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Modern technologies designed for tissue structure visualization like brightfield microscopy,
fluorescent microscopy, mass cytometry imaging (MCI) and mass spectrometry imaging
(MSI) provide large amounts of quantitative and spatial information about cells and tissue
structures like vessels, bronchioles etc. Many published reports have demonstrated that
the structural features of cells and extracellular matrix (ECM) and their interactions strongly
predict disease development and progression. Computational image analysis methods in
combination with spatial analysis and machine learning can reveal novel structural patterns
in normal and diseased tissue. Here, we have developed a Python package designed for
integrated analysis of cells and ECM in a spatially dependent manner. The package
performs segmentation, labeling and feature analysis of ECM fibers, combines this
information with pre-generated single-cell based datasets and realizes cell-cell and
cell-fiber spatial analysis. To demonstrate performance and compatibility of our
computational tool, we integrated it with a pipeline designed for cell segmentation,
classification, and feature analysis in the KNIME analytical platform. For validation, we
used a set of mouse mammary gland tumors and human lung adenocarcinoma tissue
samples stained for multiple cellular markers and collagen as the main ECM protein. The
developed package provides sufficient performance and precision to be used as a novel
method to investigate cell-ECM relationships in the tissue, as well as detect structural
patterns correlated with specific disease outcomes.
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INTRODUCTION

Imaging is the most appropriate method for tissue structure analysis, because it can be implemented
without or with minimal integrity disruption. Imaging techniques can be performed without invasive
procedures (CT, MRI) or harvesting biological material (histology-based techniques). Modern
histopathological methods can detect and visualize a broad variety of markers despite their
chemical nature. This fact makes it possible to establish a bridge between morphology and
molecular pathology of the tissue and, in combination with powerful computational methods,
detect novel structural patterns related with disease outcomes (Roeder et al., 2012; Schapiro et al.,
2017; Czech et al., 2019). Modern research and clinical imaging systems are accurate, fast, and able to
store large amounts of data. For example, fluorescent whole-slide scanners generate full-scale images
of histological slides, which then can be saved and analyzed later by different image analysis software
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(Himmel et al., 2018). This makes developing efficient, flexible
and versatile computational image analysis approaches a very
important mission.

Tissue is a complex system formed by cellular and non-cellular
components. Cellular components include diverse groups of cells
such as epitheliocytes, immune cells, fibroblasts, endotheliocytes,
and adipocytes, among others. Non-cellular components are
formed by ECM, web-like integrated structures which consist
of fibrillar and non-fibrillar proteins (Pickup et al., 2013; Bhat and
Bissell, 2014; Cho et al., 2015). The fibrillar part of the ECM is
formed by various groups of proteins like collagen, fibronectin,
elastin and laminin. Non-fibrillar ECM consists mostly of
proteoglycans (Järveläinen et al., 2009). ECM composition and
topology are unique for each tissue and generated during tissue
development by dynamic and reciprocal interactions between
cells and their microenvironment (Frantz et al., 2010). The
structures of ECM perform a broad variety of biological
functions like reception and transmission of mechanical
signals to cells, storing growth factors and other cytokines,
and presenting ligands to their receptors on cells (Leitinger
and Hohenester, 2007). However, the most important role of
ECM is providing an adhesive substrate and scaffold for other
parts of tissue. Deep integration of ECM with all tissue
components causes dynamic changes in its structure during
normal and pathological states. ECM structures, especially the
fibrous components, can be characterized by geometrical (length,
width, straightness), spatial (alignment) and physical (stiffness
and elasticity) properties (Provenzano et al., 2009; Conklin et al.,
2011; Hanley et al., 2016). Collagen is the most abundant protein
in ECM and determines most physical and geometrical properties
of ECM in tissue. Many studies have shown that geometrical,
physical and spatial features of collagen fibers are correlated with
cancer outcomes (Provenzano et al., 2009; Frantz et al., 2010;
Conklin et al., 2011; Wen et al., 2014; Hanley et al., 2016).
Changes in ECM properties, in turn, affect the behavior of
cells and their composition in tissue. For instance, in stiffer
tumor microenvironments, epithelial cells and fibroblasts are
characterized by increased contractility. Increased stiffness and
collagen deposition affect aggressive behavior of tumor cells and
infiltration of tumor nests by immune cells (Paszek and Weaver,
2004; Paszek et al., 2005; Butcher et al., 2009; Erler and Weaver,
2009; Frantz et al., 2010). On the other hand, investigations of the
tissue structure during different pathological states often gives
controversial results. In our opinion, for better understanding of
the mechanisms that take place in tissue during different
pathological processes, combined analysis of cellular and non-
cellular tissue components is required to improve depth and
quality of approaches that already exist.

