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Understanding the structure of a protein complex is crucial in determining its function.
However, retrieving accurate 3D structures from microscopy images is highly challenging,
particularly as many imaging modalities are two-dimensional. Recent advances in Artificial
Intelligence have been applied to this problem, primarily using voxel based approaches to
analyse sets of electron microscopy images. Here we present a deep learning solution for
reconstructing the protein complexes from a number of 2D single molecule localization
microscopy images, with the solution being completely unconstrained. Our convolutional
neural network coupled with a differentiable renderer predicts pose and derives a single
structure. After training, the network is discarded, with the output of this method being a
structural model which fits the data-set. We demonstrate the performance of our system
on two protein complexes: CEP152 (which comprises part of the proximal toroid of the
centriole) and centrioles.

Keywords: SMLM, deep-learning, structure, storm, AI

1 INTRODUCTION

Imagingmesoscale 3D biological structures (that is, those between the nano- and themicro-scale) is a
critical problem in biology, as many processes of biological interest rely on collections of proteins or
other molecules arranged into a distinct architecture. Currently two major techniques can provide
data on the shape of such aggregates: electron microscopy and light (particularly fluorescence)
microscopy. Electron microscopy (EM) offers resolution below 1 nm, but is limited in the thickness
of the samples it can observe, and analysis is relatively complex, generally requiring multiple particle
averaging (Milne et al., 2013). Fluorescence microscopy is experimentally relatively simple and can
deal with larger samples, but generally yields only single images which are limited in resolution to
about 250 nm (Schermelleh et al., 2010).

Super-resolution techniques allow this limit to be broken, pushing the achievable resolution down
to 20–100 nm. In particular, single molecule localisation microscopy (SMLM) yields high resolution
images (around 20–30 nm), while allowing large amounts of data to be collected (Schermelleh et al.,
2010; Holden et al., 2014) and being relatively experimentally simple. SMLM imaging has a trade off
between the x, y and z resolution: gaining information in the z direction is possible, but generally at
the expense of in-plane information quality (Badieirostami et al., 2010). Therefore, 2D images will
have the highest localisation quality, but clearly limit information on 3D structure.

The challenge of how to infer 3D information from 2D images has been tackled both from the
perspective of synthesising EM images to create a 3D structural model (Milne et al., 2013), and in the
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computer vision field to infer a 3D structure from a single image
of a single object (Fan et al., 2017). In recent years, deep learning
has emerged as a promising approach to improve structural
fitting.

Convolutional neural networks are one of the most well
known forms of Deep Learning - convolving the data with a
kernel (Goodfellow et al., 2016). This process reduces the size of
the principal data dimensions, creating a number of feature maps
or filters, each sensitive to a particular, local aspect of the data.
Through training, the network parameters adjust to produce the
required output.

Here, we use a deep learning network to infer the pose of point
cloud data and 3D structure. Our algorithm HOLLy
(Hypothesised Object from Light Localisations) allows us to
perform a completely unconstrained model fit from 2D SMLM
images.

2 METHODS

2.1 Modelling Pose Using Deep Learning
HOLLy fits a 3D model against a set of 2D images of the same
biological structure. The input images are typically super-
resolved SMLM reconstructions, each of which is a z
projection of the structure being imaged from some unknown
rotational orientation and translation. The goal is to deduce the

pose (rotation and translation) for each input image and infer a
single 3D model for the entire data-set.

The 3D model is a collection of points (with their co-ordinates
represented by a matrix) which are initiated at random positions.
The current positions of the points, and the pose corresponding
to each input image, are used to generate a simulated microscopy
image corresponding to each input image (with the image being
projected in z into a single x-y plane). The image is rendered with
a Gaussian at each point, as is standard for SMLM. Each Gaussian
has the same sigma, which is a parameter of the renderer, and the
resulting image is differentiable with respect to the point
coordinates and sigma. Our renderer is designed to efficiently
and accurately render SMLM point clouds. This is in contrast to
existing state of the art such as OpenDR (Loper and Black, 2014),
DiRT (Henderson and Ferrari, 2020), PyTorch3D (Ravi et al.,
2020), Pulsar (Lassner and Zollhöfer, 2020) and DWDR (Han
et al., 2020) which are designed primarily to render illuminated,
texturedmeshes with perspective cameras (or in the case of Pulsar
and Insafutdinov and Dosovitskiy (2018), rendering with
spheres), our renderer is simpler and more closely models
SMLM. Rather than rendering rasterised triangles, HOLLy
converts the final 2D points to Gaussians.

