with half their intensity. That methodology allows up to eight

distinct generations to be measurable within a single culture by
flow cytometry before fluorescence falls to a level
indistinguishable from background. Data from CFSE and CTV
experiments informed, for example, the mathematical models
reported in Gett and Hodgkin (2000), Boer and Perelson (2005),
Ganusov et al. (2005), Asquith et al. (2006), Hawkins et al. (2007),
Luzyanina et al. (2007), Subramanian et al. (2008), Duffy and
Subramanian (2009), Hyrien and Zand (2008), Zilman et al.
(2010), Banks et al. (2011), Miao et al. (2011), Banks et al.
(2012), Shokhirev and Hoffmann (2013), Mazzocco et al.
(2017). Many of these models either ignore cell survival or
assume that it is a fixed feature that is, independent of the age
of cells. Most of these models also assume age independent
division times to make stochastic systems Markovian or
consider only the evolution of the average system, expressed as
ordinary differential equations.

In contrast, directly performing novel experiments for the goal
of mathematical model design, Hawkins et al. (2007) measured
survival over time and concluded cell age was important to their
fate. They also extended earlier work of Gett and Hodgkin (2000)
that demonstrated that division and death times could be
regulated independently within the same cell. Based on those
data, they proposed a model where cell age and stochastic
operations govern fate outcomes. Their Cyton model of the
cell was named for the putative molecular machinery creating
regulable timers for division and death.

In the Cyton model, division and death times are
heterogeneous in the cell population and so modelled by
random variables whose operation appears independent.
Within each cell, the two timers are in competition, where
whichever one completes its operation first determines the fate
of the cell. This model structure gives rise to the prediction of
distinctive correlations that are observed in data (Duffy and
Hodgkin, 2012). In the absence of detailed information on
individual cells and their offspring, the Cyton model assumed
that timers were independently reset at each generation. To
complete the Cyton model, an additional component was
introduced: the number of divisions cells underwent before
cessation of expansion and their return to quiescence. This
parameter, termed division destiny (DD), was described by a
probability of continuing motivation to divide after each cell
division.

Thus, in the Cyton model a cell would divide rapidly for a
period when division times outcompeted death times. The fate of
a cell that stops dividing by triggering division destiny is then
solely governed by its final death time. By adjusting the
probability distributions of division, death and destiny, the
model recreated typical immune cell population dynamics
without further ad hoc assumptions (Hawkins et al., 2007;
Subramanian et al., 2008; Lee et al., 2009; Wellard et al.,
2011). After its development, the Cyton model was
successfully used as a tool in important studies that extracted
information on key features controlling immune dynamics
(Hawkins et al., 2013; Shokhirev and Hoffmann, 2013;
Marchingo et al., 2014; Shokhirev et al., 2015; Mitchell et al.,
2018). Some of the assumptions on which the Cyton model was
based were unobserved facets, and needed further experimental
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confirmation for their suitability. In particular, questions of
familial correlation needed to be addressed by time-lapse
microscopy and other, similarly capable, methods.

Stimulated lymphocytes typically aggregate, adhering
together, making individual cell tracking by microscopy
difficult or impossible. However, Hawkins et al. (2009) noted
that B cells stimulated by the Toll-like receptor agonist CpGDNA
exhibited the population dynamics typical of standard immune
responses, but remained separated and individually identifiable
(Hawkins et al., 2009). Using microscopy, the authors tracked
over 180 individual family trees enabling statistical features such
as dependencies to be assessed. Strikingly, it became apparent that
division and death times of siblings were highly correlated.
Further, division destiny, the number of divisions cells
undergo before returning to quiescence, was a strongly familial
feature (Hawkins et al., 2009). This conclusion, which ran
contrary to assumptions underlying all previous mathematical
models, was examined and further extended in subsequent
studies Duffy and Subramanian (2009); Markham et al. (2010);
Wellard et al. (2010); Duffy et al. (2012); Dowling et al. (2014);
Shokhirev et al. (2015); Mitchell et al. (2018). In a parallel
development, a division dye multiplex method, which provides
less lineage information than live cell imaging, but has higher
throughput for identifying families, was developed (Marchingo
et al., 2016; Horton et al., 2018). When used with antigen
stimulated CD8+ T cells, similar familial features to those
observed directly for B cells were reported.

In addition to those population dynamics studies, the proto-
oncogene Myc was identified as a molecular correlate that
explained one important aspect of familial sharing of
information. Results in Heinzel et al. (2017) established that in
B and T cells Myc levels increase in response to mitogenic stimuli,
and, so long as levels are sustained above a critical threshold, Myc
acts as a license for cells to divide. Over the course of the response
Myc levels then fall, and once they drop below the threshold,
these cells lose their motivation for further division and re-enter
quiescence. Crucially, that experimental work established that the
time between cell divisions was uncoupled from the Myc level.
Further, importantly, Myc levels altered over time, diminishing
late in culture, but the kinetics of change were transmitted to
offspring without being affected by mitosis. Taken together, these
results indicate that the control of division destiny should be
viewed as being timed, rather than counted by cell division
(Heinzel et al., 2017). The familial inheritance of division
destiny was consistent with the high correlations in fate within
clonal families that were reported for both B and T cells (Hawkins
et al., 2009; Duffy et al., 2012; Marchingo et al., 2016; Horton
et al., 2018; Zhou et al., 2018). Heinzel et al. (2017) also reported
evidence that time to death under these conditions was also
programmed early in the stimulated cell and passed to
descendants without being altered in a manner analogous to
the transmission of the division destiny times. As a result, the fate
of whole family members can be highly concordant while
allowing significant variation of the times between families
from an otherwise homogeneous cell population.

Collectively, these findings suggest alterations to current
model paradigms are necessary. While the Cyton model was

correct in its assessment of competing timers, assigning them to
families rather than individual cells is more consistent with these
data. Here, we propose and develop a new Cyton model where
familial inheritance of times for destiny and survival fates are
included. We examine datasets from time-lapse microscopy of B
and CD8+ T cell families, and interrogate these data to investigate
consistency with timed outcomes. Wemeasure correlations in the
likelihood of each alternative fate and determine a suitable class of
parametric distributions for their description. The proposed
model is constructed such that identifiability is improved
while computational model fitting burden over the earlier
Cyton model is not increased. We use the model to
interrogate CTV stained datasets obtained using flow
cytometry, illustrating its utility and efficacy when used with
both B and T cells.

2 RESULTS

2.1 Cyton2 Model Structure
Recent experimental findings suggest three important
modifications to the original Cyton model for stimulus-
induced proliferation bursts (Figure 1A): 1) division destiny
should be converted to a division-agnostic, family-based timed
mechanism, replacing the original generation counter; 2) both
division destiny and death times should be programmed early
after each lymphocyte’s activation and applied globally to the
ancestor’s offspring; and 3) family members of the same
generation should have essentially the same division time. As
has been observed experimentally (Hawkins et al., 2009;
Marchingo et al., 2016; Horton et al., 2018; Mitchell et al.,
2018), the resulting family trees of activated lymphocytes
derived from a single founder cell, and hence clones,
according to Cyton2 rules are largely regular (Figure 1B).
Thus we posit the new Cyton2 stochastic model using sets of
random variables that correspond to a global death timer, a global
destiny timer, and division-time machinery (Figure 1C).

The development of each family tree in Cyton2 is fully
described by a collection of independent, non-negative, real-
valued random variables: (T0

div, {Tk
div}k≥ 1, Tdd, Tdie). Three of

these describe times from the addition of stimulus: the time to
first division T0

div; the time to familial division destiny Tdd,
encapsulating the licence to divide period; and the time to
familial death Tdie. The last set of random variables, {Tk

div}k≥ 1
are the times from each mitosis to the next, should it complete
before division destiny or death occurs. From these random
variables, a family tree is created according to the following rules:

• Founding cells that give rise to familial clones are initially
quiescent, unrelated and autonomous.

• All cells in the family die at Tdie.
• The family proliferates until min (Tdie, Tdd).
• At time t < min (Tdie, Tdd), cells in the family are in
generation G(t) � max{g: ∑g

k�0T
k
div < t}.

To properly assess the appropriateness of the Cyton2 as a fine-
grained description required time-lapse microscopy data. To that
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end we re-analysed previously published B cell data sets as well as
new, primary CD8+ T cell datasets.

2.2 Time-Lapse Microscopy of B and T Cell
Families
For B cells, we revisited two datasets for CpG-stimulated B cells
published in Hawkins et al. (2009) consisting of 108 clones (B-exp1)
and 88 clones (B-exp2), respectively. These datasets had not been
analysed for timed global features but had revealed strong familial
correlations previously (Duffy and Subramanian, 2009; Hawkins
et al., 2009; Markham et al., 2010; Wellard et al., 2010). Thus, to
explore familial features we first transformed the data for each
family, collapsing the tree into average features (see Methods;
Supplementary Table S1, Supplementary Figures S1, S2 for raw
data). This process is illustrated inFigure 1C andwas applied to each
B cell family as shown in Figure 2A1. Measurements corresponding
to key Cyton2 variables are further illustrated in the cascade plots
Figure 2A2 with the exception of the time to division destiny (Tdd)
as it cannot be identified directly in data. Instead, the time to last

division (Tld), which is necessarily a lower bound, was used as a
proxy for it. These data reconfirmed the well-established
understanding that times to first division, ≈ 40 h, are
substantially longer than times to subsequent divisions. These
data also confirmed the relatively consistent subsequent division
times (≈10 h) and the strong correlation times between progeny cells
within a given generation in each family.

Using these measurements, we evaluated the discrepancy
between Cyton2’s approximation of perfect within-family
correlation in subsequent division time (Tk

div), time to last
division (Tld), and time to death (Tdie). We calculated
coefficient of variation (CV) per clone, and evaluated the
average CV for each variable. For Tk

div, Tld and Tdie, we
identified 17.2, 7.3, and 9.4%, respectively, as average CVs for
B-exp1. Similar results were found for B-exp2 (see
Supplementary Figure S3A1). This signifies low variation
around the mean times to fates within families, and is
consistent with previously reported synchronous behaviour.
We then questioned the independence of the variables
operating at the clone level using information from the

FIGURE 1 | Overview of the two Cyton models. (A) The original Cyton model (Hawkins et al., 2007) where stochastic times to divide and to die are chosen
independently after each cell division. Cells cease their motivation to divide based on division-counting mechanism. (B) The Cyton2 model incorporates significant
correlation in division times between siblings, as well as familial inheritance of death and division destiny times. (C)A consequence of the correlation and inheritance is that
the resulting family trees are heterogeneous, but highly concordant. By exploiting this property, a family tree can be summarised by substituting the average values
of its times and fate at each generation. An example of clonally collapsed family tree and its key variables is shown.
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FIGURE 2 | Extracting times to fates from CpG-stimulated B cells and CD8+ T cells in the presence of 1, 3, or 10 U IL-2. (A1, B1)Clonally collapsed family trees of B
and T cells respectively. (A2, B2) Rank ordered times to events of families. (A3, B3) Correlation coefficient (ρ) estimated using bivariate normal distribution with 95%
credible interval is reported for each pair. 90, 95 and 99% density regions are plotted over the data. For null, H0: ρ � 0, and alternative, H1: ρ ≠ 0, hypotheses, Bayes
Factors (BF01 � 1/BF10) were calculated. If the data is more probable under H0, then it is BF01 times more favoured than H1 (blue-scale), and vice versa (red-scale).
Distributions of the times are collated into 1 h time intervals and shown in the diagonal panels.
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collapsed clones. Here, for statistical purposes, we extracted the
time to first division, average subsequent division time (Tk≥1

div ),
average time to last division, and average time to death, as the four
key variables per clone. For every pair, the correlation coefficient
(ρ) and its 95% credible interval were determined using a
Bayesian approach. For these data, the Bayes Factor (BF) for
competing hypotheses (H0: ρ � 0 and H1: ρ ≠ 0) were calculated
(see Methods) (Figure 2A3) and tabulated in Table 1. With the
exception of the pair (Tld, Tdie), CpG-stimulated B cells showed
little to no correlation between any pair of variables, with H0

being favoured. While at first glance the exception may appear
suggestive of shared regulation, another explanation is possible,
which is examined in the next section.