The complexity of tissue structure requires novel methods of
investigation that will give more comprehensive information,
including morphology and spatial distribution of different
tissue objects. Computational image processing usually
proceeds through the following steps: image acquisition,
preprocessing, segmentation, morphological image processing,
spatial analysis (neighborhood analysis), postprocessing,
visualization and validation (Roeder et al., 2012; Jost and
Waters, 2019). Tissue spatial analysis is a group of methods

aimed at studying spatial relationships between various types of
cells and their microenvironment. These methods attempt to
identify global features and structural patterns in normal and
pathological tissues. Computational methods include calculating
distances between objects (cells, ECM fibers etc.), implementing
nearest neighbor analysis, clustering, and graph-based analysis,
combining different statistical and machine learning methods
(Roeder et al., 2012; Heindl et al., 2015; Parra, 2021). Existing
open-source and commercial software is designed mostly for
separate analyses of cells, fibers, blood vessels or other structures
in the tissue. Novel methods mostly aim to improve and increase
the quality of current image processing approaches like
denoising, object segmentation and labeling, classification, and
2D and 3D visualization. For integrated analysis of cellular and
non-cellular components of tissue structure, computational
methods must be able to perform image processing on both
simultaneously. The approach to image analysis in cells and fibers
is different. For instance, methods for separating background
from foreground and single-cell segmentation and labeling
demonstrate low efficacy regarding fiber analysis because of
differences in geometrical characteristics of objects (Wu et al.,
2003; Stein et al., 2008; Bayan et al., 2009; Rubbens et al., 2009;
Pijanka et al., 2019).

Here, we have developed a Python package for integrated
spatial analysis of cellular and fibrous components of tissue. Our
algorithm performs segmentation of ECM fibers, assess their
morphology and spatial distribution and combines this
information with datasets that include information about
cellular localization, geometrical features, and phenotype,
generated by other computational approaches. We
implemented our algorithm within the KNIME analytical
platform environment (Dietz and Berthold, 2016). This
computational tool demonstrates a broad variety of methods
that can be used for a tremendous number of tasks like
mathematics, chemistry, data analysis, and bioinformatics. In
addition, KNIME supports implementation of different
programming languages like MATLAB (http://www.
mathworks.com/products/matlab/), R (http://www.r-project.
org/), or Python (https://www.python.org/) within its
environment (Berg et al., 2019; Vasiukov et al., 2020; Senosain
et al., 2021). Using KNIME, we combined our algorithm with a
computational method we used in our previous publication
which was designed for cell segmentation, labeling and
classification (Vasiukov et al., 2020; Senosain et al., 2021).
Algorithm validation confirms that by combining integrated
analysis of cellular and acellular components of tissue, it is
possible to reveal novel structural patterns that can be used to
observe disease pathogenesis.

MATERIALS AND METHODS

Sample Description
Mouse mammary gland tumor tissue samples were harvested
from PyMT (WT) and PyMT/TGFβRIILysM (KO) mice as
described in our previous work where we found increased
ECM deposition in PyMT/TGFβRIILysM samples (Stringer
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et al., 2021). Human lung adenocarcinoma tissue samples were
collected from 14 patients after surgery under IRB approved
protocol 000616 at Vanderbilt University Medical Center. Using
Computer-Aided Nodule Assessment and Risk Yield (CANARY)
software we stratified the patients into two risk groups (Indolent
and Aggressive) regarding behavior of adenocarcinoma as we
showed in (Senosain et al., 2021). Two TMA cores from each
tissue sample were processed.