We used a simple convolutional neural network (CNN)
consisting of 10 layers of strided convolutions and Leaky-
ReLU (Aggarwal, 2018), followed by two fully connected
layers. Figure 1 highlights the major components (further

FIGURE 1 | An overview of our network. Batches of images of size 128 × 128 pixels are fed to the convolution layers, which reduce the batch down to 6 parameters.
These are passed to the rendering pipeline along with the 3D reconstruction matrix to produce a batch of output images. The rendering parameters Rx, Ry and Rz
represent the rotation in “Angle-Axis” form. Tx and Ty represent translation in the X, Y plane. S represents the predicted output-sigma. The 3D reconstruction matrix
contains a list of vertices representing the predicted point-cloud.
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information can be found in Supplementary Material: HOLLy
technical details).

The CNN yields six outputs. The position and orientation of
the model are described by the translation in X and Y, and three
rotation parameters for which we used the axis-angle
formulation. The sixth parameter is the output-sigma value
which is used as the sigma for the renderer. Note that the
output-sigma explicitly differs from the resolution of the input
images, i.e., in the case where input images are themselves
reconstructions of SMLM data, the sigma used for their
reconstruction (input-sigma) is not the same as output-sigma.

In principle, if the input data were perfect, the output sigma
could be fixed to be equal to the input sigma. Since this is not the
case, allowing the model to predict output-sigma allows it to
account for some of the noise in the data. For example, consider
the case of scatter (noise in the position of fluorophores). That is
essentially a stochastic blur of the model structure, so when the
reconstructed 3D model (which has no scatter) is rendered, the
sigma needs to be higher in order for the output to be a good
match to the input. This is discussed further in Section 2.6.

The key element of our system is the use of a CNN to predict
the pose for each input image. Allowing for a pose per image is a
significant advantage over techniques such as template matching
based Cryo-EM (Milne et al., 2013), or classification of the images
by view (Salas et al., 2017) since the system is not limited to a
small number of orientations, and views do not have to be
determined a-priori on unknown structure in order to build a
classifier.

Additionally, using a CNN to predict the pose has a big
advantage in modelling a pose per image as it makes the

overall optimization much more tractable. The reason for this
is that the space is in some sense smooth and images that are close
in appearance will usually also be close in pose. This allows the
network to aggregate information from similar images in order to
get a better prediction of the pose for all of them. It also allows for
fast convergence because an improvement on one image can
cause an improvement in many others. We illustrate this in
Figure 2, where data that is not seen during training can
generate outputs that correspond to the input.

The advantage of using a CNN can be illustrated by attempting
to solve the same problem by direct optimisation. We removed
the convolutional layers from the architecture shown in Figure 1,
replacing them with a single 5 × Nmatrix (N being the size of the
training set). A training batch consists of a batch of images and
their corresponding poses from that 5 × N matrix. These
differentiable render is used to render the model with these
poses. This rendered images are compared to the
corresponding input image creating a loss as before. The loss
is back-propagated through the diffentiable renderer and used to
update the model and the poses. Various learning rates, models
and optimisers were tested.

This direct optimisation approach could not reproduce 3D
sample structure or model the pose correctly. We suspect this is
due to both a lack of shared rotational model between data and
the difficulty of modelling rotation. The results can be found in
Supplementary Material: Direct Optimisation. These results
demonstrate the advantages of using a CNN in this scenario.

2.2 The Output Is a Structural Model Rather
Than a Trained Network
Often, the value of a neural network is the network itself that can
be used to predict, discriminate or otherwise solve a particular
problem once trained. Our approach ignores the network once it
has been trained; the value in our approach is the 3D model
stored in the Reconstructed 3D Model matrix.

This 3D model gradually improves as training continues. The
user can stop training at any time, typically when the loss stops
improving. The final positions of the points in the 3D
reconstruction matrix represent the final structure, whereupon
the network is no longer required.

2.3 Simulated Data Models
In order to evaluate HOLLy, we selected a number of ground-
truth point-clouds with different characteristics: a reduced
version of the Stanford Bunny1, the Utah Teapot2 and an
approximation of the CEP152/HsSAS-6 complex (Sieben et al.,
2018).