Extending the analysis to T cells, we also interrogated three
primary data sets of time-lapse microscopy of murine CD8+ T cells
not previously published. In each dataset, TCR transgenic OT-I
CD8+ T cells specific for the SIINFEKL (N4) peptide from the
chicken ovalbumin protein (Hogquist et al., 1994) were first
stimulated with αCD3 or cognate peptide N4 along with a range
of costimulatory signals and strengths for 24 h. In the first dataset (i)
the cells were stimulated with αCD3 and co-incubated with 1, 3, or
10 U/mL of the T-cell growth factor IL-2. IL-2 level was buffered by
neutralising endogenously produced IL-2 with blocking antibody
S4B6, and adding human IL-2 at the nominated concentration
(Deenick et al., 2003). By combining datasets obtained from two
independent repeats, 109, 90, and 163 clones were recorded. In (ii),
the combination of N4, αCD28, and IL-2were used (T-exp1); and, in
experiment (iii) the combination of N4, αCD28 and IL-12 (T-exp2).
Details for live imaging and data extraction are given in Methods. In
Figure 2B, results from CD8+ T cell dataset (i) are aggregated and
analysed as for B cells. Similar to B cells, we observed longer times to
first division (≈40 h) than the subsequent division times (≈18 h) for
1, 3, and 10 U of IL-2. Also, the spread of the times within a family
show similar or lower average CVs than that of B cells (Figure 2B2
for 3 U; see Supplementary Figures S3B1,C1 for 1 and 10 U). We
applied the same calculation to (ii) and (iii) datasets and reached the
same conclusions (see Supplementary Figures S4A,B for T-exp1

and T-exp2). Taken together, we conclude CD8+ T cells exhibit
synchronous fates, similar to observations from B cells. However, in
contrast to B cells, moderate to strong correlation coefficients were
observed (Figure 2B3). These were further supported by BF
calculations, which show strong evidence in favour of H1

(Table 1). We noticed the same results for T-exp1 and T-exp2
datasets (see Supplementary Table S2).

At face value, as with the pair (Tld, Tdie) for B cells, these data
are suggestive of a lack of stochastic independence between
underlying timers. An alternate explanation is, however,
possible and we next sought to challenge it.

2.3 Induced Dependency Through Right
Censoring of Timers
Informed by earlier data, in constructing Cyton2 we assumed that
(T0

div, {Tk
div}k≥ 1, Tdd, Tdie) were independent random variables

describing times to familial events. In the data, however, not
all of them are observable due to a phenomenon called right-
censoring. In particular:

• If T0
div or T

k
div is greater than either of Tdd or Tdie, it is not

observed in the data.
• If Tdd is greater than Tdie, it is not observed in the data.

Even if the underlying random variables are independent,
right-censoring necessarily induces correlation in times observed
in data (Duffy et al., 2012; Duffy and Hodgkin, 2012) where the
greater the competition in these times, the stronger the observed
correlation. While these earlier demonstrations of censorship-
induced correlations were seen within one generation, we
explored the possibility that heritable fates times across
multiple generations could also lead to a similar effects.

In Section 2.2, most of the variable pairs for B cell families
were reported to be more probable under the no-correlation
hypothesis, while for the CD8+ T cell families we found mixed
results. The key difference between the two datasets is the depth

TABLE 1 | Bayesian independence test of the times to fates extracted from B and CD8+ T cell filming datasets. For each pair of the times to fates, the correlation coefficient
was estimated with 95% credible interval using bivariate normal distribution and Bayes Factor (BF) was calculated. Given two hypotheses (H0: ρ � 0 and H1: ρ ≠ 0), if the
data is more probable under H0, then it is BF01 times more favoured than H1, otherwise H1 is BF10 times more favoured than H0.

Cell type Stim Number of clones (N) and bayes Factora (BF01 = 1/BF10) and correlation coefficient [ρ (CI)]

(T 0
div ,T

k≥1
div ) (T 0

div ,Tld ) (T 0
div ,Tdie) (T k≥1

div ,Tld ) (T k≥1
div ,Tdie) (Tld, Tdie)

B (B-exp1) CpG N � 56 N � 69 N � 69 N � 56 N � 56 N � 69
BF01 � 1.05 BF01 � 3.92 BF01 � 5.12 BF01 � 6.00 BF01 � 2.82 BF10 > 100

0.24 [0.01, 0.48] 0.12 [−0.10, 0.35] 0.09 [−0.14, 0.31] 0.0 [−0.25, 0.25] 0.16 [−0.08, 0.40] 0.57 [0.42, 0.72]

CD8+ T 1U IL-2 N � 4 N � 28 N � 28 N � 4 N � 4 N � 28
BF01 � 1.70 BF10 � 39.09 BF01 � 2.53 BF01 � 1.53 BF01 � 1.43 BF10 > 100

−0.01 [−0.86, 0.85] 0.55 [0.29, 0.78] 0.19 [−0.15, 0.53] −0.15 [−0.96, 0.71] 0.20 [−0.66, 0.98] 0.59 [0.35, 0.81]
3U IL-2 N � 13 N � 34 N � 34 N � 13 N � 13 N � 34

BF10 � 17.17 BF10 � 50.05 BF10 � 1.46 BF10 � 28.96 BF10 � 3.13 BF10 > 100
0.67 [0.36, 0.93] 0.52 [0.28, 0.75] 0.32 [0.03, 0.61] 0.70 [0.41, 0.94] 0.52 [0.12, 0.87] 0.64 [0.44, 0.82]

10U IL-2 N � 16 N � 50 N � 50 N � 16 N � 16 N � 50
BF10 � 7.55 BF10 > 100 BF10 � 15.39 BF10 > 100 BF10 � 1.56 BF10 > 100

0.57 [0.23, 0.86] 0.58 [0.41, 0.75] 0.40 [0.18, 0.62] 0.76 [0.55, 0.94] 0.42 [0.02, 0.79] 0.63 [0.46, 0.78]

aBF Interpretation: Anecdotal (1 < BF ≤ 3); Moderate (3 < BF ≤ 10); Strong (10 < BF ≤ 30); Very strong (30 < BF ≤ 100); Extreme (BF > 100).
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of the trees: many of the B cell families had divided six times,
whereas the CD8+ T cell families had divided at most three times
(Figures 2A2,B2). This suggests the possibility that more of the
variables are rendered unobserved for the CD8+ T cell families.
To challenge that possible explanation, we simulated a Cyton2
process with an agent based model (ABM) (see Methods). As Tdd
is not directly observable in data, we use Tld as a proxy for it. As
Tdd ≥ Tld, this approximation may lead to an increase in the level
of induced censorship. Under the assumption that Tld � Tdd, each
variable was independently sampled from respective lognormal
distributions that were fit to the data (see Section 2.4). In
Figure 3A1, three example realisations of family trees are
shown for a parameterisation corresponding to CpG-
stimulated B cells.

For B cells, with each point representing a single family, the
underlying simulated variable values as well as those that would
appear in the data due to the right-censorship described above are
shown in Figure 3A2. By construction, the BFs for each pair in
the underlying timers favour the null hypothesis (H0: ρ � 0). For
the right-censored values that would be observed in practice,
however, the BFs are consistent with the experimental data in
favouring the alternative hypothesis (H1: ρ ≠ 0) for some pairs
(Table 2). As the underlying Tdie distribution is well separated
from the T0

div distribution for these data, it is unlikely that death
would censor the time to first division, hence, it explains why the
absence of correlation in the observed data is favoured in that
case. Similar results were found for B-exp2 (data not shown). We
followed a similar protocol for the CD8+ T cell data where a

FIGURE 3 | Simulation under the independence assumption. 106 Cyton2 families were simulated given fitted lognormal distributions of T0
div , T

k≥1
div , Tld, Tdie from

respective filming datasets. (A1) Three example ABM families parameterised as CpG-stimulated B cells: dividing (blue solid-line) and dying (red solid-line) states. The
realisations of T0

div (•), Tk≥1
div (tk≥1div ), Tld (•), Tdd (+) and Tdie (×) are annotated on a collapsed line. As a feature of inheritance, the progeny cells double in number

synchronously whenever division occurs, and likewise, they reach destiny and death at the same time. (A2, B1–B3) For all simulated families, each variable was
randomly sampled from the fitted Cyton distribution (inset), and the samples are labeled as true sample time (purple dot). Their corresponding observable sample times
(blue dot) are shown along with the data points (orange dot) from the filming datasets. Distributions of the sampled true and observable times of each variable are shown
in the diagonal panels. The observable and unobservable regions are separated by upper and lower sections of y � x line (dashed-line), respectively. The Bayes factors
are reported for the true and observable pairs.
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higher degree of right-censorship occurs due to the underlying
distributions having greater overlap (Figures 3B1–3). The BFs of
all right-censored pairs were in favour of H1, indicating strong
correlation between times to fates for CD8+ T cells are to be
expected in the observed data as a result of high degree of right-

censorship. Thus, despite the temporal-correlations observed in
the data, right-censorship supports our assumption in the Cyton2
model that the underlying stochastic variables are independent.
This statistical conclusion complements the experimental
evidence for fate independence obtained by slowing division

TABLE 2 | Bayesian independence test of the times to fates from simulation. The test was performed withNTrue � 106 simulated families viaCyton2-like Agent-Based Model.
Each family was assigned randomly sampled times (True), and corresponding observable (Obs.) times were recorded. Depending on the order of the true times to fates,
the number of observable times (NObs.) may vary. For both true and observable times, Bayes Factor (BF) was calculated given null and alternative hypotheses (H0: ρ � 0 and
H1: ρ ≠ 0). Here BF01 indicates the simulated data are more probable under H0, otherwise it is indicated by BF10.

Cell
type

Stim Percentage of number of observable times (NObs./NTrue) and bayes Factora (BF01 = 1/BF10)

(T0
div ,T

k≥1
div ) (T0

div ,Tld ) (T0
div ,Tdie ) (Tk≥1

div ,Tld ) (Tk≥1
div ,Tdie ) (Tld, Tdie)

True Obs True Obs True Obs True Obs True Obs True Obs

B

(B-exp1)

CpG BF01 � 71.91 63.2% BF01 � 67.76 91.4% BF01 � 58.11 91.4% BF01
� 5.28

63.2% BF01 � 71.87 63.2% BF01 � 2.56 91.3%

BF10 > 100 BF10 > 100 BF01 � 69.32 BF10 > 100 BF01 �
35.09

BF10 > 100

CD8+ T 1U IL-2 BF01 � 74.17 17.6% BF01 � 61.43 51.0% BF01 � 15.37 51.0% BF01 �
20.88

17.6% BF01 � 64.46 17.6% BF01 � 1.25 51.0%

BF10 > 100 BF10 > 100 BF10 > 100 BF10 > 100 BF10 > 100 BF10 > 100

3U IL-2 BF10 � 1.20 13.8% BF01 � 68.99 64.4% BF01 � 69.02 64.4% BF10 > 100 13.8% BF01 � 61.01 13.8% BF01 � 71.59 64.4%

BF10 > 100 BF10 > 100 BF01 > 100 BF10 > 100 BF10 > 100 BF10 > 100

10U IL-2 BF01 � 28.42 14.1% BF01 � 66.05 63.2% BF01 � 73.74 63.2% BF01
� 1.05

14.1% BF01 � 73.92 14.1% BF01 � 58.86 63.2%

BF10 > 100 BF10 > 100 BF10 > 100 BF10 > 100 BF10 > 100 BF10 > 100

aBF Interpretation: Anecdotal (1 < BF ≤ 3); Moderate (3 < BF ≤ 10); Strong (10 < BF ≤ 30); Very strong (30 < BF ≤ 100); Extreme (BF > 100).

