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Peptide-protein interactions between a smaller or disordered peptide stretch and a folded
receptor make up a large part of all protein-protein interactions. A common approach for
modeling such interactions is to exhaustively sample the conformational space by fast-
Fourier-transform docking, and then refine a top percentage of decoys. Commonly,
methods capable of ranking the decoys for selection fast enough for larger scale
studies rely on first-principle energy terms such as electrostatics, Van der Waals
forces, or on pre-calculated statistical potentials. We present InterPepRank for
peptide-protein complex scoring and ranking. InterPepRank is a machine learning-
based method which encodes the structure of the complex as a graph; with physical
pairwise interactions as edges and evolutionary and sequence features as nodes. The
graph network is trained to predict the LRMSD of decoys by using edge-conditioned graph
convolutions on a large set of peptide-protein complex decoys. InterPepRank is tested on
a massive independent test set with no targets sharing CATH annotation nor 30%
sequence identity with any target in training or validation data. On this set,
InterPepRank has a median AUC of 0.86 for finding coarse peptide-protein complexes
with LRMSD < 4Å. This is an improvement compared to other state-of-the-art ranking
methods that have a median AUC between 0.65 and 0.79. When included as a selection-
method for selecting decoys for refinement in a previously established peptide docking
pipeline, InterPepRank improves the number of medium and high quality models produced
by 80% and 40%, respectively. The InterPepRank program as well as all scripts for
reproducing and retraining it are available from: http://wallnerlab.org/InterPepRank.

Keywords: protein-protein interaction, machine learning, protein-peptide interaction, graph neural net, quality
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1 INTRODUCTION

Interactions between a short stretch of amino acid residues and a larger protein receptor, referred
to as peptide-protein interactions, make up approximately 15–40% of all inter-protein interactions
(Petsalaki and Russell, 2008), and are involved in regulating vital biological processes (Midic et al.,
2009; Tu et al., 2015). These short peptides have a high degree of conformational freedom and can
be part of larger disordered regions (Neduva, Victor et al., 2005; Petsalaki and Russell, 2008),
making them difficult to study experimentally. However, knowledge of structural details such as
interactions is crucial to understanding the molecular mechanisms underlying the interactions and
to guide further experiments. Because of the inherent flexibility of the peptide fragments,
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computational prediction of the structural details of peptide-
protein interaction complexes is challenging.

Several methods for predicting the structure of peptide-
protein complexes exist, such as pepATTRACT (Schindler
et al., 2015), CABSDOCK (Kurcinski et al., 2015),
HPEPDOCK (Zhou et al., 2018), and PIPER-FlexPepDock
(Alam et al., 2017). Template-based methods utilizing
similarity to previously experimentally determined complexes,
such as SPOT-Peptide (Litfin et al., 2019), GalaxyPepDock (Lee
et al., 2015), and InterPep2 (Johansson-Åkhe et al., 2020a), have
consistently shown high performance in previous benchmarks
but are limited by available templates.

However, since the peptide ligand is a smaller molecule, it is
possible to exhaustively sample the binding space by Fast-Fourier
Transform docking (FFT docking). Classically, this requires a
close to correct rigid receptor and ligand, but a set of poses
derived from protein fragments with a sequence similar to the
peptide can consistently produce conformations near the native
bound conformation (Alam et al., 2017; Zhou et al., 2018). While
the strength of FFT docking is that it allows for an exhaustive
search of the docking space, the problem, as we will show, is that
the energy function is a limited approximation of the binding
affinity, and thus even though the method samples many near-
native decoys it often fails to separate them from poor decoys.
Additionally, rigid-body docking needs to be followed by much
more computationally expensive refinement to reliably reproduce
native contacts and binding modes.

A workflow previously shown to be successful is to rescore
and refine promising decoys using a more advanced energy
function, such as the Rosetta energy function (Raveh et al.,
2010). Indeed, previous works have shown great success in the
peptide-protein docking area by combining FFT-based docking
with Rosetta refinement (Alam et al., 2017). However, because
of the computational cost in running refinement, only a
comparatively small subset of the FFT-generated decoys can
be used. The selection of this subset is based on the energy
function of the FFT method, thus several poor decoys will still
go through refinement, even if they are unsalvageable. An
improvement to this approach would be to run all decoys
through a fast and accurate re-scoring algorithm to select
decoys for refinement, rather than relying on energy
functions constrained to FFT compatibility.

Many methods have been developed for the re-scoring of
protein-protein complexes. For example: PyDock evaluates
decoys based on pairwise electrostatic potentials and
desolvation energy (Cheng et al., 2007; Pallara et al., 2017).
Zrank and Zrank2 utilize van der Waals in excess of
electrostatics and desolvation (Pierce and Weng, 2007, Pierce
and Weng, 2008). DFIRE uses knowledge-based distance-
dependent potentials with an ideal gas reference state (Zhou
and Zhou, 2002). OPUS-PSP uses orientation-dependent packing
and knowledge-based repulsive energy (Lu et al., 2008). SIPPER
uses statistical residue-pair potentials derived from a curated
interaction-set (Pons et al., 2011). Still, re-scoring methods are
most often designed primarily for monomeric model quality
assessment or protein-protein docking, and the methods with
published use-cases on peptide-protein complexes to the best of

our knowledge still rely on either physics-based, knowledge-
based, or empirically tested energy function that do not take
evolutionary information of the target into account. More
advanced methods using machine learning, like ProQDock
(Basu and Wallner, 2016b), are characterized by high
computational costs that make them unfeasible for application
to a large set of decoys, and they are better suited for evaluating a
small set of refined models.