All of the models consist of a relatively small number of
vertices (fewer than 400). Each have unique characteristics, such
as different numbers of vertices, symmetries and voids (see
Section 3 - Results). The Stanford Bunny and Utah Teapot
are standard in computer vision tests as they have properties

FIGURE 2 | Demonstration of information sharing between different
poses with the CNN. HOLLy was stopped half-way through the first epoch of
training, meaning only half of the data has been used for training. Note that for
the half of the data which has been seen, this corresponds to a single
step of gradient descent per image, and half of the data has not yet been used
at all. Already it can be observed that in many cases on seen data (illustrated in
A, C) there is correspondence between the input and output shapes (albeit
imperfect as it is very early in the optimization process). The advantage of the
CNN can be observed in the results on unseen data where this
correspondence also exists (B, D). This partial convergence on unseen data
shows that the CNN allows earlier data to assist in the convergence of data
seen later, which provides a very substantial improvement over modelling
poses separately.

1http://graphics.stanford.edu/data/3Dscanrep/\#bunny
2https://www.computerhistory.org/collections/catalog/102710359
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that are likely to prove challenging. The Utah teapot is close to,
but not quite, symmetric, and the Stanford bunny has fine
structure (ears) but also relatively large areas of smooth
structure (back). These properties showcase the potential of
the method to yield results as experimental data improves.

As we have complete control of data-set generation from
synthetic models, we must choose the distribution of data
across the translation and rotation space. We uniformly
sampled the 3D rotation group—SO(3)—which consists of all
rotations in Euclidean R3 space, centred at the origin, using the
equation presented by3 Kirk (1994). The models used in the
simulated data are small enough to be rendered “on-the-fly” into
images as the network trains.

2.4 Experimental Data From Biological
Structures
Our main biological targets were a centriolar complex comprised
of the CEP152 protein, and purified centrioles.

The first dataset was a super-resolution (STORM) microscopy
data-set of CEP152, obtained and analysed as described in Sieben
et al. (2018). The structure of this centro-symmetric complex has
been fitted with a toroid and found to be 400 nm in diameter
(Sieben et al., 2018), which subsequent work confirmed (Kim
et al., 2019). This yielded a list of localisations for each identified
CEP152 structure which were reconstructed localisations into 2D
images, rendering with a Gaussian. Since the number of
localisations in the experimental SMLM data-sets outnumber
the modelled point-cloud by a factor of 20, this process is
computationally intensive, and so these images are pre-
rendered and stored on disk.

This data-set consists of 4,663 individual images. Some of
these show incomplete labelling or are not centriole structures
(such as all the fluorophores converging on a single, bright spot).
Erroneous data were removed manually, reducing the data-set
size to 2055. Data was augmented by a factor of 20 rotating the
entire centriole within the field of view using a 2D rotational
matrix, giving a final training set size of around 40,000. As the
data is represented by points and not a bitmap, it can be rotated
by an arbitrary angle without introducing additional artefacts.
Examples of the STORMCEP152 training images can be found in
the Supplementary Figure S2.

The second data-set is derived from expansion microscopy
experiments to image labelled glutamylated tubulin in centrioles
purified from Chlamydomoanas reinhardtii (Mahecic et al.,
2020). The images are segmented and presented as tiff stacks
of size 128 × 128 × 84 in xyz. A sum projection is carried out to
eliminate the information in z, creating a 2D image of an
unknown blur. Each image was cropped to 60 × 60 pixels
centred on the protein complex.

As the data are represented by pixels and not a list of
localisations, augmentation is limited to the four cardinal
directions to avoid the creation of artefacts. The resulting
data-set is 14,612 items in size. As the point-spread function is

not modelled, there is no base input-sigma. A Gaussian blur of
decreasing sigma is applied “on-top-of” the existing image (see
Supplementary Figure S3).

2.5 Input Images
The input to the network consists of a batch of 2D images, each of
the same target object from different viewpoints. These images
may be simulated (rendered from a known ground-truth 3D
model) or derived from experimental data.

For both simulated and real SMLM data, rendering with a
Gaussian generates a 2D image, with the resolution of the
reconstruction being determined by the input-sigma. For the
simulated data the 2D point cloud is generated by applying a
random rotation and translation, adding noise and projecting
away Z. For data in the form of images were blurred with a
Gaussian, with input-sigma as the width.