FIGURE 4 | Best parametric distribution class. (A1) Empirical CDF of the measured times are overlaid with CDFs of Gamma, Lognormal, Normal, Weibull, delayed
Exponential and delayed Lognormal distributions. 95% confidence bands are plotted by randomly drawing 104 samples from respective posterior distributions. (A2,
B1–B3) The in-sample deviance (dot), and WAIC scores (open-circle) with 1 standard deviation error bar are shown. The y-axis is sorted from lowest (top) to highest
(bottom)WAIC score. The lower WAIC score indicates better descriptor of the data. Except the top-ranked one, the value of the difference of WAIC (grey triangle)
between a candidate and the top-ranked are shown with 1 standard error of the difference.
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times and preventing cell death without altering other outcomes
(Heinzel et al., 2017).

2.4 Using Filming Data to Determine
Appropriate Distribution Classes for the
Timers
In order to fit the model to commonly available non-microscopy
data where direct observation of times is not possible, it is
necessary to determine appropriate parametric distribution
classes that well-capture the structure of the timers.
Probability distributions governing the times to first division
and to death for B cell cultures have been reported to be well
approximated by a right-skewed distribution such as Lognormal,
Weibull, Gamma, or Beta (Hawkins et al., 2009). In particular, the
time to first division is known to be better described by a
Lognormal rather than other skewed distributions, whereas
Gamma or Weibull distribution can be used to approximate
the time to death distribution (Hawkins et al., 2007).

For B cells, the empirical cumulative distribution function
(eCDF) measured times overlaid with CDFs of four candidate
distributions with 95% confidence bands in Figure 4A1. Each
candidate is parameterised by: (i) (αG, βG) for Gamma; (ii) (m, s)
for median and shape of Lognormal; (iii) (μ, σ) for mean and
standard deviation for Normal; (αW, βW) for Weibull; (λ, c) rate
and shift for delayed Exponential; and, (md, sd, c) median, scale
and shift for delayed Lognormal. Qualitatively, most of the
candidates appear to be excellent descriptors for each of the
measurements except for the delayed Exponential distribution for
B cells. Here, we used the Widely Applicable Information
Criterion (WAIC - see Methods) to quantitatively determine
the best fit (Figure 4A2) (Watanabe and Opper, 2010). For
T0
div in the B cell data, the Lognormal distribution was top-

ranked (416.3) while delayed Exponential was least favoured
(468.9, ΔSE � ±12.3). The delayed Lognormal was most
preferred candidate for Tk≥1

div (263.4), but the Lognormal was a
close second (264.2, ΔSE � ±2.7). While the delayed Exponential
was consistently worst fit for all measurements in B cells, the
other five candidates well approximate Tdie measurements as
reported in previous studies. Interestingly, the Normal was
favoured (526.9), or on par with the Weibull and Gamma, for
Tld as indicated by the standard error of the difference. The
delayed Lognormal was second least preferred, however, the
difference was relatively marginal compared to the Normal
(534.3, ΔSE � ±4.9). We observed similar results in the repeat
of B cell data (B-exp2), except for Tdiewhere theWeibull provided
the best fit (see Supplementary Figures S5A1–2).

For CD8+ T cells, we present the rank-ordered WAIC plot for
all IL-2 concentrations in Figures 4B1–3 (see Supplementary
Figures S5B1–3 for corresponding CDF plots). We observed
either the delayed Lognormal or the delayed Exponential to be the
best descriptor for all measurements with the exception of Tk≥1

div in
10 U IL-2 in which Weibull was top-ranked (80.5), but only
marginally so compared to the Normal (81.3, ΔSE � ±1.6), the
Gamma (83.0, ΔSE � ±3.3) and the Lognormal (83.3, ΔSE � ±2.6).
Note that the estimates of WAIC for Tk≥1

div in 1 U IL-2 are
unreliable as there are only four data points due to lack of

progression of cell division in those conditions. We reached
similar conclusions for both T-exp1 and T-exp2 datasets
where the delayed Lognormal and the delayed Exponential
were strongly and consistently preferred or was on par with
other candidate distributions (see Supplementary Figure S6).

In summary, these data suggest that several parametric classes
of distributions are well-suited as descriptors. We will, however,
provide one example analysis of flow cytometry data where use of
Gaussian distributions offer an interpretative advantage over the
right-skewed distributions. Moreover, as time to subsequent
division has little variability, when fitting fluorescence-
activated cell sorting (FACS) data, we will use a reduced
model that assumes it is an unknown constant that is, fit.

3 APPLICATION TO FACS DATA

While information from time-lapse microscopy has informed
core elements of the Cyton2 model, in practice higher-
throughput methodologies are typically employed in
immunological investigation. In particular, it is common to
have bulk experiments that start with a large number of initial
cells that have been cultured with a division tracking dye and are
then exposed to stimuli for a time-course of measurements by
flow cytometry. Thus it is essential that any mathematical model
can be fit to such data and extract biologically meaningful
information from them. To that end, we derived expressions
for the expected time-course per generation of the Cyton2 model
and a least-squares fitting methodology, as described in Methods,
for fitting to such data to challenge Cyton2’s applicability. We
challenged the model with both B and CD8+ T cell datasets.

3.1 B Cell Data: Assessing Model Fits
We interrogated a primary dataset consisting of in vitro CpG-
stimulated murine Bim−/− B cells with cell numbers recorded in
each generation via flow cytometry. Cells taken from this mouse
strain are deficient in the pro-apoptotic molecule Bim (B-cell-
lymphoma-2-like protein 11, or Bcl2l11). As a result, these cells
survive longer in culture without impacting any other population
dynamic feature (Turner et al., 2008). Here, we asked if a standard
division tracking assay, which typically has three replicates at
each of five or six harvested time points, provides sufficient
information to well constrain model fits. To that end, the
dataset that we used consists of nine replicates, collected at
nine distinct time points.

To assess the amount of data required to ensure a constrained
model fit, we altered the amount of data used according to two
scenarios: (i) varying the number of replicates sampled at all time
points; and (ii) removing some of the time points while
maintaining the number of replicates. In Figures 5A1–3, the
best-fit model and the estimated parameters with 95% confidence
intervals are shown (see Methods). Qualitatively, we observed
that the confidence bands of the model fit get narrower around
the mean as we increase the number of replicates, indicating an
improvement in the model constraints, albeit with a law of
diminishing returns. As estimated model parameters are
coupled, we assessed their vector values using principle
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FIGURE 5 | The precision of the parameter estimates and the accuracy of the model fit with CpG-stimulated Bim−/−murine B cell FACS data. (A1–A3) The best-fit
model (top), which has seven fitted parameters (bottom): T0

div ∼ LN (m0
div , s

0
div), Tdd ∼ LN (mdd , sdd), Tdie ∼ LN (mdie , sdie) and, subsequent division time,m. For a given

replicate number, the model was fitted to 1,000 synthetic datasets, which were created by randomly sampling the original data with replacement per time point. (B1)
From the sets of estimated parameter vectors, biplot of principle component analysis (PCA) result is shown. (B2) The marginal coefficients of variation (CV) was
calculated with 95% confidence interval from bootstrapping. (C) The root-mean-square error (RMSE) was evaluated over all available data points after fitting the model to
the synthetic datasets. The reference (purple) was obtained after fitting themodel to datasets assuming only three replicates are available while maintaining all time points.
Examples of the best (blue) and worst (red) fits are shown for 2 and 3 time-points being removed.
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component analysis (PCA) (Figure 5B1). The PCA result signifies
that the first two principle components explain 79% variability in the
set and, furthermore, is suggestive that there is no notable correlation
amongst components of the parameter vector. To assess the
precision of the estimated parameters, we computed coefficients
of variation for individual parameters as a function of the number of
replicates (Figure 5B2). Again, a law of diminishing returns is
observed with no significant benefit in precision of the estimates
beyond three replicates. This suggests that the existing operational
standard of three replicates offers a good balance between obtaining
a precise estimate and managing experimental burden.

We turned our attention to evaluating the model accuracy as
time points were removed while maintaining a fixed number of
replicates (Figure 5C). For time-point removal, we imposed the
following rules to avoid any ambiguity and ensure the feasibility
of the model fits:

1) At least three time points must be retained.
2) Either the first or second time point must remain in order to

provide an initial cell number for the model.

Given these rules, there are 366 cases to consider in total. For each
case, we constructed 1,000 artificial datasets by randomly sampling
three replicates with replacement per remaining time point, fitted the
model assuming all random variables were log-normally distributed
and then calculated the root-mean-square error (RMSE) of the model-
fit from the original unaltered dataset with nine replicates at nine time
points. In Figure 5C, we present rank ordered values of the RMSE
when one, two or three time-points are removed (see Supplementary
Figure S7 for greater than three). The RMSE of model fits using all
time points with three replicates is also shown as a reference. Perhaps
unsurprisingly, the results showed that capturing ameasurement at the
time at which cells are expanding is themost important information to
be kept for the model accuracy. Intuitively, this would represent a
regression of a non-linear curve inwhichdata points around “inflection
point” are missing while two ends points are present. Furthermore, we
noticed that the first time point is generally more important than the
later ones as RMSEs are higher if the first time point was removed.We
found little to no difference in the RMSE compared to that of the
reference when the positions of the removed time points are sparsely
located. As an extreme example with six removed time-points, the
model was capable of accurately fitting the data as long as there were
three time points that correspond to the early (prior to first division),
expansion and contraction phases (e.g., first, fourth and ninth time
points, see Supplementary Figure S7B). Knowing in advance those
three time points prior to an experiment is unrealistic, and so it
represents a lower bound on the number of time-points needed.
Removing more than six time-points, the model failed to fit due to
the lack of information (results not shown). In summary, this analysis
illustrates that Cyton2 is well constrained by data employing standard
experimental protocols for following cell expansion by flow cytometry.

3.2 TCell Data: Assessing Cyton2’s Ability to
Draw Biologically Meaningful Inferences
To evaluate the utility of the model in drawing biologically useful
inferences, we used it to reassess the non-linear population

dynamics of experiments reported in Marchingo et al. (2014).
That study established that CD8+ T cells integrated a range of
distinct mitogenic stimuli via a simple, additive rule for the
number of rounds of division they provoked. We questioned
how the phenomenon could be understood in light of the new
paradigm of familial concordance and global timers as realised in
Cyton2.

This data was obtained from in vitro CTV-labeled OT-I/
Bim−/− CD8+ T cells stimulated with the peptide N4 and
cultured with co-stimulatory antibodies CD27 (5 μg/ml) and
CD28 (2 μg/ml), both alone and in combination. Cells were
harvested at 27, 44, 52.5, 66.5, 69, 76.5, 90, 101, and 115.5 h
after the stimulation with three replicates at each time point
(Marchingo et al., 2014). Mirroring the deduction in the original
paper, but expressing it in terms of timers, we sought to ask
whether the contribution to division destiny of each co-
stimulatory molecule in terms of time could be described by a
simple additive process. As there is no simple closed form for the
distribution of the sum of two independent lognormally
distributed random variables, for this application we instead
chose to fit Gaussian distributions. That is, assuming that Tdd

N4

is normally distributed with mean μN4 and variance σ2N4, i.e
N (μN4, σ2N4), TαCD27

dd is N (μαCD27, σ2αCD27), and TαCD28
dd is

N (μαCD28, σ2αCD28), if the contributions of αCD27 and αCD28
to division destiny time were problematically independent and
additive, then we would expect that

Tdd
αCD27+αCD28 ∼ N μN4 + ΔμαCD27 + ΔμαCD28,

��������������������
σ2N4 + Δσ2

αCD27 + Δσ2αCD28
√( ),

(1)

where Δμx � μx − μN4 and Δσ2x � σ2x − σ2N4 for x ∈ {αCD27,
αCD28}.