Tissue Preparation and Staining
Tissues were fixed in 10% neutral buffered formalin for 24 h at
room temperature. Fixed samples were embedded in paraffine
blocks, and 5 μm sections were cut. Tissue microarrays (TMA)
were generated from patient’s material. All cores were examined
by a pathologist to exclude tissue with massive necrosis areas,
large blood vessels and artifacts. H&E staining was used to
evaluate core quality. For visualization of collagen in the tissue
samples we used picrosirius red staining and CHP–Collagen
Hybridizing Peptide (3Helix, United States) staining labeled
with Cy3 dye. Multiplex immunofluorescent (IF) staining was
used to combine CHP staining with a set of cellular markers
(Senosain et al., 2021). Epithelial/tumor cells were visualized with
anti-PanCK-Alexa Fluor 488 antibodies (eBioscience, United
States), immune cells with - anti-CD45 antibodies (Biolegend,
United States) + Fab anti-mouse-Cy3 antibodies (Jackson
ImmunoResearch, United States), and T-cells with anti-CD3
antibodies (Agilent Dako, United States) + anti-rabbit-Cy5
antibodies (Thermo Fisher Scientific, United States). Nuclei
were visualized by Gold Antifade Mountant with DAPI
(Thermo Fisher Scientific, United States). Images from
Picrosirius red stained samples were obtained using the
Keyence BZ-X710 microscope (KEYENCE, United States)
using ×20 objective and Texas Red filter (excitation
wavelength 560/40 nm, emission wavelength 630/75 nm).
Whole image scanning was performed on the Apiro Versa 200
(Leica, United States) with Texas Red filter (excitation wavelength
560/55 nm, emission wavelength 645/75 nm), Spectrum Green
filter (excitation wavelength 480/30 nm, emission wavelength
535/40 nm), Cy5/AlexaFluor 647 filter (excitation wavelength
620/50 nm, emission wavelength 690/50 nm), Cy7 filter
(excitation wavelength 720/75 nm, emission wavelength 810/
90 nm) and DAPI filter (excitation wavelength 350/50 nm,
emission wavelength 460/50 nm).

Software and Image Analysis
The KNIME (KNIME 4.1.2) analytical platform was used as
an environment for integration of our Python package for
fiber segmentation and spatial analysis with workflow
for single-cell analysis of multiplexed fluorescent stained
images. Segmentation, labeling and classification of cells was
performed as described in our previous work (Senosain et al.,
2021). Quantitative information from single-cell data (such as X,
Y coordinates etc.) was used for spatial analysis using developed
Python package (Python 3.7). Python nodes were incorporated
in this pipeline for collagen fiber segmentation, labeling and
analysis of geometrical features and spatial analysis of cells
and fibers.

Performance Tests and Validation
Set of mouse and human cancer tissue samples was used to
implement performance tests and validation of the algorithm.
Breast cancer image size: 1920 x 1440 pixels, human lung
adenocarcinoma (whole slide scans) image size: 5120 x 5120
pixels. Collagen fibers were manually annotated by pathologist
and their length was measured using ImageJ. These results were
used as a ground truth for further tests. Number of highlighted
fibers and their length were chosen as only features for ground
truth due to restrictions of manual measurements of other
parameters (width, angle etc.). Mean value of the parameters
was calculated for each image. The results were presented as
average for the set of images. Accuracy test was performed as a
comparison to ground truth and to results obtained using CT-
FIRE algorithm (Bredfeldt et al., 2014a). Performance time test
was realized using a set of 50 images. The results were compared
to the CT-FIRE algorithm (Bredfeldt et al., 2014a). Neighborhood
outline for breast cancer samples was set as 100 pixels and for
lung cancer tissue as 250 pixels and was equal to ∼50 μm and
∼100 μm in diameter respectively.

Computer System’s Specifications
DELL Precision T7920, two Intel Xeon Gold 6136 Processors (24
Core, 3.0 Ghz, 24.75 M Cache each), 128 Gb RAM.

Availability and Usage
TheMicrosa source code, including trial dataset and user manual,
is available at https://github.com/VGeorgii/Microsa.

Statistical Analysis
Results were presented as mean ± SEM. Two-group comparison
was performed using two-sample t tests or Wilcoxon Rank-Sum
test as appropriate. P values less than 0.05 were considered
statistically significant. Hierarchical cluster analysis was
performed using Ward’s method for Euclidian distances.