Before being passed into the network, the input images were
normalised to ensure that the pixel values fall within boundaries
usable by the network (see Section 2.8).

Deep learning requires a large, representative training set for
results to be accurate. For accurate 3D reconstruction, it is
important to sample diverse angles since areas of the object
not represented in the training data will not be reconstructed.
In the simulated case, data-sets of any size can be generated (time
permitting). However, this is not the case for the
experimental data.

2.6 Sigma
The input-sigma value, which defines the level of blur
(i.e., resolution) in the input images, is initialised at a high
value (one which would produce an image with around
diffraction limited resolution). The value is then decreased on
a curve as the network trains. By starting with a larger input-
sigma, the loss between the input and output images is smaller,
with shallower gradients over larger distances. This allows the
network to broadly optimise the points in the 3D reconstructed
model matrix, refining finer detail as the input-sigma is reduced.

The lowest value for sigma can be set to the expected
localization error for a particular SMLM experiment. The
input-sigma curve can be found in the Supplementary Figure
S1. The output-sigma (that is, the sigma used by the differentiable
renderer to create images from the hypothesised model) is
predicted by the network. The output-sigma can be set to
match the known input-sigma, but early experiments suggest
that predicting the output-sigma increases the network’s
tolerance to scattered or missing fluorophores. By increasing
the output-sigma the blur increases, accommodating the
scattered points.

In experimental data, we would expect around an ∼8 nm
scatter in position due to the antibody used and an additional
∼12 nm degradation in precision due to the localisation accuracy.
Such values suggest an expected resolution around 20nm, with an
expected sigma around 10 nm. For our STORM CEP152
experiments we set the lower-bound of the input-sigma to a
value of ∼3.2 pixels, which equates to 30 nm using the scale
provided with the data. The input-sigma changes at the end of
each epoch, rather than continuously, giving a “stepped-curve”3https://demonstrations.wolfram.com/SamplingAUniformlyRandomRotation/
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(see Supplementary Material: Note 3 - input-sigma Hyper-
parameter and Supplementary Figure S1) This is due to the
images being pre-rendered before training begins. This decision
was made for performance reasons.

The expansion microscopy centriole data-set has a scale of
14 nm per pixel. The additional input sigma curve begins at 2.8
pixels (∼ 40 nm), reducing to zero. The smaller initial input sigma
attempts to account for the smaller image size and the unknown
resolution of the data.

2.7 Loss Function
The loss is calculated directly between images by comparing the
pixel values between the input data and the predicted result, using
the PyTorch L1 Reduction option4 with the ‘sum’ reduction.
Rather than use the L1 loss between entire images, a mask was
generated from target image. The loss was calculated only for
these pixels that are within the mask, with areas outside the mask
set to zero for both input and output images.

2.8 Reconstructed 3D Model Matrix and
Normalisation
As training progresses, the matrix of 3D points that represents the
reconstructed 3D model moves from a random positions to yield
a recognisable structure. The size of this matrix (the number of
points to optimise) is ultimately limited by the amount of
memory and time available to the end user. The matrix size is
chosen by the user before training starts. In simulated tests, the
number of points responsible for generating the input image is
generally known, except when multiple fluorophore
reappearances per point are simulated.

Since the number of points affects the integrated intensity of
the image, and thus the loss, the number of points is linked to the
appropriate learning rate. Normalisation was therefore required
to bring the training data into numerical ranges the network can
process without generating extreme gradients. The image tensor
was divided by the integrated intensity, followed with a
multiplication by a fixed scalar. Figure 3 shows three
examples of Stanford Bunny Reconstructions, each with a
different size of 3D reconstruction matrix, with normalisation

applied. In each case, the basic shape is recognisable, with
increasing detail.

2.9 Hyper-Parameter Choices
Hyper-parameters are the user-chosen settings (Goodfellow et al.,
2016), rather than the learned parameters. Our parameters were
chosen using a combination of existing defaults and explorations
within reasonable ranges.

To verify that the learning rate selected was appropriate the
suggested value of 0.004 for the Adam Optimizer (Kingma and
Ba, 2017) was varied by a factor of 10 in both directions, stopping
when structure reproduction began to fail, with a score of 0.0004.

