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Research on the microbiome has boomed recently, which resulted in a wide range of tools,
packages, and algorithms to analyze microbiome data. Here we investigate and map
currently existing tools that can be used to perform visual analysis on the microbiome, and
associate the including methods, visual representations and data features to the research
objectives currently of interest in microbiome research. The analysis is based on a
combination of a literature review and workshops including a group of domain experts.
Both the reviewing process and workshops are based on domain characterization
methods to facilitate communication and collaboration between researchers from
different disciplines. We identify several research questions related to microbiomes,
and describe how different analysis methods and visualizations help in tackling them.
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1 INTRODUCTION

The human gut microbiome has been the topic of many academical studies over the latest years, as
several diseases like multiple sclerosis and inflammatory bowel disease, have been found to be
connected to it (Wilck et al., 2017; Allaband et al., 2019). Studies even suggest that there is a link
between the gut microbiome and depression (Dash et al., 2015; Winter et al., 2018). Tripathi et al.
(2018) noted that although much progress has been made in this research field, a framework of
aggregated scientific knowledge about the topic (one needs to pose meaningful hypotheses) is still
lacking. The authors therefore advocate for more discovery-driven, and tool-driven research projects
instead of traditional, hypothesis-driven studies conducted using hypotheses-driven statistical or
mathematical models. The reasoning behind this inductive approach, from which we start with a
hypothesis-free exploration of the data, is that it can lead to unanticipated interesting questions as
well as deeper insights of understanding. A promising and by now well-established technique to
support hypothesis-free data exploration, are interactive data visualization and Visual Analytics
(VA) (VanWijk, 2005; Keim et al., 2010). Visualization experts play an important role in this as they
possess the knowledge and visual literacy to perform visual analysis, and develop meaningful
interactive data visualizations. Data visualization projects, and the interplay between visualization
experts and domain experts therefore becomes more prominent in different research fields; e.g.,
social sciences (Lamqaddam et al., 2020), archaeology (Panagiotidou et al., 2020), and microbiome
research. To work closely with domain experts, and performing a good requirement analysis is key
for the visualization experts to succeed in the development of meaningful visualization tools (Knoll
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et al., 2020). This involves the visualization expert(s) to gain
sufficient background knowledge in the research domain to
understand expert’s needs, and domain experts to express
their domain tasks, data types and analysis (Sakai and Aerts,
2015).

In this paper, we provide a picture of how (interactive) data
visualization and visual analytics are currently used in
microbiome research. To do so, literature covering visual
analysis pipelines, visualization methods and visual analytic
tools designed for microbiome research were reviewed and
discussed in interactive expert panel focus groups. These
interactive workshops were organized based on the principles
of Kerzner et al. (2019) and Gray et al. (2010), using an informal
setting in which discussion was facilitated through brainstorming
games (e.g., Post-up, Card sort).

2 MATERIALS AND METHODS

Data and material for the analysis was collected using a
combination of literature review and collaborative workshops
with a panel of experts related to microbiome research.

2.1 Literature Review
Literature was hand collected based on a google scholar search on
“microbiome visualization,” “microbiome visual analysis,” and
“microbiome studies interactive analysis.” To be as inclusive as
possible, additional tools were added if referenced in one of the
papers within this selection. Nevertheless, the final collection may
not be exclusive. In total, 31 papers published between 2009 and
2021 were selected. This should give an accurate presentation of
the analysis tools landscape. Note, that because of the special
interest in the visual analytics aspect, a strong emphasis on
visualization tools was laid in the search and collection process.

The review process was done manually. From each paper we
extracted general information on the tool; such as the platform
the tool is hosted on, the input formats of the data, and the aspects
of the microbiome that could be revealed using the tool (e.g.,
diversity indices, differential relative abundances, etc.). In
addition, we described which methods were used to extract
information on the several microbiome aspects as well as the
visualization method (if not overlapping) used for visual
interpretation. Note that for the interest of this study, only
analyses to perform on operational taxonomic unit (OTU) or
amplicon sequence variant (ASV) tables were taken into account.
This paper will not cover the process of transforming raw
sequence data (.fastq files) into readable OTU/ASV tables.