Within structural bioinformatics, Graph Convolutional
Networks (GCNs) have seen increased use recently through
applications such as PipGCN (Fout et al., 2017), which uses a
pairwise classification architecture and evolutional features to
predict protein-protein binding sites. Gligorijevic et al., 2019
utilized pre-trained LSTM sequence feature extraction to a
graph network to classify protein function. EGCN uses edge-
based graph convolutions to score protein-protein complexes
with the use of simple features such as side-chain charge and
hydrophobicity (Cao and Shen, 2019). GCNN encodes spatial
information into the residue-nodes to classify proteins
(Zamora-Resendiz and Crivelli, 2019). A Graph
Convolutional Network avoids the spatial limitations of a
classic convolutional network and allows for the direct
definition of spatial relationships on a case-by-case basis. It
passes information along pre-defined edges between nodes
rather than by proximity in the input-matrix, while still
allowing for complex information, such as evolutionary
information, to be encoded in the nodes.

In this work, we present InterPepRank, a fast, novel, re-
scoring algorithm utilizing GCNs to represent peptide-protein
complex decoys with the added context of evolutionary
information. InterPepRank is capable of quickly sifting
through and ranking the complete space of conformations
generated by FFT methods and improving the selection of
decoys for subsequent refinement, thus improving the
performance of ab-initio docking pipelines.

2 MATERIALS AND METHODS

2.1 Metrics
Several different metrics are used to evaluate the performance of
InterPepRank and other methods benchmarked.

2.1.1 Metrics for Rigid-Body-Docked Decoys - Correct
Decoys
In the perspective of ranking rigid-body-docked decoys, a decoy
is defined as correct if it has the peptide positioned within 4.0Å
ligand root-mean square deviation (LRMSD) of the native
conformation (the experimentally determined structure of the
complex), corresponding to DockQ scores of at least 0.28 (Basu
and Wallner, 2016a). This limit was selected both as it is within
the reported limit of when the Rosetta FlexPepDock refinement
protocol can reliably refine decoys to sub-ångström precision
(Raveh et al., 2010), and since it is below the CAPRI limit for an
acceptable prediction of a docked peptide-protein complex
(Lensink et al., 2017).
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2.1.2 Metrics for Refined Models - Acceptable,
Medium, High
The CAPRI standard for classifying the model quality of peptide-
protein complexes is used when assessing refined models, see
Table 1. A model which is at least high quality will also be at least
medium and acceptable quality, and a medium quality model will
also be at least acceptable quality.

2.1.3 ROC
A receiving operand characteristic-curve (ROC curve)
measures how two metrics (here the False Positive Rate
(FPR) and the True Positive Rate (TPR)) change in relation
to each other as the threshold for scoring is varied. The False
Positive Rate is defined as: FPR � FP/N, where FP is the
number of decoys incorrectly identified as correct and N is
the total number of incorrect decoys in the set. The True
Positive Rate is defined as: TPR � TP/P, where TP is the
number of correctly identified correct decoys and P is the
total number of correct decoys in the set.

ROC curves are especially suited to comparing sets of varying
difficulty to each other, since the curves are unaffected by class
imbalance. In this case, this allows us to compare method
performance on decoy sets from peptide-protein pairs with
varying ratios of correct-to-incorrect decoys in the same test.
However, as argued by Saito and Rehmsmeier (2015), ROC
curves fail to accurately depict the absolute performance of
predictors, which is better described by precision-recall curves.
As such, for every ROC curve a corresponding precision-recall
curve can be found in the Supplementary Information.

2.2 IPR0220 Dataset
A set of 6,857 interacting peptide-protein pairs taken from the
Protein Data Bank (PDB) (Berman et al., 2000) at October 15,
2018. A peptide-protein interaction is defined as a peptide of
25 or fewer residues sharing a contact surface of at least 400Å2

with a receptor of 50 residues or more. The interface size
requirement was included to ensure the set contained only
complexes with direct interaction between the peptide and
receptor. In accordance with previous analysis in Johansson-
Åkhe et al. (2018), this interface size represents roughly five
residues in direct interaction. The set was then redundancy-
reduced at 30% sequence identity down to 687 representative
target pairs for testing and validation, with the other 6,170
targets being reserved for training set augmentation.

2.2.1 Decoy Set Generation
For each of the initial 6,857 target pairs (containing redundancy),
possible docking poses were generated in the following way: 50
different peptide conformations were generated using the Rosetta
fragment-picker (Gront et al., 2011) using local sequence similarity
of the peptide. Each peptide conformation was exhaustively docked
on the surface of its receptor by PIPER (Kozakov et al., 2006) using
FFT docking. 70,000 decoys were generated for each conformation
for the 687 representative pairs to be used as testing and validation
data, and 4,375 for each conformation for the 6,857 pairs used in
training. In total, almost 2.5 billion (687× 50× 70,000) decoys were
generated for testing. The full test data set is available online
(Johansson-Åkhe et al., 2020b).

2.2.2 Splitting of Representative Pairs Into Partial Sets
The set of 687 target pairs was split into 14 partial sets of
approximately 50 target pairs each, with the requirement that
no two receptors in the same partial set could be related. Here we
define two receptors as “related” if they share the same CATH
superfamily (Dawson et al., 2017) or if they secure a TM score
>0.4 (Zhang and Skolnick, 2005), the latter applied to the cases
where at least one of the two receptors lack CATH annotation.
This cutoff was chosen as it is a previously established limit of
correct alignments between homologous proteins (Zhang and
Skolnick, 2004).

One of the 14 partial sets was randomly selected and set aside
as the validation set. The network parameters and architecture
were optimized on the validation set once, while early stopping
was performed separately with the help of the validation set for
each training set. No parameters or features were ever optimized
with regard to performance on any of the other partial sets. To
enable rapid method development, the number of decoys per
target in the validation set was limited to a random subset of 2,500
decoys.