In Figure 6A, we present the total number of cells and the
best-fit model with a 95% confidence band around the estimate
from the original data. The model was simultaneously fitted to
N4, αCD27, and αCD28 datasets with a shared subsequent
division time (see Methods) (Figures 6B1–3), omitting the
αCD27 plus αCD28 dataset for out of sample testing. The
estimated m and cumulative distribution function (CDF) of
T0
div, Tdd and Tdie are shown in Figure 6C. In comparison to

N4 alone, the addition of αCD27 and αCD28 extends both means
of Tdd (≈15%) and Tdie (≈10%). Also, we identified αCD28
reduces mean of T0

div (13.3%) while αCD27 has minimal
impact. Collectively, the compounding effect of these changes
results in larger expansion of cell numbers by allowing cells to
enter the first division early and to reach destiny and death at later
times. Given the parameter estimates for N4, αCD27 and αCD28,
we predicted the number of cells for their combined effect by
calculating the T0

div, Tdd and Tdie according to Eq. 1. Strikingly,
this successfully recreated the expansion kinetics of OT-I/Bim−/−

CD8+ T cells in the presence of both αCD27 and αCD28
(Figure 6A), supporting the signal integration as a linear sum
in a time domain of three dimensions and consistent with the
independence of the timers. Additionally, we recapitulated the
additive nature of mean division number presented in Marchingo
et al. (2014) using ABM given the fitted and predicted parameter
estimates (see Supplementary Figure S8). These results illustrate
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the merit of Cyton2 in uncovering how simple operations can
underlie highly non-linear population dynamics.

4 DISCUSSION

The vast majority of published mathematical models of
lymphocyte population dynamics employed assume that a
newly born cell’s fate is independent of its family’s history
(Smith and Martin, 1973; Nordon et al., 1999; Revy et al.,
2001; Ganusov et al., 2005; Yates et al., 2007; Lee et al., 2009;
Banks et al., 2012; Hasenauer et al., 2012; Mazzocco et al., 2017),
with a few notable exceptions (Hyrien et al., 2010; Wellard et al.,
2010; Zilman et al., 2010; Shokhirev et al., 2015; Yates et al., 2017).
These assumptions are adopted, not because they are consistent
with experimental data from, for example, filming, FACS and
lineage tracing, but for reasons of parsimony, model
identifiability and computational ease of fitting (Dowling et al.,
2005; Boer et al., 2006). In this work, we have presented a variant
of the original Cyton model that encapsulates features of
inheritance and correlation structure of cell fates. This was

achieved by introducing new random variables that describe
the time to division destiny of a family and a global death
time, which describes a single death time for all members in a
family tree. Similar to the Cyton model, this variant offers a
general tool for analysing lymphocyte proliferation and survival,
including from the data obtained from CFSE/CTV-labeled
division tracking assays. Despite concerns that the inclusion of
familial effects might result in a model with too many parameters
or one that is, hard to fit, neither proves to be the case, making the
model suitable for general use.

The analysis of the B and CD8+ T cell filming data allowed
direct tests on the model’s assumptions of independent timers.
Additionally, it enabled us to assess the suitability of classes of
parametric distributions of random variables of the Cyton2
model, which is necessary for when the model is used with
commonly available non time-lapse microscopy data. As there
is no theoretical reason to favour one distribution class over
another and several classes provide good fits to data, for most of
our fitting examples we adopted the lognormal distribution class.

To fit Cyton2 to ubiquitous FACS data, we derived an
expression for the mean population dynamics with one

FIGURE 6 | Fitting the Cyton2 model to OT-I/Bim−/− CD8+ T cell FACS data (Marchingo et al., 2014). The cells were stimulated with N4 as basis for all other
conditions. (A) Harvested total cell numbers (dot: mean ± SEM) overlaid with the model extrapolation and 95% confidence band from bootstrapping. (B1–B3) Live cells
per generation and the model extrapolation at harvested time points. (C) 19 jointly fitted parameters (T0

div , Tdd , Tdie for each of N4, αCD27 and αCD28; a shared
subsequent division time, m) and their 95% confidence intervals. The fitted and predicted values of mean and standard deviation are labelled in the legend for
normally distributed random variables.
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constant and three sets of distribution parameters. The random
variables represent times to first division, to division destiny and
to death, and the constant captures the subsequent division time.
In the present work, the model was designed for cell populations
exposed to newly available stimuli. In future work we will
consider the inclusion of repeated challenges and continuous
feedback mechanisms as occur, for example, with autocrine
signalling via IL-2. Alterations to the model that allow the
inclusion of ongoing signalling, as likely occurs when fighting
replicating pathogens such as viruses or bacteria, will be the
subject of future development. Moreover, the cell population
model considered here does not include differentiation or other
developments that would create asymmetries through altered
division times, destiny or survival. Such alternative fates can
arise from analogous competing outcomes promoting
differentiation (Duffy et al., 2012), and we anticipate that the
basic Cyton2 framework introduced here will be expanded to
encompass additional fates as experimental information for the
control of differentiation is acquired.

We provided two illustrative uses of the model through the
analysis of FACS data from stimulated B and CD8+ T cell
cultures. The first one provides quantitative support for the
standard experiment design of triplicates per time-point, but
also elucidates the importance of including time-points around
the initial expansion and final contraction of the population. The
second example revisits the work of Marchingo et al. (2014)
addressing the question of signal integration by T cells. While the
original study was informed based on modelling paradigms
available at the time, reconsideration of it terms of family-
based timers draws similar conclusions on additivity, but with
a distinct temporal understanding that will influence all
subsequent studies. Taken together these results suggest
Cyton2 will prove to be a powerful tool in the quantitative
assessment of immune responses. We anticipate the model will
be useful in evaluating signal processing and genetic differences in
both murine and human T and B cells, and will facilitate
comparisons between healthy and unwell individuals.

The model is informed by, and the worked examples are for,
data from in vitro experiments where stimulation is provided to a
group of T or B cells, and the resulting proliferation occurs in a
burst that can be followed by division tracking dyes or direct
filming. Those population dynamics follows the pattern of an
exponential rise, a period of division cessation, and then of cell
loss that characterises immune responses in vivo (Veiga-
Fernandes et al., 2000; Costa Del Amo et al., 2020). As such,
as with the original Cyton model (Hawkins et al., 2007;
Subramanian et al., 2008; Marchingo et al., 2014), Cyton2 can
be successfully fit to in vivo data (data not shown). We note,
however, that for most in vivo data stochastic models offer no
advantage over models, such as those based on ODEs, that
assume transitions to distinct phases and require fewer
parameters (Boer and Perelson, 2005; Ganusov et al., 2005;
Boer et al., 2006). Furthermore, these latter models often
include parameters for transitioning to the memory phase
through a second, slower rate of loss, and this has not been
implemented into the Cyton framework yet as the mode of
transition is not known. The difference between fitting

parsimonious models to in vitro and in vivo data may
eventually be reconciled as the community continues to
improve methods that introduce differentiation, memory
formation and reveal additional features of responding cell
phenotype, such as cell cycle status, as originally envisaged by
Antia et al. (2003).

5 METHODS

5.1 Mice
All mice were maintained under specific pathogen-free
conditions in the WEHI animal facilities (Parkville, Victoria,
Australia) and used at 5–12 weeks of age. All experiments were
performed under the approval of the WEHI Animal Ethics
Committee. FUCCI red/green (RG) mice were acquired by
crossing FUCCI Red (B6.B6D2-Tg (FUCCI)639Bsi) with
FUCCI Green (B6.B6D2-Tg (FUCCI)492Bsi) mice, both
obtained from Riken BioResource Centre (Sakaue-Sawano
et al., 2008). FUCCI RG mice were then crossed to OT-I or
OT-I/Ly5.1 mice to obtain OT-I/FUCCI RG and OT-I/FUCCI
RG-Ly5.1 respectively (Dowling et al., 2014). In one experiment
(stimulation with N4, αCD28 and IL-12) cells fromC57BL/6mice
that were irradiated and reconstituted with bone marrow from
OT-I/FUCCI RG-Ly5.1 were used.

5.2 CD8+ T Cell Isolation
OT-I CD8+ T cells were isolated from single cell suspensions
prepared from lymph nodes (axillary, branchial, inguinal) by
negative selection using EasySep Mouse CD8α+ T cell Isolation
kit (StemCell technologies) according to the manufacturer’s
protocol. Purity (CD8+ Vα2+) was typically between 80 and
95%. Splenocytes were used for the isolation of CD8+

Vα2+Ly5.1+ T cells from C57BL/6 mice that were irradiated
and reconstituted with bone marrow from OT-I/FUCCI RG-
Ly5.1. Purified CD8+ T cells were labelled with 5 μM CellTrace™
Violet (CTV, Invitrogen) to track and monitor cell division in
parallel bulk cultured by flow cytometry. Labelling was performed
for 20 min at 37°C in PBS + 0.1% BSA.

5.3 In Vitro Cell Culture
All T cell cultures were prepared using filming medium (GIBCO
advanced RPMI 1640 without phenol red + 5% GIBCO FCS) at
37°C and 5% CO2 in a humidified atmosphere. All cell cultures
contained 25 μg/ml anti-mouse IL-2 antibody (S4B6: WEHI
antibody facility) which neutralises mouse IL-2 but does not
recognise human IL-2 (Deenick et al., 2003).

Cells were either stimulated with plate bound anti-CD3
(αCD3: WEHI antibody facility, clone 145-2C11: 10 μg/ml) or
with the peptide for the OT-I TCR, SIINFEKL (N4) (Auspep) at
0.01 μg/ml.

For stimulation with αCD3, CD8+ T cells were cultured on 24-
well plates coated with αCD3 at 40,000 cells in 1 ml per well in the
presence of 1, 3.16, or 10 U/ml recombinant human IL-2
(Peprotech) and 25 μg/ml S4B6. After 24 h of culture cells
were harvested, washed twice with filming medium, counted
and resuspended at 5,000–10,000 cell/ml in filming medium
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supplemented with 25 μg/ml S4B6 and 1, 3.16, or 10 U/ml
recombinant human IL-2. The units of IL-2 were abbreviated
to 1U, 3U and 10U for each concentration throughout the paper.

In experiments using N4 peptide CD8+ T cells were cultured
with 0.01 μg/ml N4 at 2 × 104 cells per ml in 200 μL of a 96-well
U-bottom plate in the presence of 25 μg/ml S4B6. 2 μg/ml αCD28
(clone 37.51,WEHI antibody facility) or 1 ng/ml IL-12 (Peprotec)
were added as indicated. Cells were cultured for 24 h, washed and
resuspended at 5,000–10,000 cells/ml in filming medium
containing 25 μg/ml S4B6.

For one experiment CD8+ T cells cultured for 24 h with N4 in
presence or absence of αCD28 were split and supplemented or
not with 1 U/ml rhIL-2 before replating for filming.

In one experiment CD8+ T cells were cultured with N4 alone
and addition of either αCD28, IL-12, or both for 24 h, then
washed, resuspended, and replated for filming without any
further stimuli added.