RESULTS

Significance and Package Design
Implementation of computational image analysis for scientific and
clinical purposes is a robust, effective, and precise approach. The
complexity of tissue structure requires novel methods and
technologies for image acquisition and processing that will
extend the dimensionality of extracted information. Tissues are
characterized by a combination of objects with certain
morphology, number, and spatial distribution. Cells in tissue
can interact by close (cell junctions) and distant (cytokines,
chemokines, metabolites etc.) types of communication. The
distance between objects plays a crucial role in the determining
the effects of such interactions. Our goal was to develop and test
computational methods which would be able to combine analysis
of cellular and fibrous constituents of tissue structure in a spatially
dependent manner (Figure 1A). Spatial analysis can be
implemented to identify of structural patterns in tissue that help
to decipher disease pathogenesis or that can be used for outcome
prediction. There are several approaches that can be used for spatial
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analysis: distance calculation (Parra, 2021), spatial homogeneity
assessment (Holmes et al., 2009), and clustering or graph
algorithms (Roeder et al., 2012; Heindl et al., 2015; Parra,
2021). Our tool implements distance calculation. This approach
can be realized in two ways. The first approach (“number”) is based
on the analysis of neighborhood outlines around processed cells or
other objects in the tissue. The radius of outline is set by the user
and determined by the type of interactions the researcher is
interested in (Figure 1B). A small radius allows the researchers
to calculate objects in close contact to the processing object, while a
bigger radius can be used to calculate the number of objects in
distant contact. The second approach (“distance”) involves
calculating the distance between the processed object and other
objects of interest. For instance, the distance between a tumor cell
and the closest T-cell, or between a T cell and a blood vessel etc.

After that, extracted information can be passed to K-nearest
neighbors, N-distance, or self-organizing map algorithms for
identification of neighborhoods with similar features (Roeder
et al., 2012; Heindl et al., 2015; Parra, 2021).

To perform segmentation, labeling and geometrical feature
analysis of fibers we used the Python programming language.
This decision was determined by the flexibility of Python and
diversity of packages designed for image processing that
demonstrate good performance and efficacy. The developed
Python package was designed for assessment of fiber features
and combination of extracted information with cell-based
datasets for spatial analysis. Our package uses several popular
python libraries: Pandas (https://pandas.pydata.org/), SciPy
(Virtanen et al., 2020), NumPy (Harris et al., 2020) and Scikit-
image (van der Walt et al., 2014), Matplotlib (Hunter, 2007). The

FIGURE 1 | Significance and package design. (A) Main goal of package design. The scheme demonstrates the idea of combined analysis of cellular and non-
cellular components of tumor microenvironment in spatially dependent manner. (B) Principle of neighborhood analysis. Processing object (cell or fiber) and radius of the
neighborhood outline need to be defined first. The features of objects that are localized in the outline analyzed as properties of processing object. The number of
neighboring objects and their features need to be calculated for every processing object in the tissue. (C) Package design. Package contains four modules: fibers
segmentation, fibers geometrical and spatial analysis, cell-based spatial analysis, and visualization.
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FIGURE 2 | Package implication. (A) The algorithm for fiber segmentation and labeling. “Original image”—image with visualized fibers.
“Segmentation”—background/foreground separation, highlighting of separated fibers using “Original image”, “Skeletonization”—erosion of single fibers until the
thickness is equal to 1 pixel, “Pruning”–removing additional brunches, “Labeling”—indexing of segmented single fibers. Scale bar 100 μm. (B) Algorithm execution tests.
Mouse mammary gland tumor tissue was analyzed manually (ground truth), using CT-FIRE software and our algorithm (Microsa) (a). Collagen fibers were visualized
using Picrosirius red staining. Image size–1920 x 1440 pixels, scale bar—100 μm. Performance test of CT-FIRE and our algorithm demonstrates time required for the
analysis of different numbers of images (b). Time consumption test shows proportion of time required for each procedure during fiber segmentation and labeling
algorithm execution (d). Accuracy tests demonstrate precision of CT-FIRE and our algorithm performance in comparison to manually analyzed data (c, e). (C) The
scheme of cell and fiber segmentation and labeling algorithms with subsequent spatial analysis. Three types of output: cell-based spatial analysis, fibers-based spatial
analysis and combined spatial analysis.
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package consists of four modules: i) fiber segmentation and
labeling, ii) fiber geometrical feature calculation and spatial
analysis, iii) cell-based spatial analysis, and iv) visualization
(Figure 1C).