2.2 Evaluation Methods
To analyze and draw conclusions of the observations, two
techniques coming from the business environments were used
to facilitate insight generation by revealing underlying patterns;
being a closed cart sorting game (Sakai and Aerts, 2015) and the
use of a history map (Gray et al., 2010). Both were conducted
individually prior to the expert panel focus group discussions.

In card sorting, the objective is domain characterization, which
is crucial in visual design. As visualization experts might not have

sufficient background knowledge in the field of microbiome
research, “expert’s need” have to be extracted in more abstract
low-level tasks (Munzner, 2014). In this card sorting game, these
abstractions were made based on the literature. The rules of the
game are simple, a set of cards need to be sorted into meaningful
categories. Cards can represent items, objects, pictures, names or
attributes. In this case a closed Card Sort was conducted, meaning
a set of predetermined categories is used; each category
representing a feature (aspect) of the microbiome that could
be identified in the analysis tools. The cards to be sorted
contained the statistical methods, visualization algorithms and
visual designs that were found in the same analysis tools to
compute and represent these aspects. The sort in this exercise was
based on the frequency of occurrence in literature (i.e., if PCoA
was used to visualize between sample diversity, the “PCoA” card
was assigned to the “between sample diversity” class). An example
of how this was done can be found in Supplementary Figure S1
in the supplementary materials.

The history map (Gray et al., 2010) is used to familiarize new
people with an organization’s culture and history during periods
of rapid growth. The idea is to ask employees share memories
about certain topics (e.g., company successes, changes in
leadership, culture shifts, etc.) on a continuous timeline, to
later summarize and reflect on the findings, and look for
emergent patterns. The same exercise can be done in
academics however, shifting the focus from an “organisation’s
history” to a particular research field or research topic; being
“microbiome research through visual analysis.” In the interest of
this study, development of microbiome research through visual
analysis was broken down in three separate questions: 1) How did
the interest (coverage) of microbiome aspects develop over time
in the collection of reviewed analysis tools?, 2) How did the
methods used to capture these microbiome aspects develop or
change over time?, 3) How did the use of platforms to host these
visual analysis tools change over time? Like in the Card Sort game,
the answers to these questions were provided based on frequency
of occurrence in the literature (i.e., if a certain tool offers Shannon
diversity to capture within sample diversity, it is listed on the
timeline of methods used to capture within sample or alpha
diversity). Hence, multiple timelines were created; one containing
the aspect coverage, one representing the used platforms, and one
for each aspect individually to show the methodological
development and visual representations over time. An example
of such an exercise can be found in the Supplementary Figure S2.

2.3 Workshops
To further explore and dive deeper into the results captured by
the individual literature review analysis, similar exercises were
done within a focus group of domain experts related to the
microbiome. As experts in a complex research field may
sometimes experience difficulties expressing their research
objectives and needs due to the inherently exploratory nature
of the analysis, data and its uncertainties, literature suggests the
use of domain characterization exercises to facilitate
communication and information sharing within
interdisciplinary groups of experts (Munzner, 2009;
Panagiotidou et al., 2020). The expert groups were drawn
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from three different research domains (biologists, statisticians,
and visualization experts), to obtain diverge insights coming from
different perspectives. In total, 2 workshops were organized. The
first workshop included 4 participants, among which 1
microbiologist, 2 bio-statisticians and 1 visualization expert.
The second workshop included 1 microbiologist, 3 bio-
statisticians and 1 visualization expert. The same visualization
expert was present in both meetings, whereas all other
participants within the focus group changed. Due to COVID-
19, the second workshop had to be done virtually using the online
collaborative whiteboard platform Miro (miro.com). The first
meeting could be done in person. The meetings took between 1 h
and 30 min and 2 h, using an informal “game” structured setting.
An informal setting was chosen to create an open and friendly
environment to establish collegiality and trust across participants
(Knoll et al., 2020). The workshops were conducted in three
phases; 1) introduction, 2) Post-Up, and 3) Card Sorting.