The simulated data-sets used comprised 40,000 images,
generated from an initial set of 2000 images. Each image was
augmented 20 times by a random rotation around the Z axis to
better match the experimental data.

The number of images presented to the network at each
training step (the batch-size) can affect the final accuracy of
the network (Kandel and Castelli, 2020). A batch-size of 32 was
selected as appropriate. Decreasing the batch size too far caused
reproduction to suffer and increasing too far caused memory
usage to become computationally limiting.

The final parameter considered was the number of epochs
(that is, the training time). An epoch is completed when the
network has processed the entire training set once. A range of
number of epochs were tested, with a value of 40 being found to
be an acceptable trade-off between accuracy and time.

This baseline for training with simulated data was chosen after
a number of results from earlier tests, with the restrictions of the
final experimental data in mind. The most important of these is
the training set size and construction. Experiments with
increasing the size of the simulated training set gave improved
results, but we are restricted in the size of the real, experimental
data. Therefore we chose to match the size of the experimental
data-set when performing the simulated experiments.

Further details of these hyper-parameters used in our
experiments are listed in Supplementary Material: Note 5.

2.10 Implementation
Experiments were carried out with a nVidia GeForce 2080Ti
GPU. Training duration was around 8 h with the settings given as
the baseline. Larger numbers of points in the reconstructed 3D
model dramatically increased memory usage.

FIGURE 3 | Examples of a reconstructed Stanford Bunny using different sizes of 3D reconstruction matrices. (A) contains 100 vertices. (B) contains 350 vertices,
the same number as the underlying ground truth. (C) contains 1,000 vertices. HOLLy manages to reproduce the basic shape throughout.

4https://pytorch.org/docs/stable/generated/torch.nn.L1Loss.html
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The estimated energy use to train a model is 2.1 kWh based on
a measurement of 623.4 kWh over 166 days. In this period, 298
models were trained and evaluated. This was confirmed by cross-
checking against the wattage of the GPU and the time spent to
generate a model.

Further technical details may be found in Supplementary
Material: HOLLy Technical Details.

3 RESULTS

3.1 Evaluation Criteria
The 3D structure which the network attempts to reconstruct is
represented as a point cloud with the coordinates of each point
stored in the 3D reconstruction matrix. The network attempts to
learn the orientation over time, and simultaneously improves its
own internal representation of the 3D structure by comparing 2D
renders of the point cloud against the training images.

The effectiveness of our approach was assessed by measuring
the similarity between the input point-cloud and the resulting
point-cloud stored in the model’s 3D reconstruction matrix.
Finding the absolute best match between two structures is an
NP-hard problem, and therefore a definitive score is not possible.
Given this, we selected the root mean squared distance (RMSD)
between two equivalent vertices in each point-cloud as an
acceptable measure. Equivalence is determined by finding the
closest neighbour with the Iterative Closest Point (ICP) (Arun
et al., 1987) algorithm within CloudCompare5.

ICP relies on an rough, initial alignment. We performed this
step manually, then applied ICP to obtain our RMSD score,
independent of the pose predicted by the network. To find an
RMSD score baseline to compare against we attempted to match
two random clouds covering the same world-space as our model.

The parameters used in these experiments can be found in
Supplementary Material: Experiment parameters.

3.2 Simulated Results
To assess the accuracy of our proposed method, a set of
commonly used 3D models were chosen to evaluate the
approach. The availability of a ground-truth structure allowed
us to measure how well our network performs under different
conditions. To validate our approach, we first performed a set of
baseline experiments to determine how well the network could
infer the 3D structure when only presented with 2D renders of
these models.

3.2.1 Baseline Experiments - Stanford Bunny
The first model tested was the Stanford Bunny. This model has no
symmetry, contains fine detail, protrusions and a homogeneous
distribution of vertices across its surface. It contains considerably
more points than the other point-clouds used, though the version
in our experiments is in the order of hundreds of vertices as
opposed to tens of thousands in the original point-cloud.

All results from baseline experiments were noise free (i.e., every
generated fluorophore was exactly at an existing vertex position, there
was only one per vertex position, and every vertex position was
occupied). The baseline results all had low RMSD scores, considerably
less than 0.17, the average score when aligning two random point
clouds of the same size (Figure 4). However, three of the runs showed
a mirroring error, where the network mirrors the point-cloud in the
dorsal plane. This is due to the lack of depth information in the
training images (Figure 4), and is a fundamental ambiguity.