Fiber Segmentation, Labeling and Feature
Analysis
Before implementing of these modules of our Python package, the
user needs to perform foreground-background separation. By our
experience, the most efficient methods are simple thresholding
and Frangi filter-based thresholding (Frangi et al., 1998; Hemler
et al., 2004; Shi and Yang, 2009; Park et al., 2013; Comin et al.,
2014). Simple thresholding efficiently processes images with
small numbers of fibers and low levels of background. The
Frangi filter method was designed specifically for objects that
form net-like structures (blood vessels, fibers etc), which can
better identify densely packed fibers (Frangi et al., 1998).

ECM fibers in the tissue often have complex curve-like
structure with different lengths, widths, and linearities, and
often have additional branches. To perform single-fiber
analysis, we decided to process each fiber as a curve with no
branches, which reflects general geometrical features and does
not have intersections with another fibers. We found that the
most efficient way to generate a simplified model of the fibers is
to use thinning or skeletonization algorithms (Comin et al.,
2014). However, because of the complexity of collagen fiber
shapes the algorithm we used for skeletonization generated
multiple artifacts that appeared as spikes or additional small
branches. We therefore implemented an extra process, which
helps to remove these artifacts from the fiber skeleton. The
visualization module can be used to overlay segmented fibers
with the original image to control quality of segmentation and
labeling (Figure 2A). After fiber segmentation and labeling is
complete, the geometrical feature calculation module can be
used to extract fiber properties.

Length
This parameter represents the length of the longest branch of the
fiber. The value is calculated as length of the curve between two
endpoints.

Thickness
This parameter represents average distance from pixels of the
fiber’s skeleton to the outline of fiber’s mask.

Thickness � ⎛⎝∑N
i�0

di⎞⎠/N

where d–distance from pixel to fiber’s mask outline, N number of
the pixel in the fiber’s skeleton.

Angle
This parameter represents the angle between the X axis and a
straight line between the fiber’s curve endpoints. Angle can take
values between 0 and 180°.

Intensity
This parameter represents average intensity of the fiber’s skeleton
pixels

Intensity � ⎛⎝∑N
i�0

Ii⎞⎠/N

where I–pixel intensity (from 0 to 255), N–total number of pixels
in the fiber’s skeleton.

Straightness
This coefficient represents how close the shape of the fiber is to
straight line. It takes the values from 0 to 1.

Straightness � l/L

where l–length of fiber’s curve, L–Euclidian distance between
endpoints.

Alignment
This coefficient reflects the alignment of processing fiber and
its neighboring fibers. It can take values from 0 (not aligned) to
1 (absolutely aligned). The number of neighboring fibers
depends on radius of the neighborhood outline which can
be regulated.

Alignment � ⎛⎝∑n
i�0

cos(αi)⎞⎠/n

where α – angle between processing fiber and neighboring fiber i,
n–total number of neighboring fibers.

The output of these modules is a dataset which contains
information about each fiber’s location (XY coordinates) and
geometrical features. Implementation of cell-based spatial
analysis gives an opportunity to investigate features of fibers
co-localized with processing cells.

To test the performance of fiber segmentation and fiber
features analysis algorithms we used a set of images obtained
from mouse mammary gland tumor samples stained with
Picrosirius red (Figures 2Ba). The results of our algorithm
have been compared to other software designed for fiber
analysis–CT-FIRE (Stein et al., 2008; Bredfeldt et al., 2014a).
This approach was implemented in multiple works (Bredfeldt
et al., 2014a; Bredfeldt et al., 2014b). Our team was inspired by
idea that is realized in CT-FIRE–to track and analyze
geometrical features of each fiber in the tissue image. CT-
FIRE uses different method for segmentation and labeling of
fibers and we were interested to compare performance of our
method and CT-FIRE. Both algorithms were executed using
parallel computation mode (13 cores). We found that our
approach demonstrated better results (Figure 2Bb). To assess
the accuracy of our developed algorithm we used a set of
samples manually annotated by pathologist and compared
with results generated by our approach and CT-FIRE. We
found that number of fibers segmented and labeled by our
method is closer to the ground truth (Figure 2Bc)). Both
approaches demonstrated good accuracy estimating length of
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segmented fibers (Figure 2Be). Additional analysis
demonstrated that pruning is the most time-consuming step
in the fiber segmentation algorithm and needs further
amendments or revision (Figure 2Bd).