2.2.3 Training and Test Sets
After reserving one of the 14 partial sets for validation purposes, we
performed cross-fold testing of the remaining 13 partial sets. This
means that each of these 13 sets was used as test set once. For each
test set we then had an initial training set that wasmade of the other
12 partial sets (not including the validation set). Then, in order to
maximize the amount of training data, we augmented the training
set by adding from the original (non-redundancy-reduced) dataset
of 6,857 only those targets that were not ‘related’ (as defined above)
to, or shared more than 30% sequence identity with, any target in
the set currently used as the test set or the validation set. Since the
number of incorrect decoys generally outweighed the number of
correct decoys, we further filtered out decoys to make sure that
each target pair contributed only as many incorrect decoys as
correct decoys. Additionally, to avoid large CATH superfamilies
contributing disproportionate amounts of decoys, which would
bias a training set, the number of decoys for each CATH
superfamily was limited by the median number of decoys
contributed across all CATH superfamilies. As a result of this
selection, each peptide-protein pair ended up contributing on
average 426 decoys divided equally between correct and

TABLE 1 | CAPRI criteria for peptide-protein docked model quality (Lensink et al.,
2017) and the equivalent values in terms of DockQ score (Basu and Wallner,
2016a). iRMSD is the root mean square deviation of residues at the native
interface; fnat is the fraction native residue-residue contacts recalled.

Model Quality LRMSD iRMSD Fnat DockQ

Acceptable < 5.0 Å < 2.0 Å > 0.2 > 0.23
Medium < 2.0 Å < 1.0 Å > 0.5 > 0.49
High < 1.0 Å < 0.5 Å > 0.8 > 0.80
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incorrect decoys. In all, each of the training sets consisted of on
average 1,048,386 decoys. Once more, although a new training set
was generated for each test set, the neural network parameters and
hyperparameters were never optimized with regard to performance
on any test set, but always and only with regard to performance on
the validation set. Supplementary Figure S1 provides a graphical
explanation of the test, validation, and training set construction.

2.2.4 Expanded Analysis Set
One of the test sets was randomly selected as an Expanded Analysis
set for running additional analysis and tests. In particular it was used
to run computationally intensive refinement methods to benchmark
the final impact of re-scoring on full docking protocols, and
comparisons to relatively slow re-scoring methods such as pyDock3.

2.2.5 APO/HOLO Set
In most real-world docking scenarios, the experimental structure of
the bound receptor is unknown; often the receptor in question has
not been structurally determined with a binding partner at the same
interface before, in which case, the unbound (APO) form of the
receptor without the peptide ligand, or even a predicted structural
model of the receptor, has to be used. Unfortunately, compared to
the number of bound complexes with known structure, the number
of proteins with experimentally determined structures both with and
without a peptide ligand bound is very low, resulting in few unique
examples for testing and training. Thus, many methods, among
them InterPepRank, are trained starting from bound (HOLO)
structure of the receptors, sometimes limiting their performance
in real-world cases if they failed to generalize. A conscious design
choice was made with InterPepRank to counteract this potential
failure by not including any high-resolution structural features, such
as side-chain orientation. Similarly, the low resolution of the features
should eliminate the need to explicitly model or add solvent or
hydrogen atoms, which are not modeled by FFT docking methods
such as PIPER or ZDOCK.

To test the success of this design choice and the
generalizability of InterPepRank to real-world cases, an APO/
HOLO set of docked decoys was constructed from a list of
annotated protein-peptide-binding complexes for which both
the APO and HOLO structures of the receptor are known,
generously provided to us by the AutoPeptiDB (London et al.,
2010) developers. The set was redundancy-reduced on CATH
superfamily annotation, yielding 56 peptide-protein complexes,
and decoys were generated for each HOLO and APO complex in
the same way as for all cases in the test sets. The data is published
here (Johansson-Åkhe et al., 2020b).

2.3 Representation and Architecture
The scoring of a decoy with InterPepRank is performed by a
multi-layer neural network using graph convolution layers as a
main component.

2.3.1 Decoy Representation
The graph network utilizes edge-conditioned graph convolutions,
where the input is a set of nodes, each described by a set of input
features, as well as weighted undirected edges between nodes. In
this case, nodes represent individual residues of a decoy and edges

denote different types of interactions between residue pairs, the
types are specified under Edge Features below.

2.3.2 Node Features
Here, the node features used were amino acid code (one-hot
encoded, 21 values to account for unknown residues, meaning a
binary/bit vector of length 21 where in this case any single value
being assigned as 1 represents a specific amino acid at that
position), a Position-Specific Scoring Matrix (21 values
including gaps, Eq. 1), Self-entropy (21 values, including gaps,
Eq. 2), and one variable denoting if the residue belongs to the
peptide or receptor (1 value), for a total of 64 features. Multiple
sequence alignments for calculation of PSSM and self-entropy
were acquired by running two iterations HHblits (Remmert et al.,
2012) 2.0.15 against uniclust30_2016_03, with a maximum
pairwise sequence identity of 90% and an E-value inclusion
threshold of 0.001. Peptide fragments are generally too small to
produce a meaningful multiple sequence alignment, and since we
cannot assume that all peptides are fragments of larger protein
sequences, the PSSM and Self-entropy features are set to 0 for the
peptide residues. If these features could be included, we would
expect a rise in performance assuming the network could be re-
trained with these features for most complexes in the training sets.

PSSMi � −log pi

pbi
(1)

Si � −pi log
pi

pbi
(2)

where pi is the frequency of the amino acid on position i recurring
at that position in the multiple sequence alignment and pbi is the
background probability of that amino acid.