3.2.2 Baseline Experiments - Utah Teapot
Our second choice of model was the Utah Teapot, which posed
several challenges for our method: the similarity of the handle and
spout (when rendered using points), the bilateral symmetry and
the large voids between the layers of points in the central body.

It was reconstructed well and the pose was well predicted.
However, the handle appeared to be the same as the spout. Both
of these areas are low in information with few ground truth
points. The predicted structure therefore has an additional
transverse plane of symmetry not present in the ground-truth
(Figure 5). From the tip of the spout, to the edge of the handle, the
distance is 1036nm, using the CEP152 experiment scale.

3.2.3 Baseline Experiments - Approximation of the
CEP152/HsSAS-6 Complex
The third point-cloud used in these experiments is an
approximation of the CEP152/HsSAS-6 complex (Sieben et al.,
2018). The approximation consisted of two cylinders, one smaller
and perpendicular to the other. This point-cloud is somewhat
smaller than the others and is extremely regular with large gaps
between the columns of points.

The smaller, cylindrical structure is offset towards the top of
the larger structure in the ground-truth; this is not reflected in the
reconstruction. This is likely due to the size of the point-cloud in the
view - fine detail is hard to discern when the point-cloud is small
(Figure 6). From the end of the small cylinder to the furthest edge of
the larger cylinder, the distance is roughly 415 nm.

Together, these baseline experiments indicate that our
approach is suitable for reconstructing the overall 3D structure from
a series of 2D images. Most results showed low RMSD scores and
produced structures that are a good match to the original 3D models.

3.3 Modelling Experimental Noise in
Simulated Results
Our method aims to discern structure from fluorescence
microscopy images, particularly super-resolution. We therefore
focused on the kinds of problems often encountered in such
experiments. Fluorophores are offset from the object they are
labelling, they may not bind to certain areas, or might bind
multiple times. They may not illuminate consistently or they may
not be separable from their neighbours. We modelled three forms
of experimental noise: missing fluorophores (where no
fluorophores appear for a particular ground-truth point),
scatter (where a fluorophore appears at a varying distance
from its ground-truth point), and multiple binding (where
multiple fluorophores appear for a single ground-truth point).5http://www.cloudcompare.org/
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3.3.1 Scatter
Two factors can lead to scatter in fluorophore positions: the
inaccuracy of the fitted position due to the limited number of
photons collected, and the offset between the protein of interest
and the label, with the largest effect arising from primary/

secondary antibody labelling. This noisy change of position
(scatter) is modelled using a random Gaussian distribution
with a particular scatter-sigma value. The scatter-sigma ranges
from 0.03 to 0.15 pixels (9–44 nm, given the scale in the CEP152
experimental data).

FIGURE 4 | Baseline Stanford Bunny experiment results for each run (A–E) with RMSD score in the lower right corner of each panel. The ground truth model is
shown in orange, with the inferred structure shown as blue spheres, overlaid and aligned. (B–D) have the models mirrored for display and RMSD computation, and show
high quality fitting. (F–H) correspond to results for (B–D) as the original reconstructions (without mirroring). Note that under this imaging modality, the presence or
absence of mirroring cannot be determined. The parameters for this experiment can be found in Supplementary Table S5.1.

FIGURE 5 | Baseline Utah Teapot Experiment results for each run (A–E) with RMSD score. The inferred structure shown as blue spheres, overlaid and aligned
against the ground truth model shown in orange. Each model shows incorrect symmetry with non-differentiated spout and handle. The parameters for this experiment
can be found in Supplementary Table S5.2.

FIGURE 6 | Baseline CEP152/HsSAS-6 approximation experiment results for each run ((A–E), top row) with RMSD score. The ground truth model is shown in
orange, with the inferred structure shown as blue spheres, overlaid and aligned. Bottom row (F–J): close up of the top row. Note the slight offset of the smaller,
reconstructed cylinder from the ground-truth. The parameters for this experiment can be found in Supplementary Table S5.3.
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The results suggest that a scatter-sigma value between 0.06
pixels and 0.09 pixels (20–29 nm) is the cut-off point for
acceptable reproduction of the structure. The run in Figure 7F
shows a rare error where the structure is symmetrical along the
dorsal plane - effectively giving the structure two heads.
Figure 7C suffers from the mirroring problem (Figure 7).