At the start of the workshop, goals and guidelines for the
participants were communicated, followed by a short
introduction round and warm up exercise. According to
Kerzner et al. (2019), the latter encourages idea generation
and self expression and consequently advances in agency.

The second phase of the workshop aimed at generating ideas.
During this phase a post-up game (Gray et al., 2010) was played
to support brainstorming. The idea of this game is to start with a
question on which the group of participants will search answers
to. The question should be written down somewhere (e.g., on a
whiteboard) such that participants can consult it at any time.
The brainstorm is done individually, and answers should be
written down on separate sticky notes. Answers can then be
shared and sorted underneath the question and briefly
presented toward the group after a set amount of time; being
2 min within our setting. The intend of this game was to
compare the experts’ knowledge and needs to what is
currently available in the microbiome visualization tools. In
this set-up, five questions were asked:

• Q1: Conceptually, what information/knowledge can we gain
or would we like to obtain from doingmicrobiome research?
For example: influence of food on obesity, how drugs change
the gut microbiome, etc.

• Q2: Which data is required or relevant to obtain this
knowledge? For example: location, time, etc.?

• Q3: To answer questions of Q1: which specific aspects can
be retrieved from the OTU/ASV abundance table? e.g.,
taxonomic abundance, most present taxonomies in
collected samples.

• Q4: Given the aspects you wrote down before, can you think
about methods needed and or used (statistically, visually) to
obtain this information.

• Q5: When you think about your own research, I’m
interested in the platforms, tools, packages you have
used, or are using currently to analyze the microbiome.
Can you list these up?

An image of the workshop environment at the end of this
phase is shown in Figure 1A, and the list of provided answers can
be found in the supplementary materials (Supplementary Tables
S1, S5).

Phase three of the workshop included the same closed card
sort game as performed in the individual reviewing process. The
same cards and categories were provided to the expert panel and
the objective of the game was the same, only this time sorting was
based on experts’ knowledge rather than frequency of occurrence
in literature; allowing to easily identify discrepancies between
experts opinions and literature. Therefore only one card was
provided for each statistical method, visualization algorithm or
visual design this time, regardless frequency of use. Still,
participants were free to duplicate cards. All categories were
briefly explained before the start of the game. Each card also
contained concise description of the method. Based on this
information, participants were asked to sort the card under
the categories they believed it could be used for. Furthermore,

FIGURE 1 | Phase two and three of the workshops; (A) a post up brainstorm sessions in which participants were asked to provide their knowledge on 5
microbiome analysis related questions, and (B) a closed card sorting to provide their experts opinion on currently usedmethods. The actual results of the post up session
can be found in supplementary material (Supplementary Tables S1, S5).
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participants were also allowed to create additional cards and
categories containing methods and aspects not covered in the
tools. At the end, participants were asked to conduct a value
mapping through dot voting (Gray et al., 2010) on the cards that
had been sorted. Statistical methods, visualization algorithms and
visual designs that experts believed were still informative and
insightful obtained a dot, providing an indication of the ones that
are still accurate and useful in microbiome research, which could
result in interesting discussions. An image of the workshop
environment at the end of this exercise is presented in Figure 1B.

Important with these type of exercises is to promote open
communication among participants to obtain as much context
and background knowledge as possible, and acknowledge
expertise from all participants to gain as much input as
possible (Kerzner et al., 2019). The workshops were recorded
for later reference during analysis with permission of the
participants.