For filming, 250 μL cell suspension was added per chamber of
an 8 well μ-Slide chamber (Ibidi) containing 125 μm (MGA-125-
01) or 70 μm (MGA-7-01) microgrids (Daniel Day,
Microsurfaces). These conditions resulted in a significant
portion of microwells containing 1 cell per well. Before the
start of filming, cells were incubated for ≈ 2 h at 37°C with 5%
CO2 in a humidified atmosphere. Slide chambers were then
transferred to an environmentally controlled microscope (Carl
Zeiss) and incubated at 37°C with 5% CO2 in a humidified
atmosphere.

5.4 Live Cell Imaging and Cell Tracking
For single cell filming, microgrids (70/125μm, Daniel Day,
Microsurfaces) were placed into an 8 well chamberslide
(Ibidi μ-slide). Chambers were UV sterilised with 40 μL
100% ethanol in a laminar-flow cabinet for at least 30 min
until dry. Another 40 μL ethanol was added and rinsed 10x with
filming medium (advanced RPMI 1640 without phenol red).
250μL filming medium was added to each chamber and left in
the incubator at 37°C overnight to dissolve air bubbles. To
reduce background fluorescence of the medium, chambers
(grids) were bleached for 2 h using a 470 nm LED, just prior
to adding the cells.

Live cell imaging was conducted on an environmentally
controlled 37°C + 5% CO2 humidified Zeiss Axiovert 200 M
microscope. Brightfield images were captured with a Zeiss
AxioCam MRm (1.4 megapixels) atttached to a 0.63x
C-mount, using a Plan-Apochromat 20x objective (0.8 n.a.). A
GFP/DsRed-A (Semrock) filter block (excitation LED 470/
555 nm set at 25%/100%, respectively, with an exposure time
of 200μs) was used for detecting green and red fluorescence. Red,
green, bright-field and out-of-focus images were taken at 165 s
intervals for 5 or 6 days. Bright-field and fluorescent raw images
of single cells in microgrids were digitally processed resulting in
overlaid red/green images corrected for background noise of the
medium.

Cell tracking was performed using the image processing
package FIJI (Schindelin et al., 2012). Lineage Tracker plug-in
was used for cell segmentation and tracking (Downey et al., 2011).
Gaps or mistakes in segmentation and tracking were adjusted

manually to ensure data accuracy. Cells in each well were
followed until they either died, indistinguishable from nearby
cells or the experiment ended.

For CD8+ T cell data in the presence of IL-2, measurements
from two independent experiments were aggregated.

5.5 Data Selection and Tree Collapse
For each family tree c ∈ N≥0, the times to divide {Tx

div}c, to die
{Tdie

x }c and to loss {Tx
loss}c of all cells were recorded using time-

lapse microscope. All of these variables were measured from t �
0h, i.e., the beginning of the experiment. Tloss is defined as the
time at which the cell becomes indistinguishable to the nearby
cells, or survives until the end of given experiment time frame,
thus, were lost from the experiment. In order to keep track of the
cells’ relation, a unique label was given to each cell by x. Let X c be
the collection of all x for a family c, where x � x1, x2, . . . , xj with
xj ∈ {1, 2} is a finite and ordered sequence of 1 and 2 s. Beginning
with a founder cell, defined as x � 0, we denote its first and
second daughter cells in generation 1 by x � 1 and x � 2,
respectively. In general, x1, x2, . . . , xj represents the xth

j
daughter of the . . . of the xth2 daughter of the xth

1 daughter of
the founder cell (see Harris, 1963, Ch.6). For example, x � 1, 1, 2
denotes the second daughter of the first daughter of the first
daughter of the founder cell. Given a unique identifier of the cell,
the generation k is noted g(x): � k with g(0) � 0. With this
construct, we define the raw measurement of times as a set T c �
{Tx

div, T
x
die, T

x
loss: x ∈ X c}.

For the analyses in Section 2.2 and Section 2.4, we filtered
for families that had at least divided once and satisfied the
conditionmax(T c) � Tx

die. In essence, we eliminated incomplete
family trees that contain unusually long-surviving cells, but
allowed lost cells to be in place as long as the last observed
event is death in a given family. Indeed, there is an increasing
chance of observing more lost cells as the family gets
larger. However, it was previously shown that the regularity
of a family is a result of correlated cell divisions as a
biological feature inherited within the family even when
considering the unrecovered samples (Marchingo et al.,
2016). Therefore, it is highly likely that the lost cells due to
indistinguishable circumstances might had undergone similar
fates with its sibling, thereby maximising the number of data
points while reducing any potential selection bias, whereas it is
difficult to weigh how including the long-surviving cells might
affect all the other analyses. We noted the long-surviving and
“no division” cells constitute approximately 23 and 29% on
average, respectively, across all the experiments (data not
shown).

Given the heritable feature, we summarise a family tree by
collapsing it to a single representative line (Figure 1C). By
collapsing, we mean substitute average time to divide (and to
die) of the cells in a given generation k. We also enumerated all
dead cells within a family and calculated mean time to last division
(Tld) as a proxy to the division destiny time. In summary, we
represent a single family by T(c) � (T0

div, . . . , T
k
div, T

0
die, . . . , T

k
die)

so long as we observed division or death events in each generation
k. Table 3 shows the number of retained clones used in all analyses
presented in this paper after applying the filtering rule.
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5.6 Agent-Based Model
We developed an agent-based model (ABM) to simulate cells in a
single family with the correlated structure proposed for the Cyton2
model. Each realisation of the simulation represents one clonal
family. Upon initialisation, the founder cell is assigned time to first
division, global destiny and global death times, which are drawn
randomly from three independent lognormal distributions. Also, the
subsequent division times are randomly sampled for each generation
from a lognormal distribution, but the progeny cells of the same
generation share the division time. If the founder cell reaches time to
first division, it creates two daughter cells, which inherit global destiny
and death times. If the cell reaches its division destiny, we immediately
classify it as a destiny cell and prevent it from further division. When
the cells reach death time, they are removed from the simulation. The
model was implemented in Python (version 3.8.6).

5.7 Statistical Analysis: Bayesian
Framework
In Section 2.2, 2.3, the correlations of all possible pairs between time
to first division (T0

div), average subsequent division time (Tk≥1
div ), time

to last division (Tld) and time to death (Tdie) were estimated using
Bayesian inference. For a given pair of variables and its observed
data, say di ∈ D � {(xi, yi) : i � 1, 2, . . . , n} where n is the number
of observations, we used bivariate normal distribution to estimate the
correlation coefficient (ρ). This entails xi ∼ N (μx, σx) and
yi ∼ N (μy, σy). With uninformative priors on the hyper-
parameters μx, μy ∼ U (0, 1000), σx, σy ∼ U (0, 1000) and ρ ∼ U
(−1, 1), we define the bivariate normal distribution.

di ∼ N (μ,Σ),
where μ � (μx, μy) is a vector of means for xi and yi, and Σ �

σ2x ρσxσy
ρσxσy σ2y

[ ] is a covariance matrix. We used an extension of

the Hamiltonian MCMC algorithm, No-U-Turn Sampler

(Hoffman and Gelman, 2014), implemented in PyMC3
(version 3.9.3) (Salvatier et al., 2016) to obtain the marginal
posterior distributions of ρ, μx, σx, μy, σy. Given these
distributions, we calculated 95% credible interval for ρ, and 90,
95, and 99% density regions of (x, y). In addition, we formulated
Bayesian hypothesis testing, where the null hypothesis isH0: ρ � 0
and alternative hypothesis isH1: ρ ≠ 0 (which translates toH1: ρ ∼
U (−1, 1)) (Jeffreys, 1961). This is formally stated as a ratio of
likelihoods of hypotheses given the data,

P(H0|D)
P(H1|D) �

P(H0)
P(H1) ×

P(D|H0)
P(D|H1).

In order to grade if the data is more probable under H0 or H1,
the Bayes factor BF01 � P(D|H0)/P(D|H1)was used given priors
of P(H0) and P(H1). When H1: ρ ∼ U (−1, 1), it can be computed
by evaluating the following integral (Jeffreys, 1961; Wagenmakers
et al., 2016):

BF01 � 1/BF10, where BF10 � 1
2
∫1

−1
(1 − ρ2)n−12
(1 − ρr)n−3

2
dρ,

where r denotes for the sample correlation defined as

r � ∑n
i�1(xi − �x)(yi − �y)/

����������������������∑n
i�1(xi − �x)2∑n

i�1(yi − �y)2
√

. For the

interpretation of Bayes factor, we adopted the discrete

categories of evidential strength proposed in Jeffreys (1961)

(Table 4).
In Section 2.4, six probability distributions were assessed for

T0
div, T

k≥1
div , Tld, Tdie under the Bayesian framework in a similar

manner to estimating the correlation coefficient. Table 5 shows
the list of candidate distributions and the uninformative priors
prescribed for respective hyper-parameters.

Given posterior distributions of the parameters, we adopted
WAIC (Watanabe and Opper, 2010) score to quantitatively assess
the candidates, which is estimated as follows:

TABLE 3 |Number of clones used in the analysis of the filming datasets. The numbers were obtained by filtering on clones that had divided at least once and whose last event
was a death event (not a loss or a division). The percentage is expressed in relation to the total number of clones in the experiment. For a given cell type and stimulation,
the values of each Cyton2 variable were extracted for the statistical analyses.

Cell type Stimulation Number of clones

Time to first div.
(T0

div )
Subsequent

div. Time (Tk
div )

Time to last div.
(Tld)

Time to death (Tdie)

B (B-exp1) CpG 69 (63.9%) 56 (51.9%) 69 (63.9%) 69 (63.9%)

B (B-exp2) CpG 73 (83.0%) 63 (71.6%) 73 (83.0%) 73 (83.0%)

CD8+ T 1U IL-2 28 (25.7%) 4 (3.7%) 28 (25.7%) 28 (25.7%)
3U IL-2 34 (37.8%) 13 (14.4%) 34 (37.8%) 34 (37.8%)
10U IL-2 50 (30.7%) 16 (9.8%) 50 (30.7%) 60 (30.7%)

CD8+ T (T-exp1) N4 20 (44.4%) 0 (0%) 20 (44.4%) 20 (44.4%)
N4 + αCD28 19 (46.3%) 1 (2.4%) 19 (46.3%) 19 (46.3%)
N4 + IL-2 28 (75.7%) 4 (10.8%) 28 (75.7%) 28 (75.7%)
N4 + αCD28 + IL-2 33 (89.2%) 13 (35.1%) 33 (89.2%) 33 (89.2%)

CD8+ T (T-exp2) N4 27 (73.0%) 12 (32.4%) 27 (73.0%) 27 (73.0%)
N4 + αCD28 17 (44.7%) 12 (31.6%) 17 (44.7%) 17 (44.7%)
N4 + IL-12 13 (44.8%) 9 (31.0%) 13 (44.8%) 13 (44.8%)
N4 + αCD28 + IL-12 11 (30.6%) 7 (19.4%) 11 (30.6%) 11 (30.6%)
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WAIC(z,Θ) � −2 ∑n
i�1

log
1
S
∑S
s�1

P(zi|Θs)⎡⎣ ⎤⎦ −∑n
i�1

VarSs�1 log(P(zi|Θs))⎛⎝ ⎞⎠,

(2)

where z is the data with n independent number of observations,Θ
is the posterior distribution,Θs is the sth set of sampled parameter
values in the posterior distribution with S number of samples and
VarSs�1as � 1

S−1∑S
s�1(as − �a)2 denotes for the sample variance (see

McElreath, 2020, Ch.7; Vehtari et al., 2017). The first and the
second terms in Eq. 2 are known as the log-pointwise-predictive-
density (lppd) and the penalty term, respectively. For direct
comparison of the candidates, we computed the standard error
by calculating the variance over the individual observations
instead of their summation under the assumption of normality
of WAIC.

se(WAIC) �

���������������������������������������������������
n × Varni�1 −2 log

1
S
∑S
s�1

P(zi|Θs)⎡⎣ ⎤⎦ − VarSs�1 log(P(zi|Θs))⎛⎝ ⎞⎠⎛⎝ ⎞⎠√√
.