Combination With Cell Related Data
This package was designed to combine single-cell and single-
fiber datasets in spatially dependent manner. The generated
data can be used for statistics and machine learning methods.
Cell segmentation and labeling must be performed using
appropriate software or algorithms (QuPath (Bankhead
et al., 2017), KNIME (Dietz and Berthold, 2016)) and
generated single-cell datasets can be utilized as an input for
spatial analysis algorithm. To generate single-fiber datasets the

user can use images with fibers visualized by brightfield
staining (Picrosirius red, Trichrome blue, IHC) or IF
staining (antibodies against collagen CHP/3Helix etc.)
techniques and apply modules for fiber segmentation and
fiber geometrical feature analysis from our package, or
utilize other methods or software designed for that purpose.
Using modules for spatial analysis, the user can generate
additional information for each labeled cell or fiber based
on objects (cells or fibers) localized in a neighborhood
outline of a given radius (Figure 2C).

Validation
To validate the accuracy and performance of our developed
package and test its integration with other algorithms and

FIGURE 3 | Examples of algorithm usage. (A) Implementation of module for fiber geometrical analysis of PyMT mouse mammary tumor tissue from WT and
TGFβRII KO groups (Vasiukov et al., 2020). Collagen fibers were visualized using Picrosirius red staining. Length, width, straightness, and alignment were calculated for
each fiber and presented as average. *–p < 0,05. Image size–1920 x 1440, scale bar—100 μm. (B) Implementation of modules for fiber labeling and spatial analysis for
human breast cancer tissue stained by CHP-Cy3 (3Helix, United States). Number of neighboring fibers was calculated as total number of fibers within
neighborhood outline for each fiber. Radius of the fiber’s neighborhood outline—∼50 μm. Image size–1920 x 1440, scale bar—100 μm.
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software, we used several sets of tissue section slides stained by
different techniques. Geometrical features, deposition of collagen
fibers and their visualization methods can significantly affect
algorithm performance. In our current work, we used
Picrosirius red and collagen hybridizing peptide (CHP/3Helix)
staining to visualize fibers.

In our previous work we have used the PyMT mouse model
(spontaneous mammary gland tumor formation) (Vasiukov et al.,
2020). This work demonstrated that lack of TGFβ signaling in
myeloid cells (PyMT/TGFβRIILysM) is related to reduced tumor

growth and increased collagen deposition. Here, for visualization
of collagen fibers we have used Picrosirius red staining with
subsequent calculation of collagen deposition. One of the
advantages of Picrosirius red staining is the ability to use
polarized light to identify immature and mature collagen
fibers. In our work we demonstrated that in the KO group
tumor tissue had higher amounts of immature collagen that
indicate more intensive ECM remodeling. Using the fiber
segmentation module in our developed package, we detected
increased number of collagen fibers in tumor tissue in the

FIGURE 4 | TMA analysis. (A) TMA was generated from lung tissue blocks from patients with lung adenocarcinoma as described. Two tissue cores were used to
represent one patient. Fluorescent staining was performed for PanCK, CD45, CD3, DAPI. (B) The analysis of basic features of tumor tissue. (C) Diagram demonstrates
principle of implemented spatial analysis. Tumor cells were used as processing objects, neighborhood outline was equal to 100 μm, all cells and fibers within the
neighborhood outline were counted and analyzed. (D)Hierarchical cluster analysis based on spatial features of tumor cells (NF–neighboring fibers). (E)Comparison
of spatial features of tumor cells in indolent and aggressive groups.
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PyMT /TGFβRIILysM group. This data confirms results we
obtained in our previous work using different calculation
methods. In addition, analysis of geometrical features of
collagen fibers demonstrated tendency that collagen fibers in
the PyMT /TGFβRIILysM group have increased straightness
and alignment, but decreased thickness in comparison to
PyMT/TGFβRIIWT group (Figure 3A).