2.3.3 Edge Features
Four types of one-hot encoded edges were used: self-edges to
allow the passing on of information to the same residue in
consecutive layers, sequence edges denoting the existence of a
peptide bond between two residues, proximity edges between
each pair of residues with any heavy atoms within 4.5Å, and lastly
an edge feature to summarize the identity of an edge is set to one
where any other edge feature is true. The identity edge speeds up
calculations through filtering where convolutions need to be
performed. For each decoy, up to 100 residues or nodes were
used, consisting of the peptide and the residues of the receptor
closest to the peptide, i.e., if the peptide were 25 residues long and
the receptor 170 residues, the 100 nodes would include the 25
peptide residues and the 75 residues from the receptor closest to the
peptide. Complexes with fewer than 100 residues are zero-padded.
Since only 100 nodes maximum are considered, it is possible that
the whole interface is not captured by the representation in the case
of a large buried peptide. However, an analysis on the validation
data revealed that the full interface of every decoy could be
captured by the 100 node limited representation.

2.3.4 Target Function
To facilitate training, the raw LRMSD values were normalized to
the [0,1] range using the same normalization scheme as in Levitt
and Gerstein (1998):
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LRMSDnorm � 1

1 + LRMSD
4.0( )

2 (3)

Since networks are often observed to learn quicker from
classification tasks, the problem was formulated as a
classification problem by predicting to which bin of
LRMSDnorm a decoy belonged to. Different networks were
trained to classify between two to four classes evenly spread in
the [0,1] range. Class probabilities were then used to calculate a
final predicted score, S, using a sum of the LRMSDnorm bins
weighted by the predicted probabilities:

S � ∑
i

xiP xi( ) (4)

where i is the number of bins, xi the center of bin i and P(xi) the
predicted probability for bin xi.

2.3.5 Network Architecture
The network was implemented as a feed-forward graph
convolutional network, see Figure 1. Before any convolutions
were applied, the node feature amino acid code (one-hot encoded
21 value feature) was passed through an Embedding Layer to
reduce dimensionality and thus also the number of weights,
limiting overfitting. Embedding layers are small network
architectures for mapping discrete labels onto continuous
space, and are frequently used in areas such as language
processing (Mikolov et al., 2013), and have previously been
successfully used to describe amino acids (Mirabello and
Wallner, 2019).

Next, the node features were passed through a varied number
of Edge Convolution Layers (Simonovsky and Komodakis, 2017),
with ReLU activation between each layer, taking the output of the
previous layer as node features for the next, while keeping the
same edge features throughout. Edge Convolution Layers learn
filters as a function of both node and edge features, and apply
these filters along the edges of the graph.

The output from each convolution layer was concatenated
together before global pooling of all node features, followed by
two dense layers before prediction. To improve the robustness of
the network to noisy or incomplete data and help it generalize, a
dropout ranging between 0.1 and 0.25 was applied to the edge
features, meaning 10–25% of all edges were set to 0 for each
decoy. Different sizes of the Edge Convolution and Dense outputs
were explored, as well as different methods for pooling, see below.

The network was implemented using Spektral and Keras
(Chollet et al., 2015) with the layers proposed by Simonovsky
and Komodakis (2017), and trained with the TensorFlow
backend (Abadi et al., 2015).

2.3.6 Parameter Optimization and Model Selection
Parameters and hyperparameters of the networks were optimized
to maximize performance on the validation set. Additionally, to
increase the predictive power of InterPepRank with little impact
on runtime, some of the best-performing trained networks were
ensembled by averaging their outputs.

Although different learning rates and optimizers were
explored on the validation set, the final networks were trained

with an adaptive moment estimation (ADAM) optimizer with a
learning rate of 0.001 for a maximum of 1,000 epochs. The
weights from the epoch with the best combination of
Spearman rank-order correlation, loss, and precision/recall on
the validation set were selected as final weights.

3 RESULTS AND DISCUSSION

In this work we have developed InterPepRank, a machine
learning-based method which encodes the structure of a
peptide-protein complex as a graph; with physical pairwise
interactions as edges and residue information including
evolutionary features such as PSSM and sequence conservation
as nodes. The graph representation is trained to predict the
LRMSD of decoys on a large set of peptide-protein complexes.
Different network architectures were tried and the nine best (0–8)
predictors at validation time are shown in Supplementary Figure
S2, see Supplementary Information for details of specific network
architectures. To maximize performance, a subset of these were

FIGURE 1 | The basic architecture of the InterPepRank networks. Note
that the output from the Edge Convolution and Embedding layers have been
denoted as X, since different values were sampled. Throughout the net, the
ReLU activation function is applied after each convolution.
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averaged in an ensemble predictor, and the best ensemble used all
networks except numbers 5 and 6.

3.1 Ablation Study
An ablation study was performed on the validation data to
analyze which features contributed most to performance.
Starting from a base, consisting of only the amino acid code
and peptide indicator as node features and the proximity edge as
the only edge feature, more information was successively added in
a step-wise fashion. The performance was measured by the ROC
AUC, see Figure 2. The additional features of Edge (consisting of
differentiating between covalent edges, self-edges, and simple
proximity edge), Self-entropy (SE), and PSSM where included
individually and in combinations. The single most powerful
feature was Edge, while the inclusion of Self-entropy and
PSSM showed minor increases in performance. This is
seemingly contrary to our initial hypothesis that the greatest
performance increase would stem from the inclusion of
evolutionary information. However, with a varied enough
training set such information can be inferred directly from the
sequence, which is included in the base network. Methods to infer
features from sequence have previously been used to avoid
generating multiple sequence alignments in for example
Hurtado et al., 2018.