3.3.2 Missing Fluorophores
When a fluorescence microscopy sample is labelled, not every
potential site is labelled, and not all fluorophores will fluoresce.
The degree of labelling and the performance of fluorophores
strongly impacts image quality. To simulate this effect a random

selection of vertex positions are not labelled with fluorophores.
Results suggest that a recognizable reproduction with a good
RMSD score can be obtained with up to ∼30% of the points
removed (Figure 8).

3.3.3 Multiple Binding and Scatter
Our final noise experiment randomly chooses up to a maximum
number of bound fluorophores per ground-truth point, each with a
random scatter. A single ground-truth point may “spawn” up-to a
maximum of individual fluorophores (max-spawn) using a user-set
probability (spawn-rate). In these experiments we chose a number of
parameters for “max-spawn,” “spawn-rate” and scatter.

FIGURE 7 | The results of the experiment into the effect of scatter. Top row (A–E): examples of training images treated with increasing scatter, as indicated by the
scatter value above each panel. Bottom row (F–J): the corresponding results with the inferred structure shown as blue spheres, overlaid and aligned with the ground
truth model shown in orange. RSMD scores are indicated for each run in the lower right corner of (F–J). Runs in (F) and (C) respectively showed an incorrect symmetry in
structure and mirroring in a vertical plane. The parameters for this experiment can be found in Supplementary Table S5.4.

FIGURE 8 | Results from the experiment on the effect of missing fluorophores. Top row (A–E): examples of training images with increasing probability of removing
points as indicated by the value above each panel. Bottom row (F–J): the corresponding results with the inferred structure shown as blue spheres, overlaid and aligned
with the ground truth model in orange. Resulting RSMD scores for each run are indicated in the lower right corner of (F–J). The run in (G) showed an incorrect symmetrical
structure whereas the run in (H) showed mirroring in a vertical plane. The parameters for this experiment can be found in Supplementary Table S5.5.
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Many of these runs show symmetrical structure where none
should occur (Figure 9), in a manner similar to the missing
fluorophores experiment (Figure 8).

These results provide additional confidence that HOLLy can
produce accurate structures from experimental data. The
majority of results have low RMSD scores, with identifiable
structures and some tolerance to noise.

3.4 SMLM Dataset of the CEP152 Complex
Having optimized our approach with different 3D models, we
next applied it to experimental SMLM data collected on the
CEP152 complex, which is part of the centriole. One
important factor with this data is that the integrated
intensity varies considerably across the CEP152 data-set,
with the number of localisations ranging from 5,000 to
30,000. Normalisation plays a key part in making sure this
intensity range can be modelled by our network.
Additionally, since this data-set is limited by the number
of feasible experiments, data-augmentation plays a key role in
increasing both the absolute number of training images and
the variety of orientations. This training data-set consists of
approximately 40,000 images, augmented from an
experimental data-set of approximately 2000 images. See
Supplementary Figure S2 for representative images that
illustrate the range of orientations and experimental noise
in this training data-set.

After training with these images, our network converged on a
central torus for the CEP152 complex (Figures 10, 11). This
inferred structure is consistent with the confirmed structure
of this protein complex (Sieben et al., 2018; Kim et al., 2019).

Figure 10 in particular, shows examples of the network
attempting to match the training images, both in terms of

structure and the input-sigma. The input images are not
completely static; recall they are generated with a particular
input-sigma, which decreases as training progresses.
However, the output-sigma predicted by the network does
not continuously decrease as the input-sigma does—rather
the rate begins to flatten towards the end of training. Indeed,
certain images are rendered with a higher blur than others,
suggesting that certain images are being compensated for
with a higher output-sigma.

The final 3D structures in Figure 11 can be seen more easily in
the videos which accompany this paper (see Supplementary
Video S1, 2). When rendering these predicted structures in
2D based on the inferred orientations, they show significant
blurring due to a large predicted output-sigma, even when the
input-sigma was low (Figure 10). There was some noise in the
inferred structure, with two “fringe-like” structures in some of the
runs (Figure 11). Some points still appear in the middle of the
toroidal structure, likely because the network has been unable to
optimise these points as any direction they might now move in
would result in an increasing error. The density appears to be
lower for a small arc on the torus, reflective of the input images
that also show a similar effect. These final structures are not exact
as some noise still remains. Nonetheless, the consensus result that
emerges from multiple runs is a toroidal structure that matches
that of the CEP152 complex.