Let us denote WAICi to be the term in
���(·)√

such that
WAIC � ∑n

i�1WAICi, then the standard error of the difference
of WAIC between, for instance, candidate A and B can be
calculated,

se(WAICA −WAICB) �
�������������������������
n × Varni�1 WAICA

i −WAICB
i( )√
.

5.8 Equations for Dynamic Evolution of the
Mean
In commonly employed division diluting dye experiments,
individual families are not observed and initial cell numbers
are typically in their thousands suggesting the use of mean
system behaviour as an appropriate descriptor. Thus to fit the

model to such data we derive equations for the mean population
dynamics per generation for Cyton2.

Let Zg(t) denote the number of cells alive in generation g ∈ {0,
1, . . . , G} at time t ≥ 0. Then, Zg(t) can be expressed with the
variables shown in Section 2.1 for any chosen probability density
functions for the random variables. Here, we separately derived
E[Zg(t)] for g � 0 and g > 0 cases as lymphocytes generally take
longer to divide for the first time than at later generations. In
essence, we begin the derivation with parameters θ �
(T0

div, {Mg}g≥ 1, Tdd, Tdie) denoting time to first division,
subsequent division time per generation, time to destiny and
time to death, respectively.

Generation Zero
We assume we are following the activation dynamics of a set of
resting cells and these cells are provided with signals that
program a limited proliferative response. For the purposes
here, we also assume that all cells are activated at time t � 0,
erasing the prior cell programming and survival
characteristics. Situations where only a proportion of cells
are activated, or where the activated cells take some extended
time to transition to the new programming, leading to some
early cell death are useful modifications suited to particular
applications. Such modifications are discussed further in
Supplementary Material.

For a given family tree, the number of live cells dividing, dying
or reaching destiny in generation g � 0 at time t is given by

Z0(t) � 1{Tdie > t}1{min(t,Tdd)<T0
div

}, (3)

where 1 is an indicator function. Assuming that the random
variables Tdie, Tdd and T0

div are independent of each other as
we established in Section 2.2, the expected number is
given by

E[Z0(t)] � P(Tdie > t)P({min(t, Tdd)<T0
div}).

We expand the second term, and by the law of total probability
we obtain

P({min(t, Tdd)<T0
div}) � P(T0

div > t) P(Tdd > t)
+ P(T0

div >Tdd)P(Tdd ≤ t).
Thus, the expected number of cells in generation zero is,

E[Z0(t)] � P(Tdie > t)
P(T0

div > t)P(Tdd > t) + ∫t

0
dP(Tdd ≤ τ)P(T0

div > τ)[ ]. (4)

TABLE 4 | Bayes factor interpretation.

Bayes
factor: BF01 (BF10)

Interpretation

>100 Extreme evidence for H0 (H1)
30–100 Very strong evidence for H0 (H1)
10–30 Strong evidence for H0 (H1)
1–3 Anecdotal evidence for H0 (H1)
1 No evidence

TABLE 5 | List of candidate parametric distribution classes.

Candidates Priors Target distribution

A αG, βG ∼ U (0, 200) T0
div , T

k≥1
div , Tld , Tdie ∼ Gamma(αG, βG)

B m, s ∼ U (0, 200) T0
div , T

k≥1
div , Tld , Tdie ∼ LN(m, s)

C μ, σ ∼ U (0, 200) T0
div , T

k≥1
div , Tld , Tdie ∼ N(μ, σ)

D αW, βW ∼HalfNormal (500) T0
div , T

k≥1
div , Tld , Tdie ∼ Weibull(αW , βW )

E λ ∼ U (0, 2), c ∼ U (0, ∞) T0
div , T

k≥1
div , Tld , Tdie ∼ Delayed Exp(λ, c)

F md, sd ∼ U (0, 200), c ∼ U (0, ∞) T0
div , T

k≥1
div , Tld , Tdie ∼ Delayed LN(md , sd , c)
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This equation can be interpreted as follows: a cell in
generation zero remains alive when Tdie > t, and it is sorted
either in initial state or in destiny state. The cell in the initial
state can divide, reach destiny or die whichever event comes
first. However, the destiny cell can no longer divide but only
awaits for death.

Generations > 0
To calculate the expected number of live cells for g > 0, we limit
the windows of cells being in generation g by constraining with
t ∈ [T0

div +∑g−1
k�1Mk, T

0
div +∑g

k�1Mk), that is
Zg(t) � 2g1{Tdie > t}1 T0

div
+∑g−1

k�1 Mk ≤min(t,Tdd)<T0
div

+∑g

k�1 Mk{ }. (5)

The factor 2g is required to include the effect of clonal expansion
of the cells that have divided g times. Assuming Tdie, Tdd,Mk and
T0
div are independent of each other, the expected value is

E[Zg(t)] � 2gP(Tdie > t)P T0
div +∑g−1

k�1
Mk ≤min(t, Tdd)<T0

div +∑g
k�1

Mk
⎛⎝ ⎞⎠.

Defining Xg � T0
div +∑g−1

k�1Mk and Yg �Mg, then, similarly to the
g � 0 case, we expand and employ the law of total probability to
obtain

P(Xg ≤min(t, Tdd)<Xg + Yg) �P(Xg ≤ t<Xg + Yg)P(Tdd > t)
+P(Xg <Tdd <Xg + Yg)P(Tdd ≤ t).

Hence, the expected number of cells in g > 0 is

E[Zg(t)] � 2gP(Tdie > t) ×
P(Tdd > t)∫t

0
dP(Xg ≤ τ)P(Yg > t − τ) + ∫t

0
dP(Tdd ≤ τ)P(Xg < τ <Xg + Yg)[ ].

(6)

Together with Eqs 4, 6, we can calculate the average number of
live cells for a family in generation g at time t for any distribution
class of T0

div, {Mg}g≥ 1, Tdd and Tdie. Since the equations are
equally applicable for N0 number of initial founder cells, we
generalise these by multiplying N0 such that

yg(t; θ) :� E[N0Zg(t; θ)] � N0E[Zg(t; θ)],
where θ � (T0

div, {Mg}g≥ 1, Tdd, Tdie) are the parameters of the
Cyton2 model. Typically, the random variables are equipped with
a lognormal distribution, which has two additional parameters,
thus, we have total of 6 + 2g free parameters to estimate.

Reduced Cyton2 Model
To fit FACS data, we simplify the model by assuming that the
subsequent division time is a constant rather than a set of random
variables, that is,Mg � m ∈ R>0 for all g > 0. This is based on the
empirical observation made from filming data that, after the first
division, the cells divide at a consistent rate with little inter- and
intra-clonal variability (Figures 2A2,B2). This step drastically
reduces the number of free parameters, and it no longer depends
on the number of generations but purely on the choices of
probability density function of T0

div, Tdd and Tdie. Essentially,
the reduced model has ~θ � (T0

div, m, Tdd, Tdie) parameters. Since

Eq. 4 does not depend on the subsequent division time, it remains
the same:

E[ ~Z0(t)] � E[Z0(t)] � P(Tdie > t)
P(T0

div > t)P(Tdd > t) + ∫t

0
fTdd

(τ)P(T0
div > τ)dτ[ ],

where fTdd is the probability density function of Tdd. However,
Eq. 6 can be further simplified to

E[ ~Zg(t)] � 2gP(Tdie > t) ×
P(Tdd > t)P(t − gm<T0

div < t − (g − 1)m) + ∫t

0
fTdd

(τ)P(τ − gm<T0
div < τ − (g − 1)m)dτ[ ].

We used the reduced Cyton2 model for all our analyses of
FACS data presented in this paper.

~yg(t; ~θ): � N0E[ ~Zg(t; ~θ)]. (7)

5.9 Fitting the Cyton2 Model
Division structured population datasets obtained from FACS were
fitted to the reduced Cyton2 model (i.e. Eq. 7). In total, there are 7
parameters to be estimated for each dataset assuming that the random
variables are lognormally or normally distributed, thus if we have N
number of conditions, we have amaximumof 7N free parameters to be
fitted. For all conditions, we always used cell numbers at the beginning
of the stimulus (typically at t � 0) as a fixed initial cell number.

For each set of cell numbers {ng,r (ti)} from the data, where i ∈
{0, 1, . . . , I}, g ∈ {0, 1, . . . , G} and r ∈ {0, 1, . . . , R} are time,
generation and replicate indices, respectively, we obtained point
estimates of the parameters. To achieve this, we used least-
squares method with Levenberg-Marquardt (Marquardt, 1963)
optimisation algorithm implemented in Python library LMFIT
(version 1.0.2) (Newville et al., 2014). We defined the residual
sum of squares (RSS) as our cost function,

C(~θ) � ∑I
i�0

∑G
g�0

∑R
r�0

ng,r(ti) − ~yg(ti; ~θ)( )2,
such that we find an approximate minimum,

{~θ*} ∈ arg min
~θ

C(~θ).

As the algorithm requires a set of starting parameter values, we
prescribed 100 sets of initial values drawn uniformly at random from
the appropriate parameter ranges, and recorded RSS for each set to
identify the best fitted parameters by the lowest RSS. For fitting
multiple datasets simultaneously, which requires an extra sum over all
datasets in the cost function, the algorithm needs to explore higher
dimension of the parameter space compared to fitting one dataset at
each iteration. Therefore, we used 200 sets of initial values to increase
range of the exploration. After identifying the best fit, we performed
bootstrap method (Efron, 1979) with an artificial dataset that was
resampled with replacement (per time point) from the original
measured data. We repeated this process 1,000 times, which
resulted in 1,000 additional estimates for each parameter. This
allowed us to calculate 95% confidence intervals on the best fitted
parameter values. Additionally, we also obtained confidence bands for
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extrapolated cell numbers by calculating 95% percentile range at each
of discretised time point from the model.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found below: https://github.com/
hodgkinlab/cyton2-paper.

ETHICS STATEMENT

The animal study was reviewed and approved by the Animal
Ethics Committee Walter and Eliza Hall Institute.

AUTHOR CONTRIBUTIONS

HC, KD, and PH analysed and interpreted experiments, and
wrote the manuscript. SO, EH, JM, and SH planned, analysed,
and performed the experiments. AK and GP contributed to data
analysis. AK, GP, and SD contributed to the data interpretation.
All authors read and contributed revisions to the manuscript.

FUNDING

This project has received funding from the European Union’s
Horizon 2020 research and innovation programmed under the
Marie Marie Skłodowska-Curie grant agreement No 764698. This
publication has emanated from research supported in part by a
research grant from Science Foundation Ireland (SFI) under
Grant Number 16/RI/3399. This work was supported by the
National Health and Medical Research Council of Australia
(NHMRC) (Project Grant 1164800 and Investigator Grant
1176588 to P.D.H.), Victorian State Government Operational
Infrastructure Support and the Australian Government
NHMRC Independent Research Institutes Infrastructure
Support Scheme (361646). J.M.M is supported by an
NHMRC CJ Martin Fellowship. E.D.H is supported by
NHMRC R.D. Wright Fellowship and project grants
(1159488, 1140187, and 1165591) and grants from The
Leukemia and Lymphoma Society (6552-18).