Interestingly, in the case of Edge + SE the inclusion of Self-
entropy seems to have had a negative impact on the performance,
and adding only Self-entropy to the base network seems to have
had little to no effect on the median AUC. However, this trend is
not observed if PSSM is also used, in which case performance is
always improved, indicating that knowledge of interface
conservation alone is not sufficient but needs the evolutionary
context of the PSSM.

For a further analysis of the differences in the performance of
the different network architectures see Supplementary
Information.

3.2 Comparison to Established Methods
To put the performance of InterPepRank into perspective, we
compared its performance to several established state-of-the-art
scoring methods: PIPER (Kozakov et al., 2006), pyDock3
(Cheng et al., 2007), DFIRE (Zhou and Zhou, 2002), and
Zrank (Pierce and Weng, 2007), all tested on the same test
sets as InterPepRank. PIPER was run with the same rotation and
energy matrices as when part of the peptide-protein docking
protocol PIPER-FlexPepDock (Alam et al., 2017). Both
pyDock3 and Zrank were created for the scoring of protein-
protein complexes, and DFIRE was originally devised as a
monomer model quality assessment and stability predictor;
however, pyDock3 was recently shown to efficiently identify
near-native peptide decoys in the sixth CAPRI edition (Pallara
et al., 2017), Zrank is included as one of the currently leading
fast available protein-protein scoring functions according to
recent benchmarks (Moal et al., 2013; Yan and Huang, 2019),
and DFIRE has been shown to accurately predict peptide-
protein binding affinity as part of the SPOT-Peptide protocol
(Litfin et al., 2019). Despite being developed primarily for other
purposes, PIPER, DFIRE, and pyDock3 have all been utilized by

their developers for peptide-protein complex evaluation
without any modifications to the methods. It should be noted
that PIPER was used to generate the decoys of this study.

As discussed previously, although the aforementioned
methods have been shown to work well with peptide-protein
complexes, there is a lack of ready-to-use scoring functions
developed specifically for peptide-protein complexes.
Technically, the Rosetta FlexPepDock protocol (Raveh et al.,
2010) can be run in a mode which only applies its scoring
function without changing the structure. However, Rosetta
utilizes a fine-grained scoring algorithm, and the structures
need to be minimized using the Rosetta relax protocol to be
scored properly.

The primary objective of this study was to develop a method
for selecting decoys for further refinement, which means the
metric of interest is the ability to rank decoys for individual
targets. This was measured using the AUC from ROC curves for
individual targets, see Figure 3. InterPepRank has a higher
average AUC compared to all other tested methods and the
distribution of AUC values is in general shifted toward higher
values. The median AUC is 0.86 for InterPepRank compared to
0.79, 0.65, and 0.69 for DFIRE, Zrank, and PIPER, respectively,
similar to the overall AUC for (Figure 4). The same trend holds
true against pyDock3 and Rosetta FlexPepDock scoring as well on
the Expanded Analysis set, see Supplementary Figure S5. Note,
however, that there are some targets for which InterPepRank has
a particularly low ROC AUC (lower than 0.3), something which
for instance Zrank never has. This means that even though
InterPepRank achieves higher performance on average, there
are some targets for which it fails to generalize completely.
Since Zrank appears more stable, and is particularly fast to
run, perhaps a meta-predictor utilizing both scoring methods
can be developed to account for this shortcoming in the future.

Another metric of interest is the ability to rank decoys even
between targets, i.e., if the methods are capable of absolute decoy
ranking. This was tested on the Expanded Analysis set using
overall ROC and precision-recall curves, see Figure 4. Different
ways to normalize for complex size for DFIRE, Zrank, pyDock3,
and PIPER were tried and the method resulting in the best
performance was selected. Overall, InterPepRank performed
better than DFIRE, Zrank, pyDock3, and PIPER at assessing
the absolute quality of individual decoys in comparison to both
other decoys from the same target and between targets. The AUC
for InterPepRank is 0.90 compared to 0.82, 0.73, and 0.70 for
DFIRE, pyDock3, and Zrank, respectively. PIPER is slightly worse
with AUC 0.66. In fact, it is only InterPepRank that is able to
achieve a useful precision (>0.1) for its highest ranking
prediction. This might be expected since the other scoring
methods assess the whole complex and not only the peptide
interaction. The overall AUC rankings in Figure 4 mirror the
median individual AUCs in Figure 3. This indicates that the
methods tested should be able to pick up refineable decoys from a
pool of different receptors and ligands at roughly equal efficiency
as they rank decoys internally, implying the results from the tests
focusing on internal ranking could be generalized to an overall
selection case, and InterPepRank can be used for cross-target
comparable scoring.
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3.2.1 Runtime Analysis
Although slower than Zrank and DFIRE, InterPepRank still
operates well within the realm of possibility for large-scale
studies, see Table 2. It should be noted that most of the time
(>95%) of InterPepRank is spent preparing the graph-input. This
is currently implemented in a Python script but could be
optimized as compiled code.

3.3 Disordered Peptides in the Dataset
To analyze whether InterPepRank shows any bias toward
peptides which are disordered when unbound, all peptide
fragments in the extended analysis dataset were investigated
with the DISOPRED program (Ward et al., 2004), which
predicts disorder on a residue-by-residue basis. In total, 11.6%
of all peptides in the test sets were predicted to be disordered
when unbound (in this case, the peptide is considered disordered
if at least 75% of its residues are predicted as disordered). The
difference in InterPepRank AUC between ranking decoys where
the peptides were predicted as disordered and those where less
than 10% of the peptide was predicted as disordered cannot be
said to be significant (p-value > 0.5, Supplementary Figure S4),
meaning InterPepRank sees no increased difficulty in ranking
peptides which are disordered when unbound. For all the other
methods investigated in Figure 3 however, the difference in AUC
is significant with p-values < 0.04, indicating such peptides pose a
problem for these methods.