For collagen detection in human breast cancer tissue samples,
we used CHP staining. CHP visualizes collagen well with low
background noise. Moreover, this method can be used for
multiplex IF staining that allows simultaneous detection of
different biological markers. We visually chose three different
areas that were characterized by different collagen deposition and
fiber spatial distribution. Analysis demonstrated that Area 1 had
the highest number of collagen fibers, whereas Area three had the
lowest number. Investigation of fibers co-localization
demonstrated similar results. Area 1 showed the highest rate
of fiber co-localization (Figure 3B).

As was mentioned above, CHP staining is suitable for
multiplex IF that allows simultaneous visualization of cellular
markers and collagen fibers and can be used for integrated
analysis to reveal relationships between them. In our previous
work (Senosain et al., 2021), we used a panel of antibodies for
visualizing of epithelial/tumor cells (PanCK), immune cells
(CD45) and T-cells (CD3) (Figure 4A) to reveal relationships
between anticancer immune response and behavior (indolent or
aggressive) of human lung adenocarcinomas. To perform cell’s
segmentation, labeling and classification we utilized workflow
developed in KNIME. In current work, we additionally
performed CHP (3Helix) staining to identify collagen fibers.
To analyze tumor tissue from patients with indolent and
aggressive lung adenocarcinoma, we used dataset generated in
our previous work (Senosain et al., 2021). First, we performed
analysis of basic parameters of tumor tissue (total number of
different type of cells, total number of collagen fibers and their
morphology). We did not find a significant difference in cellular
composition between indolent and aggressive groups of patients.
Calculation of collagen fibers showed that there is no difference in
number of fibers and their geometrical features (Figure 4B).
Next, we performed spatial analysis and used tumor cell as a
processing object. Neighborhood outline was equal to 100 μm.
Cells and collagen fibers within the neighborhood outline was
counted and geometrical features of fibers were estimated
(Figure 4C). The analysis revealed that tumor cells from the
aggressive group were co-localized with lower number of CD3−

immune cells. In addition, tumor cells from aggressive lung
adenocarcinomas were co-localized with lower number of
collagen fibers and these fibers generally had smaller length
(Figures 4D,E).

DISCUSSION

Rapid development of technologies for biological image
acquisition and data storage presents an opportunity for
investigators to discover new mechanisms related to different
diseases development. Engineering novel computational

approaches for image analysis allows investigators to obtain
detailed quantitative information from large amounts of data.
Studying complex, integrated systems like tissue needs further
development with new computational methods able to elucidate
properties of tissue components individually and as a part of a
structural consortium. (Reis-Sobreiro et al., 2018), (Senosain
et al., 2021).

Phenotype and functions of cells in the tissue are highly
determined by their microenvironment, which is formed by
co-localized cells and ECM structures. Multiparametric image
processing reveals structural patterns of tissue that have not been
elucidated previously (Schapiro et al., 2017). The topography of
tissue in normal and pathological states can be deciphered by
implementation of spatial analysis. In this study, for the first time,
we have developed an approach which allows researchers to
combine the analysis of tissue on a single-cell level with
assessment of ECM structure in spatially dependent manner.
Capturing structural patterns determined by spatial analysis can
be achieved through several approaches: distance calculation,
spatial homogeneity assessment, and implementation of
clustering or graph algorithms. For instance, Balsat et al.
measured the distance between lymphatic vessels and the
epithelial/tumor edges and demonstrated that the
transformation zone of the benign cervix promotes
lymphangiogenic process (Balsat et al., 2014). Feichtenbeiner
et al. performed cell-to-cell distance calculation and showed
the importance of FoxP3+ and CD8+ T-cell co-localization
for gastric cancer patient outcomes (Feichtenbeiner et al.,
2014). Spatial homogeneity in a set of objects can be estimated
by K- and L-functions. This approach was used by Holmes
et al. for analysis of spatial data on T-cells and B-cells
(Holmes et al., 2009). Clustering methods such as density-
based clustering (Chen et al., 2002) or K-means clustering
algorithm can define a number of subgroups (clusters) in
dataset. This is possible using HistoCAT software (Schapiro
et al., 2017), MATLAB, R, or Python programming
languages. Because we investigated spatial relationships
between objects with different structural natures (cells and
fibers) we decided to use an approach for spatial analysis
based on measurement of distances between objects with
subsequent assessment of those that localized in a defined
neighborhood outline.