3 RESULTS

3.1 Research Objectives
Based on the literature and the answers to Q1 of the post up game
(i.e., Conceptually, what information/knowledge can we gain or
would we like to obtain from doing microbiome research?),
several objectives were identified in which microbiome
research can play a role. The responses of the experts on the
question “what information or knowledge can or could be
obtained from microbiome research?” could be categorized in
5 major objectives. The first, and most prominent research
objective listed by the experts is the association between the
microbiome and diseases, among which obesity and multiple
sclerosis. All experts believed there is a role to play for the
microbiome in disease treatment. Currently, drugs are used for
disease treatment, but more research is required on whether they
directly affect the disease or whether the effect is mediated
through the gut microbiome. If the latter is true, drug
alternatives such as a specific diet or fecal therapy could play a
prominent role. The second topic of interest that came forward
during the discussions was the effect of environmental and
personal conditions on microbiome composition. These
include seasonal changes (e.g., sunlight), geographical location,
past diseases, diet, etc. The third topic listed during the
discussions was the role for the microbiome in agriculture,
specifically its effect on plant growth/production. Next,
psychological associations were listed as a topic of interest.
Literature has shown that a link between the gut microbiome
and psychological diseases (e.g., depression) exists (Dash et al.,
2015; Winter et al., 2018), but does the gut microbiome
composition also alter our mood? Lastly, the experts expressed
interest in the role of the microbiome in areas such as crime
investigation. This could be in revealing social contact patterns
based on similar microbiome compositions, using the skin
microbiome to see who had physical contact with whom, but
also with certain objects or animals, etc. A commonality between
all the topics listed above is that they all rely on finding the
association between the microbiome (s) and other parameters,

and more interestingly (if possible) in revealing causal
relationships.

3.2 Data Requirements
Qualitative data is needed to provide accurate answers to these
research objectives. Based on the answers and discussion on Q2 of
the post up game (i.e., Which data is required or relevant to
obtain this knowledge?), a general outline of “qualitative data
collection in microbiome research” could be established. Besides
the need of qualitative genome sequencing, samples should be
accompanied by a set of metadata containing additional
information about the host and its environment, the (clinical)
study, and the sample collection. Specifically, baseline
characteristics of the host should be captured (e.g., if human:
age, gender, geographic location, etc.); environment information
from the host (e.g., exposure to certain chemicals, passive smoker,
diet, etc.); clinical information from both the host and the clinical
trial study; and information about sample collection (e.g.,
timestamp, sample location within the host). Furthermore, to
obtain metabolic information, accurate databases are required for
functional profiling. A full list of the answers provided to Q2 can
be found in the supplementary material (Supplementary
Table S2).

3.3 Methods and Algorithms in Microbiome
Research
To analyse this data and investigate previously listed research
objectives, an interplay between statistical methods, algorithmic
visualizations and (interactive) visual representations are
required. These allow us to reveal certain aspects of the
microbiome which accordingly permit us to provide answers
to these research objectives.

3.3.1 A Changing Research Landscape
The rapid development of these methods and algorithms in
microbiome research is clearly visible in the literature. The
first visualization oriented microbiome analysis tools only
covered the visualization of taxonomic abundance and
relationships (Ondov et al., 2011), and the exploration of
within- and between-sample diversity (Schloss et al., 2009).
Not many years later, tools started to implement methods to
test for statistical differences between samples in terms of
abundance (differential abundance analysis), and statistical
differences between cohorts or populations that can be related
to a particular (disease) condition (biomarker discovery)
(McMurdie and Holmes, 2013; Robertson et al., 2013; Weiss
et al., 2017). During the same period, the first tools allowing for
visual exploration of microbial interactions and associations
became available as well (Kuntal et al., 2013), used to get an
idea about which microbes tend to co-occur with each other.
Meta data also became more important in the analysis of diversity
between microbiome samples. It is more and more explored
together with the on taxonomic abundance based diversity scores
(Vázquez-Baeza et al., 2013; Zakrzewski et al., 2017; Liao et al.,
2019). In the latest years, major developments occurred;
enrichment analysis found its way into the microbiome visual
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analysis tools (Kuntal et al., 2016; Chong et al., 2020), researchers
are now able to visualize and investigate taxon-function
relationships (McNally et al., 2018), and tools were developed
for longitudinal studies including feature volatility and time series
analysis (Baksi et al., 2018; Bokulich et al., 2018). The latest
development in the field was the introduction of machine
learning (ML) classifiers (Chong et al., 2020; Shamsaddini
et al., 2020). Regardless of the fast development and
progression in microbiome research and its visual analysis
tools, all types of analyses and aspects of the microbiome have
remained relevant for exploration. This observation was made
based on the fact that older methods (e.g., diversity indices) are
still implemented in newer published tools (Carpenter et al.,
2021), and confirmed by the expert panel focus group discussions.
Figure 2 provides an overview of which microbiome aspects are
currently covered by which tool.