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fbinf.2021.723337/
full#supplementary-material

REFERENCES

Antia, R., Bergstrom, C. T., Pilyugin, S. S., Kaech, S. M., and Ahmed, R. (2003).
Models of CD8+ Responses: 1. What Is the Antigen-independent Proliferation
Program. J. Theor. Biol. 221, 585–598. doi:10.1006/jtbi.2003.3208

Asquith, B., Debacq, C., Florins, A., Gillet, N., Sanchez-Alcaraz, T., Mosley, A., et al.
(2006). Quantifying Lymphocyte Kinetics In Vivo Using Carboxyfluorescein
Diacetate Succinimidyl Ester (CFSE). Proc. Biol. Sci. 273, 1165–1171.
doi:10.1098/rspb.2005.3432

Banks, H. T., Sutton, K. L., Thompson,W. C., Bocharov, G., Roose, D., Schenkel, T.,
et al. (2011). Estimation of Cell Proliferation Dynamics Using CFSE Data. Bull.
Math. Biol. 73, 116–150. doi:10.1007/s11538-010-9524-5

Banks, H. T., Thompson, W. C., Peligero, C., Giest, S., Argilaguet, J., and
Meyerhans, A. (2012). A Division-dependent Compartmental Model for
Computing Cell Numbers in CFSE-Based Lymphocyte Proliferation Assays.
Math. Biosci. Eng. 9, 699–736. doi:10.3934/mbe.2012.9.699

De Boer, R. J., and Perelson, A. S. (2005). Estimating Division and Death Rates from
CFSE Data. J. Comput. Appl. Math. 184, 140–164. doi:10.1016/j.cam.2004.08.020

De Boer, R. J., Ganusov, V. V., Milutinović, D., Hodgkin, P. D., and Perelson, A. S.
(2006). Estimating Lymphocyte Division and Death Rates from CFSE Data.
Bull. Math. Biol. 68, 1011–1031. doi:10.1007/s11538-006-9094-8

Buchholz, V. R., Flossdorf, M., Hensel, I., Kretschmer, L., Weissbrich, B., Gräf, P.,
et al. (2013). Disparate Individual Fates Compose Robust CD8+ T Cell
Immunity. Science 340, 630–635. doi:10.1126/science.1235454

Costa Del Amo, P., Debebe, B., Razavi-Mohseni, M., Nakaoka, S., Worth, A.,
Wallace, D., et al. (2020). The Rules of Human T Cell Fate In Vivo. Front.
Immunol. 11, 573. doi:10.3389/fimmu.2020.00573

Deenick, E. K., Gett, A. V., and Hodgkin, P. D. (2003). Stochastic Model of T Cell
Proliferation: A Calculus Revealing IL-2 Regulation of Precursor Frequencies,
Cell Cycle Time, and Survival. J. Immunol. 170, 4963–4972. doi:10.4049/
jimmunol.170.10.4963

Dowling, M. R., Milutinović, D., and Hodgkin, P. D. (2005). Modelling cell lifespan
and proliferation: is likelihood to die or to divide independent of age?. J. R. Soc.
Interf. 2, 517–526. doi:10.1098/rsif.2005.0069

Dowling, M. R., Kan, A., Heinzel, S., Zhou, J. H., Marchingo, J. M., Wellard, C. J.,
et al. (2014). Stretched Cell Cycle Model for Proliferating Lymphocytes. Proc.
Natl. Acad. Sci. U S A. 111, 6377–6382. doi:10.1073/pnas.1322420111

Downey, M. J., Jeziorska, D. M., Ott, S., Tamai, T. K., Koentges, G., Vance, K. W.,
et al. (2011). Extracting Fluorescent Reporter Time Courses of Cell Lineages
from High-Throughput Microscopy at Low Temporal Resolution. PLoS ONE 6,
e27886. doi:10.1371/journal.pone.0027886

Duffy, K. R., and Hodgkin, P. D. (2012). Intracellular Competition for Fates in
the Immune System. Trends Cel Biol. 22, 457–464. doi:10.1016/
j.tcb.2012.05.004

Duffy, K. R., and Subramanian, V. G. (2009). On the Impact of Correlation between
Collaterally Consanguineous Cells on Lymphocyte Population Dynamics.
J. Math. Biol. 59, 255–285. doi:10.1007/s00285-008-0231-x

Duffy, K. R., Wellard, C. J., Markham, J. F., Zhou, J. H., Holmberg, R., Hawkins, E.
D., et al. (2012). Activation-Induced B Cell Fates Are Selected by Intracellular
Stochastic Competition. Science 335, 338–341. doi:10.1126/science.1213230

Efron, B. (1979). Bootstrap Methods: Another Look at the Jackknife. Ann. Statist. 7,
1–26. doi:10.1214/aos/1176344552

Ganusov, V. V., Pilyugin, S. S., De Boer, R. J., Murali-Krishna, K., Ahmed, R., and
Antia, R. (2005). Quantifying Cell Turnover Using CFSE Data. J. Immunol.
Methods 298, 183–200. doi:10.1016/j.jim.2005.01.011

Gerlach, C., Rohr, J. C., Perié, L., van Rooij, N., van Heijst, J. W., Velds, A., et al.
(2013). Heterogeneous Differentiation Patterns of Individual CD8+ T Cells.
Science 340, 635–639. doi:10.1126/science.1235487

Gett, A. V., and Hodgkin, P. D. (2000). A Cellular Calculus for Signal Integration
by T Cells. Nat. Immunol. 1, 239–244. doi:10.1038/79782

Harris, T. E. (1963). The Theory of Branching Processes. Berlin: Springer-Verlag.
Hasenauer, J., Schittler, D., and Allgöwer, F. (2012). Analysis and Simulation of

Division- and Label-Structured Population Models : a New Tool to Analyze
Proliferation Assays. Bull. Math. Biol. 74, 2692–2732. doi:10.1007/s11538-012-
9774-5

Hawkins, E. D., Turner, M. L., Dowling, M. R., van Gend, C., and Hodgkin, P. D.
(2007). A Model of Immune Regulation as a Consequence of Randomized
Lymphocyte Division and Death Times. Proc. Natl. Acad. Sci. U S A. 104,
5032–5037. doi:10.1073/pnas.0700026104

Frontiers in Bioinformatics | www.frontiersin.org October 2021 | Volume 1 | Article 72333718

Cheon et al. Cyton2: Immune Cell Population Dynamics

https://github.com/hodgkinlab/cyton2-paper
https://github.com/hodgkinlab/cyton2-paper
https://www.frontiersin.org/articles/10.3389/fbinf.2021.723337/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fbinf.2021.723337/full#supplementary-material
https://doi.org/10.1006/jtbi.2003.3208
https://doi.org/10.1098/rspb.2005.3432
https://doi.org/10.1007/s11538-010-9524-5
https://doi.org/10.3934/mbe.2012.9.699
https://doi.org/10.1016/j.cam.2004.08.020
https://doi.org/10.1007/s11538-006-9094-8
https://doi.org/10.1126/science.1235454
https://doi.org/10.3389/fimmu.2020.00573
https://doi.org/10.4049/jimmunol.170.10.4963
https://doi.org/10.4049/jimmunol.170.10.4963
https://doi.org/10.1098/rsif.2005.0069
https://doi.org/10.1073/pnas.1322420111
https://doi.org/10.1371/journal.pone.0027886
https://doi.org/10.1016/j.tcb.2012.05.004
https://doi.org/10.1016/j.tcb.2012.05.004
https://doi.org/10.1007/s00285-008-0231-x
https://doi.org/10.1126/science.1213230
https://doi.org/10.1214/aos/1176344552
https://doi.org/10.1016/j.jim.2005.01.011
https://doi.org/10.1126/science.1235487
https://doi.org/10.1038/79782
https://doi.org/10.1007/s11538-012-9774-5
https://doi.org/10.1007/s11538-012-9774-5
https://doi.org/10.1073/pnas.0700026104
https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


Hawkins, E. D., Markham, J. F., McGuinness, L. P., and Hodgkin, P. D. (2009).
A Single-Cell Pedigree Analysis of Alternative Stochastic Lymphocyte
Fates. Proc. Natl. Acad. Sci. U S A. 106, 13457–13462. doi:10.1073/
pnas.0905629106

Hawkins, E. D., Turner, M. L., Wellard, C. J., Zhou, J. H., Dowling, M. R., and
Hodgkin, P. D. (2013). Quantal and Graded Stimulation of B Lymphocytes as
Alternative Strategies for Regulating Adaptive Immune Responses. Nat.
Commun. 4, 2406. doi:10.1038/ncomms3406

Heinzel, S., Binh Giang, T., Kan, A., Marchingo, J. M., Lye, B. K., Corcoran, L. M.,
et al. (2017). A Myc-dependent Division Timer Complements a Cell-Death
Timer to Regulate T Cell and B Cell Responses. Nat. Immunol. 18, 96–103.
doi:10.1038/ni.3598

Hodgkin, P. D. (2018). Modifying Clonal Selection Theory with a Probabilistic Cell.
Immunol. Rev. 285, 249–262. doi:10.1111/imr.12695

Hoffman, M. D., and Gelman, A. (2014). The No-U-Turn Sampler: Adaptively
Setting Path Lengths in Hamiltonian Monte Carlo. J. Machine Learn. Res. 15,
1593–1623.

Hogquist, K. A., Jameson, S. C., Heath, W. R., Howard, J. L., Bevan, M. J., and
Carbone, F. R. (1994). T Cell Receptor Antagonist Peptides Induce Positive
Selection. Cell 76, 17–27. doi:10.1016/0092-8674(94)90169-4

Horton, M. B., Prevedello, G., Marchingo, J. M., Zhou, J. H. S., Duffy, K. R., Heinzel,
S., et al. (2018). Multiplexed Division Tracking Dyes for Proliferation-Based
Clonal Lineage Tracing. J. Immunol. 201, 1097–1103. doi:10.4049/
jimmunol.1800481

Hyrien, O., and Zand, M. S. (2008). A Mixture Model with Dependent
Observations for the Analysis of CSFE-Labeling Experiments. J. Am. Stat.
Assoc. 103, 222–239. doi:10.1198/016214507000000194

Hyrien, O., Chen, R., and Zand, M. S. (2010). An Age-dependent Branching
Process Model for the Analysis of CFSE-Labeling Experiments. Biol. Direct 5,
41. doi:10.1186/1745-6150-5-41

Jeffreys, H. (1961). Theory of Probability. 3 edn. Oxford: Oxford University Press.
Kaech, S. M., Wherry, E. J., and Ahmed, R. (2002). Effector and Memory T-Cell

Differentiation: Implications for Vaccine Development. Nat. Rev. Immunol. 2,
251–262. doi:10.1038/nri778

Lee, H. Y., Hawkins, E., Zand, M. S., Mosmann, T., Wu, H., Hodgkin, P. D., et al.
(2009). Interpreting CFSE Obtained Division Histories of B Cells In Vitro with
Smith-Martin and Cyton Type Models. Bull. Math. Biol. 71, 1649–1670.
doi:10.1007/s11538-009-9418-6

Luzyanina, T., Roose, D., Schenkel, T., Sester, M., Ehl, S., Meyerhans, A., et al. (2007).
Numerical Modelling of Label-Structured Cell Population Growth Using CFSE
Distribution Data. Theor. Biol. Med. Model. 4, 26. doi:10.1186/1742-4682-4-26

Lyons, A. B., and Parish, C. R. (1994). Determination of Lymphocyte Division by
Flow Cytometry. J. Immunol. Methods 171, 131–137. doi:10.1016/0022-
1759(94)90236-4

Marchingo, J. M., Kan, A., Sutherland, R. M., Duffy, K. R., Wellard, C. J., Belz, G. T.,
et al. (2014). T Cell Signaling. Antigen Affinity, Costimulation, and Cytokine
Inputs Sum Linearly to Amplify T Cell Expansion. Science 346, 1123–1127.
doi:10.1126/science.1260044