Integration of cell and fiber analyses requires generation of two
types of datasets: single-cell and single-fiber. Datasets that contain
single-cell information must be generated by software and
computational methods designed for this task. The most
popular open source tools that can be used: ImageJ (Rueden
et al., 2017), FIJI, HistoCAT (Schapiro et al., 2017), CODEX
toolkit (Goltsev et al., 2018), KNIME (Dietz and Berthold, 2016),
Ilastik (Berg et al., 2019), CellProfiler (Carpenter et al., 2006) and
Cytokit (Czech et al., 2019). Another option is to use
programming languages such as Python, R and MATLAB that
have powerful image analysis packages. Generated single-cell
datasets can be used as an input for spatial analysis module
for neighborhood assessment of labeled cells. We used KNIME
because of its high flexibility and performance. The developed
pipeline gave us an opportunity to perform segmentation and
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labeling of cells and fibers and spatial analysis in a fully automated
manner.

Annotation of fiber geometrical and spatial features is a
nontrivial task. Computational methods designed for cell
segmentation and analysis do not demonstrate good
performance for fibers due to the high complexity of fiber
geometry and deposition. There are several approaches that
can be used for fiber analysis: Hessian matrix (Rubbens et al.,
2009), Fourier (Pijanka et al., 2019), and Hough transform
(Bayan et al., 2009), curvelet transform (Bredfeldt et al.,
2014a), directional filtering (Wen et al., 2014), and fiber
tracking (Wu et al., 2003; Stein et al., 2008; Bredfeldt et al.,
2014a). Integrated analysis of cellular and fibrillar components of
the tissue requires appropriate methods for visualization of this
structures. In this research work we used CHP staining to indicate
collagen fibers and combination of cellular markers to detect and
classify different types of cells. However, implementation of
second harmonic generation (SHG) imaging combined with
any staining techniques is appropriate method for integrated
analysis of cells and ECM. SHG does not need labeling of collagen
fibers and can be realized on samples stained by H&E or other
methods. To integrate single-cell and single fiber-analysis in a
spatially dependent manner, a labeling procedure must be
implemented which assigns an index to each segmented fiber
and cell. After labeling, additional methods can be used to
calculate object localization (coordinates), morphology and
textural features. For extraction of single-fibers, (Wu et al.,
2003) and (Stein et al., 2008) suggested the fiber tracking
method. Bredfeldt et al. realized this approach in the CT-FIRE
software (Bredfeldt et al., 2014a). The suggested method is based
on identifying nucleation points with subsequent extension to
generate fiber branches. Since the fiber tracking algorithm is
pixel-wise, it is time-consuming and requires significant
computational resources. Our approach is based on
skeletonization. To assess morphology of segmented and
labeled fibers, we needed to obtain their simplified model. For
this aim, we have used a skeletonization algorithm with
subsequent pruning of processed fibers to remove artificial
spikes and branches. Pruning is also a pixel-wise operation
that is time and resource consuming. Our group is planning
to continue investigation to increase performance of this fiber
tracking method.

Validation of the developed package demonstrated good
precision and performance of modules for fiber segmentation,
labeling and feature analysis. The results were controlled visually
and using other approaches for image processing we used in our
previous work (Vasiukov et al., 2020; Senosain et al., 2021).
Spatial analysis revealed that tumor cells in indolent and
aggressive lung adenocarcinomas are localized in different
microenvironments determined by variability of neighboring
cells and collagen fibers. The geometrical features of collagen

fibers and their spatial distribution play important roles in
invasion and metastasis of tumor cells. In addition, co-
localization of cancer cells with shorter fibers in aggressive
tumors may indicate involvement of these cells in the
processes of collagen degradation and ECM remodeling.
Moreover, changes in geometrical features of collagen fibers
designates modulation of ECM physical properties that are
related with increased invasion and metastasis of tumor cells
(Provenzano et al., 2009; Frantz et al., 2010; Conklin et al., 2011;
Wen et al., 2014; Hanley et al., 2016). Further investigation is
needed to decipher this phenomenon.

In summary, automated, robust and efficient methods of
computational image analysis allow exploration of complex
structural patterns in the tissue related to normal and
pathological states. Our approach was designed to elucidate
cell-ECM relationships through spatial analysis. Our results
show that our developed approach is efficient and can be used
to extract of complex structural data related to disease
progression and patient outcome.
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