3.3.2 Aspects
In Q3 of the post up game, we asked our participants to list all
aspects that could be extracted from an OTU/ASV abundance
table in order to answer the research questions provided on Q1. A
wide variety of features were provided and could be categorized
into 4 major research interests: 1) exploratory analysis of baseline
characteristics such as (relative) abundance, variability, diversity
and richness, 2) statistical effect modelling to obtain effect sizes
and p-values, and identify differences taxa abundance and
discover biomarkers, 3) interaction models to reveal the
interrelationship between taxa, and 4) functional analysis of
taxa. In the following we discuss the aspects that were found

to be extracted in literature, supplemented with important
findings that came up during the workshops (answers to Q4
and card sort) and review process.

(Relative) Abundance
Perhaps the most important thing in microbiome research is the
ability to look into the (relative) abundance of taxa within and
across samples. It provides a first impression of which taxa
(functions) are most prominent within a sample, group or
population, and can guide us into certain directions of
interests. Due to the compositional structure of the data in
microbiome research, one tends to prefer looking into relative
abundances rather than absolute abundances. An exploration of
the (relative) abundances involves no complex statistical
modelling, and can be easily done by means of some
descriptive statistics and a visual representation of the data.

Visualization—Stacked or regular bar-charts seem to be the
most prevalent visual encodings to do so, although they are
limited in the number of species (functions) they can visualize
for the chart to still be readable (Knaflic, 2015). Heatmaps are a
frequently used alternative that allow us to visualize all species
(functions) at once. The use of color intensity as a channel in
heatmaps on the other hand makes the comparison in terms of
relative abundance a bit harder than using length (bars)
(Munzner, 2014). Nonetheless, does the use of color allows us
to easily include (relative) abundance visualization in other
microbiome aspect oriented visualizations [e.g., alongside
taxonomic classification (Ondov et al., 2011)]. Other
alternative visual encodings found in literature include the use

FIGURE 2 | Amatrix overview of the tools and algorithms included in the literature review, in which the tools and algorithms are represented in the columns, and the
microbiome aspects they measure and present listed as rows. Cells indicate the coverage of an aspect by the corresponding tool, and are colored based on the platform
they were hosted on.
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of angle [e.g., sunburst chart (Ondov et al., 2011)] and area [e.g.,
bubble plot (Dussud et al., 2018)] to display (relative) abundance.
An overview of how visualization is been used to represent
(relative) abundance in literature is shown in Figure 3.

Hierarchical/Relational Structures
Microbiome analysis can be done up to different levels depending
on the interest of the study, and the sequencing process used to
sample the data. In general, sequencing up to a deeper level
provides more detailed information. On the other hand, does it
bring more problems into the analysis due to sparseness. Most

statistical models are not suited to handle many zero counts in the
data (Knight et al., 2018).

Visualization—In the analysis of microbiome samples, it can
be interesting to visually represent the hierarchical level of the
taxonomies (domain, kingdom, phylum, class, order, family,
genus, species), hierarchical level of the functions (category
e.g., metabolism, superpathway e.g., carbohydrate metabolism,
subpathway e.g., glycolysis), or even the phylogenetic relationship
of the species. Tree structures (including radial trees, cladograms,
etc.) are the typical visual encodings used, and are basically the
only visual encoding found in literature (Figures 3B,E–G).