Additionally, the specific peptide residues predicted as most
likely to undergo disorder-to-order transitioning upon binding as
predicted by Proteus (Basu et al., 2017) were investigated in the
top 100 decoys for each complex as ranked by the different
methods. Among the top decoys of InterPepRank, there is a bias
in favor of placing residues predicted to undergo disorder-to-
order transitioning at the interface (R � 0.33, p-value � 0.006),
which is not seen in the other methods investigated (R < 0.09,
p-values > 0.336), except for PIPER, which also shows a slight

preference for these residues, but with weaker correlation (R �
0.21, p-value � 0.085). The version of PIPER used here is
specifically tuned for peptide-protein interactions by focusing
on the core binding motif of peptide fragments (Alam et al.,
2017). As such, it is unsurprising that it manages to identify
regions responsible for binding in the longer peptides in this
dataset with at least some correlation.

3.4 Proof of Concept: Improving the
PIPER-FlexPepDock Pipeline
The purpose of InterPepRank is to provide an accurate re-scoring
step for selecting which decoys from FFT-based rigid-body-
docking are worth further refining to achieve sub-Ångström
docked complexes. The PIPER-FlexPepDock pipeline (Alam
et al., 2017) uses FFT-based PIPER to dock peptides of
varying conformations onto a receptor surface, and the PIPER
score to select 12,500 decoys for further refinement by the Rosetta
FlexPepDock protocol, followed by clustering the top 1% of the
refined decoys to make final docking predictions.

As a proof of concept, the full PIPER-FlexPepDock pipeline
was run on the Expanded Analysis set both as is, and with
InterPepRank, Zrank, DFIRE, or pyDock3 instead of PIPER
for selecting decoys for refinement. The results were analyzed
according to the CAPRI standard of evaluating the quality of
peptide-protein complex models, see Table 3. It should be noted
that many of the peptides in the Expanded Analysis set are longer
than the longest peptides investigated in the original PIPER-
FlexPepDock benchmark, explaining the overall decrease in
performance as compared to that study. From Table 3 it can
be seen that InterPepRank, DFIRE, and Zrank improve the
performance of PIPER-FlexPepDock by selecting better decoys
for refinement. While using DFIRE and Zrank also lead to a
higher number of acceptable models, using InterPepRank leads to
a higher yield of both medium and high quality models. This is in
line with the ROC curves in Supplementary Figure S5 where
InterPepRank has a higher average and median AUC, but Zrank
has fewer decoys with poor ROC AUC below 0.5. It is also
reflected in the overall distribution LRMSD of the decoys selected
for refinement by InterPepRank and Zrank: while InterPepRank
both in mean and median selects decoys with lower LRMSD,
Zrank prefers a wider sampling of conformations resulting in a
generally smaller number of low LRMSD decoys, but more targets
with at least one low LRMSD decoy, see Supplementary
Figure S6.

This test was conducted only on the Extended Analysis set,
which is only one of the 13 dataset splits. As InterPepRank has
fewer targets with AUC below 0.5 on the full test set, we
hypothesize that in the general case using InterPepRank to
select decoys for refinement would be superior also in
generating acceptable models, as the larger full test set should
be more representative of most real-world cases.

3.4.1 Improving Runtime With Score Threshold
InterPepRank score is independent of complex size and
composition, as it only depends on the absolute quality of
each decoy, which can be seen in Figure 4. Because of this, it

FIGURE 2 | AUC on validation data using different subsets of all features.
Edge denotes the edge identities, and the lack of the Edge features means
that only proximity is considered. PSSM denotes the position specific scoring
matrix. SE denotes self-entropy.
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should be possible to introduce a score threshold, rather than
simply always selecting the top 12,500 decoys for refinement, to
avoid refining guaranteed bad decoys as predicted by the
InterPepRank score.

Indeed, using an InterPepRank score cutoff of 0.47 to select
decoys for refinement reduces the median number of decoys
refined per target to 10,000 while maintaining performance. With
this cutoff, at least one high or medium quality decoy will be
produced for each target for which one was produced with the top
12,500 decoys, and 95% of all targets which had at least one
acceptable decoy among the 12,500 will still have at least one
among those scored over the threshold.

Considering the median runtime of FlexPepDock refinement
being 1.55 min per decoy on the same systems used for the re-
scoring method speed benchmark, this results in the usage of an
InterPepRank threshold saving on average 3,875 min of runtime,
making up for the extra time spent running InterPepRank.

3.5 Generalizability
The ultimate goal of any machine learning approach is to be able
to generalize to new unseen examples and to avoid potential
biases. By using a carefully designed testing strategy we have
avoided any potential biases in the testing. However, two
potential biases remain: we only used one docking method to
generate all docking poses and the method is trained on bound
docking cases.

3.5.1 Docking Method Bias
The potential bias of InterPepRank toward decoys generated
using PIPER, which was used to train InterPepRank,
compared to decoys generated by ZDOCK (Pierce et al., 2014)
and FMFT dock (Padhorny et al., 2016) was explored on the
Expanded Analysis set.

Decoys were generated for the same receptor structures and
peptide conformations as with PIPER for both ZDOCK and

FIGURE 3 | ROC-curves for the different methods, each target is represented by one curve, and a violin-plot over the distributions of AUCs. The area under the
curve (AUC) displayed in the graphs is the average andmedian over all targets. Note that while the standard deviation of AUC is higher for InterPepRank, it still only has 19
targets with an AUC below 0.5, compared to 35, 37, and 26 targets for DFIRE, PIPER, and Zrank, respectively.
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FMFT dock, using the default settings. Next, to ensure a fair
comparison of the bias of InterPepRank toward decoys generated
by different methods rather than comparing the actual
performance of the docking methods, the quality of the decoys
from the methods was balanced in such a way that for each target,
each method contributed with an equal number of decoys for
every 0.2Å LRMSD bin.