3.5 SIM/Expansion Microscopy Dataset of
Glutamylated Tubulin in Centrioles
To validate our method, we also applied it to a separate
experimental data-set (Mahecic et al., 2020) obtained using a
different imaging technique. We analysed SIM/expansion

FIGURE 9 | Results from the Noise Experiment for each run (A–H), with resulting RMSD shown in the lower right corner of each panel. The ground truth model is
shown in orange, with the created structure shown as blue spheres, overlaid and aligned. The top row (A–D) shows runs with a maximum number of flurophores per
ground-truth point of 4, while the bottom row (E–H) shows runs with a maximum of 8. The left two columns (A, B, E, F) have a spawn-rate of 0.3, with the right two
columns (C, D, G, H) have a spawn-rate of 0.7. Runs in (A, C, D, E, F, G) have incorrect symmetry whereas the run in (H) has mirroring in a vertical plane. The
parameters for this experiment can be found in Supplementary Table S5.6.
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microscopy images of glutamylated tubulin in purified centrioles.
After training on the SIM/expansion microscopy images, our
network converged on a central cylinder for this complex
(Figure 12). The density of points is highest in the centre of
each image, with a tube-like structure visible. These 3D aspects
are clearer in the Supplementary Video S3, 4. There appears to
be a “frill-like” structure around the top to middle of the cylinder,
which may reflect a particular characteristic of the input data.
Many of the images show a spike like protrusion, emanating from
the top of the central cylinder (see Supplementary Figure S3).

The consensus elongated cylindrical structure produced by
our method is also consistent with the known structure of

glutamylated tubulin in centrioles (Mahecic et al., 2020) (See
Supplementary Figure S2).

3.6 Handedness
Often when reconstructing 3D shapes from macroscopic
images, perspective projection and occlusion effects can be
used to infer depth. Neither of these are present in 2D
fluorescence microscopy images. Without perspective
projection, there is an unknown reflection of the final 3D
geometry which cannot be determined from the data. This is
known as the affine ambiguity (Hartley, 2004). Examples of
this effect can bee seen in Figure 4.

FIGURE 10 | Examples from the first run of the STORMCEP152 data-set, rendered at different points during training as input-sigma values decreased. The top row
shows input images from the test set. The bottom row shows the corresponding prediction.

FIGURE 11 | Results of the five STORM CEP152 experiments (each with a top and side view image pair). The first experiment comprises image (A) and (B), the
second experiment (C) and (D), and so forth. The torus structure within the blue point cloud is highlighted with an orange ring. See SupplementaryMaterial Video S1,
2 for greater clarity.
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4 DISCUSSION

We have demonstrated a method that enables 3D structures to be
reconstructed from sets of 2D SMLM or fluorescence microscopy
images without any template or symmetry constraints. Our
method, HOLLy, can tolerate both scatter and the limited
labelling efficiency of experimental fluorescence images. The
training process results in a 3D model of the structure
encoded as a point-cloud in the 3D reconstruction matrix.
Based on estimates of RMSD values against ground-truth and
visual inspection of the results, we find that our approach can
create accurate reconstructions of 3D macro-molecular
structures.

Our results also demonstrate the limitations of the technique.
Because of the use of 2D images, the technique is unable to resolve
the chirality of the model. In addition, when the data quality is
poor small structures are not reproduced. As a result when the
structure is close to symmetric, the final model may become
actually symmetric. On experimental data, the presence of these
issues could potentially be identified by training on the same data-
set multiple times and examining the differences between the
results.

The value of reconstructing multiple images of a structure into
a single hypothesised structure has been demonstrated in cryo-
EM. In SMLM such approaches exist Heydarian et al. (2019), and
show an improvement in the signal to noise ratio when
combining multiple images, but performing such fits on
complex structures with no constraints is extremely
challenging. Here we show that, by building a 3D model and
using a neural network for predicting rotation, HOLLy can

discern structure from localisations with a data-set of 2000
unique images. With the increased popularity of high
throughput SMLM techniques (Holden et al., 2014; Barentine
et al., 2019), HOLLy provides a way to extract structural
information from large volumes of super-resolution
microscopy data without assumptions.
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