FIGURE 3 | An overview of the visual encodings used to display (relative) abundance and hierarchical/relational structures; (A) relative abundance displayed by
means of a stacked bar chart in BURRITO (McNally et al., 2018), (B) a krona sunburst chart showing the taxonomic hierarchy of the observed bacteria and their relative
abundance (Ondov et al., 2011), (C) OTU abundance visualized as a heatmap using Phyloseq (McMurdie and Holmes, 2013), (D) relative abundance of OTUs
represented in a bubble plot (Dussud et al., 2018), (E)GraPhlAn, a tree based visualization tool that allows to add visual annotations (Asnicar et al., 2015), (F) a “heat
tree” visualization showing the taxonomic hierarchy within its tree structure and OTU abundance using node width (Foster et al., 2017), (G) taxa and function hierarchy
displayed within tree structures in BURRITO with node width representing abundance (McNally et al., 2018).
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Within Sample (Alpha) Diversity
Alpha diversity provides an idea of the diversity of species within
a particular sample. This metric is often used as a biomarker
(Prehn-Kristensen et al., 2018) in disease association studies, but
also as a check of sample quality (Schloss et al., 2009).

Analysis—Looking into alpha diversity calculations and visual
representations, no clear evolution could be found. Many
different options exist and are used, but no uniform standard
has emerged yet. Typically, alpha diversity metrics can be
distinguished into two types: richness- and evenness-measures;
Chao1 being the most used richness metric, and Shannon the
most used evenness metric. A full list of alpha diversity measures
is provided by Hagerty et al. (2020). The authors advocate for the

use of a composite metric based on exploratory factor analysis
(EFA), taking into account both richness and evenness metrics
unified in one.

Visualization—box-plots are widely used to display alpha
diversity if the objective is to make a comparison between sample
cohorts. Line-charts (rarefaction curves) and scatter-plots tend to be
used more frequently when visualizing the metrics across samples;
the rarefaction curve presenting the (predicted) sample richness by
sequence size, often used for re-sampling. Venn diagrams are used to
display which part of the microbial taxa are present in multiple
samples in relation to the total diversity within those samples. An
overview of the visuals used to represent the within sample diversity
is given in Figure 4A–C.

FIGURE 4 | An overview of the visual encodings used to display within (alpha) and between (beta) diversity; (A) alpha diversity metrics compared between groups
by means of box-plots in BiomMiner (Shamsaddini et al., 2020), (B) rarefaction curve showing the number of OTUs by sequence size in Mothur (Schloss et al., 2009), (C)
alpha diversity metrics visualized using scatter plots in Phyloseq (McMurdie and Holmes, 2013), (D) beta diversity visualized using ordination in iMAP (Buza et al., 2019),
(E) a node-link diagram produced using TDA in TMAP to display beta diversity (Liao et al., 2019), (F) heatmap visualizations showing beta diversity distance
matrices (Lei et al., 2017).
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Between Sample (Beta) Diversity
Beta diversity represents the diversity of species across samples,
commonly used to find clusters of similar samples. Typically, this
feature is calculated in the exploratory analysis, as it provides a
first impression on which taxa are important to distinguish
samples, but also on how microbial compositions are related
to environmental and personal meta data. With regard to the
research objectives listed above, social contact networks could for
instance be revealed based on similar microbiome compositions
of the skin.

Analysis—Beta diversity is expressed as a distance matrix
calculation on relative OTU abundance, which serves as an
input for visual exploration of sample divergence and similarity.
Often occurring distance metrics are: (weighted) UniFrac,
Jaccard, Bray-Curtis and Jenson-Shannon (Oliveira et al.,
2018; Chong et al., 2020; Shamsaddini et al., 2020). An
important note however is that none of these measures
account for the compositionality of the data. Compositional
replacements for these distance metrics have been developed;
philr (Silverman et al., 2017) as a replacement for (weighted)
UniFrac, and Aitchison distance (Aitchison et al., 2000) for
Jensen-Shannon divergence and the Bray-Curtis dissimilarity
metrics. Nevertheless, implementation is lacking in the
microbiome visual analysis tools.

From 2019 onward, a new trend seemed to develop, which is to
test for statistical significance of the between-sample differences
(ordination measures). Statistical tests used for this include
AMOVA, HOMOVA, ANOSIM, PERMANOVA, PERMDISP,
and LIBSSHUFF (Buza et al., 2019; Chong et al., 2020;
Shamsaddini et al., 2020). One important recent development
is that ordination analysis techniques can be performed on
sample functional potentials rather than their taxonomic
proportions (Nagpal et al., 2019).