As can be seen in Supplementary Figure S7, there is a slight
consistent difference in prediction error for the different
methods. This bias is small (average error difference for
decoys of similar LRMSD <0.01), consistently in the same
direction for each method, and the predictive power of
InterPepRank is not significantly different for any of the
individual methods (p-values > 0.59). Because of this slight
bias, mixing input structures to InterPepRank from different
docking algorithms could hamper the predictive performance
between decoys from different methods. However, as long as all
input decoys are produced from the same algorithm, i.e., the
pool of decoys being scored and ranked is not a mix of decoys
created by different docking algorithms, the predictive power of
InterPepRank should not differ significantly from the results
reported in this paper as long as the decoys are sterically
possible.

3.5.2 APO/HOLO Docking
To test the generalizability to cases starting from an unbound
receptor structure, InterPepRank was also run on the decoys

generated from the APO/HOLO set. Care was taken to ensure
that no decoy was scored by a network which had been trained on
receptor structures sharing a CATH superfamily annotation with
the receptor of the decoy.

The performance of the different methods tested on this set can
be seen in Figure 5. All methods tested either suffered from a loss in
median AUC or an increase in variance on AUC when tested on
decoys generated with APO receptors as compared to the decoys
generated with HOLO receptors of the same complexes.
Additionally, even though InterPepRank only has access to low-
resolution features, its performance still suffers from not having
been trained on decoys generated with APO receptors. However,

FIGURE 4 | ROC-curves for using the method scores to separate low-LRMSD decoys from other decoys (left), and Precision-Recall curves for the same thing
(right). Note that the scale of the right curve is logarithmic, which is necessary because of the large class-imbalance of the problem. Zrank, DFIRE, pyDock3, and PIPER
are normalized by the total length of receptor and peptide. Analysis run only on the decoys from the Expanded Analysis set.

TABLE 2 | Average runtime for 70,000 decoys over all targets, as measured in minutes. All calculations were performed on a single CPU core of Intel Xeon Gold 6130 running
on CentOS 7, and when applicable an Nvidia GeForceRTX 2080 Ti graphics card was available. If InterPepRank is run completely on CPU, add approximately 30 min to
the mean runtime. The average receptor size of the set is 156 residues.

Method Mean runtime 60 res. Receptor 472 res. Receptor

InterPepRank 100.6 57.2 249.2
Zrank 9.2 2.9 24.7
pyDock3 664.4 293.1 1,372.6
DFIRE 7.6 4.0 35.5
Rosetta FPD scoring 590.0 256.6 1,624.5

TABLE 3 | For how many of the targets in the Expanded Analysis set the modified
PIPER-FlexPepDock pipeline produced models of the different quality
measures among the top 10 results. As Rosetta FlexPepDock is a Monte-Carlo
based approach, the part of the pipeline utilizing the FlexPepDock protocol and
onwards was run in triplicates and the results averaged. Note that Acceptable
means any model of at least acceptable quality (same for Medium). Highest
number per column marked in bold.

Re-scoring method Acceptable Medium High

InterPepRank 15.33 9.66 3.33
DFIRE 16.33 7.0 1.33
Zrank 18.0 7.0 2.33
pyDock3 13.33 5.0 0.0
None (PIPER) 13.66 5.33 2.33
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the performance of InterPepRank is still favorable compared to the
other methods investigated, indicating that although the problem
itself is harder, InterPepRank is generalizable enough compared to
other methods that its usefulness for its intended purpose is not
diminished.

3.6 Examples
As seen in previous works, machine learning methods for
prediction of binding sites tend to predict protein-protein
binding sites as potential peptide-protein binding sites, often
resulting in difficulties in differentiating an interaction with the
correct binding site from an interaction with another site, like one
for protein-protein binding, or even crystal contacts (Johansson-
Åkhe et al., 2018; Johansson-Åkhe et al., 2020a). Without the
multi-layer inference of a trained machine learning model
however, methods based purely on shape complementarity or
electrostatics struggle to describe certain binding modes and can
often be sensitive to small variations in decoy generation, such as
how close together the receptor and peptide are placed (Basu and
Wallner, 2016b; Mirabello and Wallner, 2017). Additionally, the
non-machine learning based methods tested in this study perform
significantly worse for ranking decoys where the receptor has false
positive binding sites with high potential contact order (p-value <
0.02, Supplementary Figure S8), indicating a bias toward
selecting decoys binding to α-helices or deep interfaces.

In this study, an example of a target difficult for both kinds of
methods would be Siah1 (PDB ID: 4i7b). Its asymmetric unit, as
well as many structural homologs, show it in a dimeric
conformation, with the peptide binding at the opposite side of
the protein. Additionally, there is a secondary hydrophobic
groove which could maximize contacts with a potential
peptide and has the same charge-distribution as the correct
binding site, see Figure 6A, but which lacks the potential for
β-sheet reinforcement seen in the true binding site.While the true

site shows an average evolutionary entropy of 0.52 and the
dimerization site shows a similar entropy of 0.52, the
hydrophobic groove shows less conservation with an entropy
of 0.54 and the rest of the protein surface shows 0.60.