Marchingo, J. M., Prevedello, G., Kan, A., Heinzel, S., Hodgkin, P. D., and
Duffy, K. R. (2016). T-cell Stimuli Independently Sum to Regulate an
Inherited Clonal Division Fate. Nat. Commun. 7, 13540. doi:10.1038/
ncomms13540

Markham, J. F., Wellard, C. J., Hawkins, E. D., Duffy, K. R., and Hodgkin, P. D.
(2010). A Minimum of Two Distinct Heritable Factors Are Required to Explain
Correlation Structures in Proliferating Lymphocytes. J. R. Soc. Interf. 7,
1049–1059. doi:10.1098/rsif.2009.0488

Marquardt, D. W. (1963). An Algorithm for Least-Squares Estimation of
Nonlinear Parameters. J. Soc. Ind. Appl. Math. 11, 431–441. doi:10.1137/
0111030

Mazzocco, P., Bernard, S., and Pujo-Menjouet, L. (2017). Estimates and
Impact of Lymphocyte Division Parameters from CFSE Data Using
Mathematical Modelling. PLOS ONE 12, e0179768. doi:10.1371/
journal.pone.0179768

McElreath, R. (2020). Statistical Rethinking. 2 edn. Boca Raton, Florida: CRC Press/
Taylor & Francis Group. doi:10.1201/9780429029608

Miao, H., Jin, X., Perelson, A. S., and Wu, H. (2011). Evaluation of Multitype
Mathematical Models for CFSE-Labeling experiment Data. Bull. Math. Biol. 74,
300–326. doi:10.1007/s11538-011-9668-y

Mitchell, S., Roy, K., Zangle, T. A., andHoffmann, A. (2018). Nongenetic Origins of
Cell-To-Cell Variability in B Lymphocyte Proliferation. Proc. Natl. Acad. Sci. U
S A. 115, E2888–E2897. doi:10.1073/pnas.1715639115

Newville, M., Stensitzki, T., Allen, D. B., and Ingargiola, A. (2014). LMFIT: Non-
linear Least-Square Minimization and Curve-Fitting for Python. [Dataset].
doi:10.5281/zenodo.11813 Available at: https://zenodo.org/record/11813

Nordon, R. E., Nakamura, M., Ramirez, C., and Odell, R. (1999). Analysis of
Growth Kinetics by Division Tracking. Immunol. Cel Biol. 77, 523–529.
doi:10.1046/j.1440-1711.1999.00869.x

Quah, B. J., and Parish, C. R. (2012). New and Improved Methods for
Measuring Lymphocyte Proliferation In Vitro and In Vivo Using CFSE-
like Fluorescent Dyes. J. Immunol. Methods 379, 1–14. doi:10.1016/
j.jim.2012.02.012

Revy, P., Sospedra, M., Barbour, B., and Trautmann, A. (2001). Functional
Antigen-independent Synapses Formed between T Cells and Dendritic Cells.
Nat. Immunol. 2, 925–931. doi:10.1038/ni713

Sakaue-Sawano, A., Kurokawa, H., Morimura, T., Hanyu, A., Hama, H., Osawa, H.,
et al. (2008). Visualizing Spatiotemporal Dynamics of Multicellular Cell-Cycle
Progression. Cell 132, 487–498. doi:10.1016/j.cell.2007.12.033

Salvatier, J., Wiecki, T. V., and Fonnesbeck, C. (2016). Probabilistic
Programming in Python Using PyMC3. PeerJ Comput. Sci. 2, e55.
doi:10.7717/peerj-cs.55

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T.,
et al. (2012). Fiji: an Open-Source Platform for Biological-Image Analysis. Nat.
Methods 9, 676–682. doi:10.1038/nmeth.2019

Shokhirev, M. N., and Hoffmann, A. (2013). FlowMax: A Computational Tool for
Maximum Likelihood Deconvolution of CFSE Time Courses. Plos One 8,
e67620. doi:10.1371/journal.pone.0067620

Shokhirev, M. N., Almaden, J., Davis-Turak, J., Birnbaum, H. A., Russell, T. M.,
Vargas, J. A., et al. (2015). A Multi-Scale Approach Reveals that NF-Κb cRel
Enforces a B-Cell Decision to divide. Mol. Syst. Biol. 11, 783. doi:10.15252/
msb.20145554

Smith, J. A., and Martin, L. (1973). Do cells Cycle?. Proc. Natl. Acad. Sci. U S A. 70,
1263–1267. doi:10.1073/pnas.70.4.1263

Subramanian, V. G., Duffy, K. R., Turner, M. L., and Hodgkin, P. D. (2008).
Determining the Expected Variability of Immune Responses Using the Cyton
Model. J. Math. Biol. 56, 861–892. doi:10.1007/s00285-007-0142-2

Turner, M. L., Hawkins, E. D., and Hodgkin, P. D. (2008). Quantitative Regulation
of B Cell Division Destiny by Signal Strength. J. Immunol. 181, 374–382.
doi:10.4049/jimmunol.181.1.374

Vehtari, A., Gelman, A., and Gabry, J. (2017). Practical Bayesian Model Evaluation
Using Leave-One-Out Cross-Validation and WAIC. Stat. Comput. 27,
1413–1432. doi:10.1007/s11222-016-9696-4

Veiga-Fernandes, H., Walter, U., Bourgeois, C., McLean, A., and Rocha, B. (2000).
Response of Naïve and Memory CD8+ T Cells to Antigen Stimulation In Vivo.
Nat. Immunol. 1, 47–53. doi:10.1038/76907

Wagenmakers, E. J., Verhagen, J., and Ly, A. (2016). How to Quantify the Evidence
for the Absence of a Correlation. Behav. Res. Methods 48, 413–426. doi:10.3758/
s13428-015-0593-0

Watanabe, S., and Opper, M. (2010). Asymptotic Equivalence of Bayes Cross
Validation and Widely Applicable Information Criterion in Singular Learning
Theory. J. Machine Learn. Res. 11, 3571–3594.

Wellard, C., Markham, J., Hawkins, E. D., and Hodgkin, P. D. (2010). The Effect of
Correlations on the Population Dynamics of Lymphocytes. J. Theor. Biol. 264,
443–449. doi:10.1016/j.jtbi.2010.02.019

Wellard, C., Markham, J. F., Hawkins, E. D., and Hodgkin, P. D. (2011).
Mathematical Models and Immune Cell Biology. New York: Springer.
doi:10.1007/978-1-4419-7725-0

Yates, A., Chan, C., Strid, J., Moon, S., Callard, R., George, A. J., et al. (2007).
Reconstruction of Cell Population Dynamics Using CFSE. BMC Bioinf. 8, 196.
doi:10.1186/1471-2105-8-196

Yates, C. A., Ford, M. J., and Mort, R. L. (2017). A Multi-Stage Representation of
Cell Proliferation as a Markov Process. Bull. Math. Biol. 79, 2905–2928.
doi:10.1007/s11538-017-0356-4

Zhou, J. H. S., Markham, J. F., Duffy, K. R., and Hodgkin, P. D. (2018).
Stochastically Timed Competition between Division and Differentiation
Fates Regulates the Transition from B Lymphoblast to Plasma Cell. Front.
Immunol. 9, 2053. doi:10.3389/fimmu.2018.02053

Frontiers in Bioinformatics | www.frontiersin.org October 2021 | Volume 1 | Article 72333719

Cheon et al. Cyton2: Immune Cell Population Dynamics

https://doi.org/10.1073/pnas.0905629106
https://doi.org/10.1073/pnas.0905629106
https://doi.org/10.1038/ncomms3406
https://doi.org/10.1038/ni.3598
https://doi.org/10.1111/imr.12695
https://doi.org/10.1016/0092-8674(94)90169-4
https://doi.org/10.4049/jimmunol.1800481
https://doi.org/10.4049/jimmunol.1800481
https://doi.org/10.1198/016214507000000194
https://doi.org/10.1186/1745-6150-5-41
https://doi.org/10.1038/nri778
https://doi.org/10.1007/s11538-009-9418-6
https://doi.org/10.1186/1742-4682-4-26
https://doi.org/10.1016/0022-1759(94)90236-4
https://doi.org/10.1016/0022-1759(94)90236-4
https://doi.org/10.1126/science.1260044
https://doi.org/10.1038/ncomms13540
https://doi.org/10.1038/ncomms13540
https://doi.org/10.1098/rsif.2009.0488
https://doi.org/10.1137/0111030
https://doi.org/10.1137/0111030
https://doi.org/10.1371/journal.pone.0179768
https://doi.org/10.1371/journal.pone.0179768
https://doi.org/10.1201/9780429029608
https://doi.org/10.1007/s11538-011-9668-y
https://doi.org/10.1073/pnas.1715639115
https://doi.org/10.5281/zenodo.11813
https://zenodo.org/record/11813
https://doi.org/10.1046/j.1440-1711.1999.00869.x
https://doi.org/10.1016/j.jim.2012.02.012
https://doi.org/10.1016/j.jim.2012.02.012
https://doi.org/10.1038/ni713
https://doi.org/10.1016/j.cell.2007.12.033
https://doi.org/10.7717/peerj-cs.55
https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1371/journal.pone.0067620
https://doi.org/10.15252/msb.20145554
https://doi.org/10.15252/msb.20145554
https://doi.org/10.1073/pnas.70.4.1263
https://doi.org/10.1007/s00285-007-0142-2
https://doi.org/10.4049/jimmunol.181.1.374
https://doi.org/10.1007/s11222-016-9696-4
https://doi.org/10.1038/76907
https://doi.org/10.3758/s13428-015-0593-0
https://doi.org/10.3758/s13428-015-0593-0
https://doi.org/10.1016/j.jtbi.2010.02.019
https://doi.org/10.1007/978-1-4419-7725-0
https://doi.org/10.1186/1471-2105-8-196
https://doi.org/10.1007/s11538-017-0356-4
https://doi.org/10.3389/fimmu.2018.02053
https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


Zilman, A., Ganusov, V. V., and Perelson, A. S. (2010). Stochastic Models of
Lymphocyte Proliferation and Death. Plos One 5, e12775. doi:10.1371/
journal.pone.0012775

Conflict of Interest: Author SJD is employed by AstraZeneca.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Cheon, Kan, Prevedello, Oostindie, Dovedi, Hawkins,
Marchingo, Heinzel, Duffy and Hodgkin. This is an open-access article
distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that
the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does
not comply with these terms.

Frontiers in Bioinformatics | www.frontiersin.org October 2021 | Volume 1 | Article 72333720

Cheon et al. Cyton2: Immune Cell Population Dynamics

https://doi.org/10.1371/journal.pone.0012775
https://doi.org/10.1371/journal.pone.0012775
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles

	Cyton2: A Model of Immune Cell Population Dynamics That Includes Familial Instructional Inheritance
	1 Introduction
	2 Results
	2.1 Cyton2 Model Structure
	2.2 Time-Lapse Microscopy of B and T Cell Families
	2.3 Induced Dependency Through Right Censoring of Timers
	2.4 Using Filming Data to Determine Appropriate Distribution Classes for the Timers

	3 Application to FACS Data
	3.1 B Cell Data: Assessing Model Fits
	3.2 T Cell Data: Assessing Cyton2’s Ability to Draw Biologically Meaningful Inferences

	4 Discussion
	5 Methods
	5.1 Mice
	5.2 CD8+ T Cell Isolation
	5.3 In Vitro Cell Culture
	5.4 Live Cell Imaging and Cell Tracking
	5.5 Data Selection and Tree Collapse
	5.6 Agent-Based Model
	5.7 Statistical Analysis: Bayesian Framework
	5.8 Equations for Dynamic Evolution of the Mean
	Generation Zero
	Generations CODE(0x33ced358) 0
	Reduced Cyton2 Model

	5.9 Fitting the Cyton2 Model

	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References