Visualization—The visual representation of beta diversity can
be either directly through heatmaps of the distance matrix (Lei et
al., 2017), through ordination based methods (e.g., PCoA,
NMDS) which present the samples in a 2 or 3 dimensional
space using dimensionality reduction techniques (Vázquez-
Baeza et al., 2013; Wang et al., 2016; Bolyen et al., 2019), or
by means of network visualizations based on topological data
analysis (TDA) (Liao et al., 2019) or cut-off based edges
(McMurdie and Holmes, 2013). Note that because of the
compositional ignorance in the commonly used distance
metrics, samples will be almost exclusively discriminated based
on the features that are most abundant realtive to the others
features and not on the most variable ones between samples.
Therefore, sample location could vary a lot in ordination plots
when different features are included or excluded (Gloor et al.,
2017). An example of the visual encodings listed above is shown
in Figure 4D–F.

Differential Abundance
With differential abundance analysis, OTUs that differ
significantly between samples, cohorts or populations are
identified using statistical hypothesis testing. In doing so, taxa
can be related to a certain response (e.g., disease state, growth
process).

Analysis—The search for the ideal analysis method for
differential abundance is still ongoing (Hawinkel et al., 2019).
To date, it has been proven that distributional assumptions do not
hold for the majority of the taxa, leading to poor performance of
parametric models (Hawinkel et al., 2020). The problem with non
parametric rank alternatives such as Wilcoxon is that they are
typically less powerful in comparison to parametric tests due to
their vulnerability to ties in the data (Jonsson et al., 2016). Custom
methods have been developed to test on significant differences
between microbiome data, taking the compositionality of the data
into account (e.g., ANCOM, ALDEx2) (Gloor et al., 2017). In
comparison to the complete lack of awareness in Beta diversity
analyses, differential relative abundance analysis methods relying
on these compositional assumptions are present in some visual
analysis tools (Zakrzewski et al., 2017). Yet, another possible
solution lies in semiparametric models, such as Probabilistic
Index Models (PIM) (Thas et al., 2012). These are based on
rank tests (non parametric), but allow for estimates of effect
sizes and inclusion of continuous covariates. So far, they haven’t
been introduced inmicrobiome visual analysis tools in a significant
way. An important note that came up during one of the workshops,
is that the methods used in visual analysis tools are all limited to
cross sectional analysis. To the awareness of the expert panel,
methods that do allow differential abundance testing in
longitudinal studies are sparse, and mostly parametric. Besides,
with the currently offered methods, conclusions can only be drawn
about associations between taxa and meta data identifying sample
cohorts, whereas inference on causality would be of major interest.
In recent years, several methods have been proposed relying on
structural equationmodels to reveal the direct andmediation effect
of the microbiome on a certain response (Sohn and Li, 2019; Wang
et al., 2020). These however cannot be found in the current visual
analysis tools. Nonetheless, these methods suffer from validity
issues (Vanderweele and Vansteelandt, 2009).

Visualization—To visualize statistical significance, several
visual encodings have been used; ranging from simple
heatmaps and box-plots, to more complex visuals like the
Manhattan plot (Harris et al., 2015), rocky mountain plot
(Carpenter et al., 2021), volcano plot (Shamsaddini et al.,
2020) or heat tree (Foster et al., 2017). An overview of some
of the visualizations found in literature is given in Figures
5A,C,E,F.

3.3.2.5 Biomarker Discovery
Biomarker discovery focuses on finding specific parameters or
indicators, called biomarkers, that can be related (assigned) to a
particular condition (disease).