For this target, InterPepRank identified several locally
favorable positions for the peptide, see Figure 6B. The three
wells roughly represent distances to the native peptide from
decoys close to the native peptide, decoys bound at the
hydrophobic groove by the helix, and decoys bound at the
false dimerization site, respectively. These sites have average
InterPepRank scores of 0.53, 0.50, and 0.47, respectively, while
decoys bound over the rest of the protein surface average an
InterPepRank score of 0.38. Similarly, the energy-based methods
also report a lower average for the true binding site (−38.29 for
Zrank and −3.15 for pyDock3) compared to the alternative sites
(−30.45 and −3.90 for the hydrophobic groove by the helix, and
4.14 and 3.11 for the dimerization site) and the rest of the protein
surface (−7.14 and 4.74 respectively), albeit with some variation
as pyDock3 generally prefers the groove by the helix to the correct
site and Zrank ranks the dimerization site even worse than the
rest of the surface.

This demonstrates that InterPepRank does not simply select
decoys arranged at conserved sites, but judges on more metrics,
which is also supported by the fact that the length of the receptor
multiple sequence alignment as well as the quality of alignments
therein do not correlate with the quality of prediction (R < 0.1),
and that simpler machine learning models with the same
architecture but less edge information perform worse, as seen
in the ablation study.

While in the previous example the peptide bound to Siah1
through β-sheet reinforcement, this represents a comparatively
small fraction of the dataset (10.3% of all peptides in the dataset
bind through this binding mode natively). An example of a complex
with a significantly different binding mode is the c-terminal domain
of Akazara scallop troponin C in complex with a fragment from the
center of troponin I (PDB ID: 3tz1). The region of troponin I the
peptide was isolated from is annotated as disordered by DISPROT
(Piovesan et al., 2017) and the Proteus software predicts parts of it
will become ordered upon binding (Basu et al., 2017). This highlights
a potential difficulty in predicting the details of this interaction as the
most favorable state of the peptide alone is onewith a random coil, or
with a transient, secondary structure. However, the experimentally
solved structure of the complex shows the full peptide adopting an
α-helical structure upon binding, which is a rather common
structure for the peptides in the dataset to adopt upon binding
(44.6% of the peptides in the dataset adopt a mostly α-helical fold
when bound).

In Figure 6C, the top 100 decoys as ranked by InterPepRank and
Zrank are displayed. By comparing the selection, it is evident that
bothmethods favor the true binding site of the peptide. This example
also demonstrates why Zrank has a generally lower ROC AUC than
InterPepRank for most targets while at the same never scoring any
target with particularly poor ROC AUCs of less than 0.3 (see
Figure 3), which InterPepRank sometimes does; while Zrank
prefers a particular site, it also ranks several off-site decoys favorably.

This example also highlights how InterPepRank manages to
predict the correct fold of the bound peptide and incorporate that

FIGURE 5 | The ROC AUC distribution of the different scoring methods
on the APO/HOLO Set. The HOLO halves of the violin-plots are the AUC
distributions with the receptors in their bound states during scoring. The APO
halves are the AUC distributions with the receptors in their experimentally
determined unbound states.
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FIGURE 6 | (A) Siah1 in complex with a synthetic peptide (PDB-ID 4i7b). Siah1 is shown in black, the native conformation of the peptide is shown in green, the other
chain in the asymmetric unit is shown in gray, and an example peptide conformation maximizing interaction in the alternate groove is shown in pink. (B) Scatterplot of
InterPepRank predicted score (left) and Zrank predicted score (right) versus LRMSD for all decoys of 4i7b chains A (receptor) and B (peptide). Each decoy is colored by
the backbone RMSD of the peptide to its native conformation if superimposed. (C) C-terminal domain of Akazara scallop troponin C with fragment of troponin I
(PDB-ID 3izt). Troponin C shown in black, native conformation of the peptide shown in green, and decoys generated by docking shown in blue. Left image shows the 100
top ranked decoys by InterPepRank and the right image shows the 100 top ranked decoys by Zrank.
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in its ranking: 96 out of the 100 best ranked decoys as ranked by
InterPepRank are completely α-helical, while for Zrank and
pyDock3 at least half the peptide decoy adopts a coil or sheet
secondary structure in 41 and 27% of the top ranking decoys
respectively, perhaps since a less ordered fold is energetically
favorable in its unbound state or since it is easier to fit in large
false positive binding sites with a high contact order as observed
in the previous example.

Scatter plots for all test targets can be found online
(Johansson-Åkhe et al., 2020b).

4 CONCLUSION

We have presented InterPepRank, a peptide-protein complex
scoring and ranking method for use in re-scoring and selecting
coarse rigid-body-docking decoys for further refinement.
InterPepRank uses both the structure of the complex and
evolutionary features such as PSSM and sequence conservation
to achieve high accuracy scoring in manageable computational
time. The structure and the features are encoded in a graph
representation where physical interactions between peptide and
protein are represented as edges and the features are encoded in
the nodes. The graph representation is trained using graph
convolutions on a large set of peptide-protein complexes to
predict the quality as measured by LRMSD. To maximize
performance, the outputs of an ensemble of different network
architectures are averaged in the final prediction.

On a massive independent test set not used to train and validate
the method, InterPepRank has a median AUC of 0.86 for finding
peptide-protein complexes with LRMSD < 4Å. This is an
improvement compared to other methods in the benchmark that
have a median AUC of 0.65–0.79. In addition, the performance of
InterPepRank is not affected by whether the peptide is disordered
when unbound, which the other benchmarked methods are.

When used in the PIPER-FlexPepDock pipeline,
InterPepRank consistently improves the selection of decoys for
refinement, resulting in a 40% increase in high quality models
produced, and a 80% increase in medium quality models
produced. Additionally, by filtering poor decoys by an
InterPepScore threshold, performance can reach this level
without increasing the computational cost of the pipeline.

In addition to selecting peptide-protein complexes for all-
atom refinement, InterPepRank should prove useful for
providing a cross-target comparable scoring function.

The InterPepRank program as well as all scripts for
reproducing and retraining it are available from: http://
wallnerlab.org/InterPepRank.
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