Analysis—When it comes to biomarker discovery, two schools
of thought can be distinguished: one using predictive models such
as machine learning classifiers, and the other based on hypothesis
testing. Among the predictive models, LEfSE (Swenson and
Swenson, 2014) is by far the most offered method in the
visual analysis tools, followed by some other machine learning
algorithms. Methods based on hypothesis testing include
methods for statistical difference testing between groups (both
parametric and non-parametric). Similar to differential
abundance testing, models for clinical studies that take into
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account the effect of an intervention on both the response
(immune response) and biomarkers can be of interest as well.
The primary difference however is that their focus is merely on
association rather than causal relationships. To the best of our
knowledge, there are only two tools that test for association
between biomarkers (microbiome taxa compositions) and
clinical response variables: NetShift using an algorithmic
visualization (Kuntal et al., 2019a), and PhyloSeq using
supervised methods (i.e., canonical correspondence analysis,
discriminant correspondence analysis, sparse linear
discriminant analysis, etc.) (McMurdie and Holmes, 2013).
The authors of IVikodak listed the quantification of
association between specific sets of bacteria with disease state
as a planned future enhancement (Nagpal et al., 2019). None of
them however allow for longitudinal analysis, taking into account
the effect of an intervention on both the biomarkers and disease
response.

Visualization—A wide variety of visual encodings have been
used to represent the result of biomarker discovery analysis;

ranging from simple heatmaps and bar charts, to more
complex visuals like the volcano plot (Shamsaddini et al.,
2020) and heat trees (Foster et al., 2017). An ongoing search
noted by one of the experts in the focus group discussions is on
how to visually represent the results of clinical longitudinal
intervention studies: how do microbial composition and
clinical response variables change over time given a particular
intervention. In Figures 5B,D,F, some of the visualizations used
in the visual analysis tools are shown.

Classification
Classification is used to classify samples in predefined groups
based on their microbial composition. It provides information on
the most important features (taxa) within sample cohorts, and is
therefore often returning as a method for biomarker
identification as well.

Analysis—Classification methods are fairly new in
microbiome research, as only the more recently developed
visual analysis tools cover these methods (Chong et al., 2020;

FIGURE 5 | An overview of the visual encodings used to display differential abundant taxa and identified biomarkers; (A) Manhattan plot showing statistically
significant differential abundant taxa (Harris et al., 2015), (B) a visual presentation of the most significant taxa (potential biomarkers) (Cosma-Grigorov et al., 2020), (C)
difference in abundance of significant taxa shown in a heatmap in BiomMiner (Shamsaddini et al., 2020), (D) “community shuffling plot” showing the changes in microbial
interactions between clinical groups in Netshift (Kuntal et al., 2019a), (E) rocky mountain plot indicating differential abundant taxa in tidyMicro (Carpenter et al.,
2021), (F) a heat tree visualization showing significantly different taxa between disease and control group (Cosma-Grigorov et al., 2020).
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Shamsaddini et al., 2020). Machine learning algorithms such as
random forest classifiers or support vector machines are typically
used for this type of analysis.

Visualization—Line charts (expressed as ROC curves) are
typically used to represent model performance, whereas bar
charts are used to display the most important features. An
example of how this is been shown in literature is given inFigure 6C.

Microbial Interaction
The analysis of microbial interaction is focused on identifying the
relationship between species. Different types of relations can exist
between microbes: mutualistic, commensal, parasitic and competitive
(Faust et al., 2012). The goal is to find amethod that reveals all of them
at once. Identifying these relationships is important for all research
objectives listed above. It provides more context on why certain taxa
abundances differ in certain situations, and guides us towards possible
causal relationships (e.g., is the drug altering the relative OTU
abundance or is it altering its relative abundance through another
taxa that contains a specific relationship with the OTU of interest).

Analysis and Visualization—Looking at the development of
microbial interaction analysis within the microbiome visual

analysis tools, new methods have been introduced during recent
years, which gives an indication that the use of different methods is
still further explored. At themoment, three schools of thought can be
distinguished: 1) correlation based methods. Problem however with
correlation is that it doesn’t correct for the compositionality of the
data, and thus leads to spurious correlations (Gloor et al., 2017).
Therefore, methods like SparCC, SPIEC-EASI and FastSpar were
developed which result in network visualizations based on cut-off
values (Chong et al., 2020). 2) Predator-Prey based methods using
(generalized) Lotka Volterra equations to model relationships (Shaw
et al., 2016; Kuntal et al., 2019b). 3) Topology based methods using
topological data analysis (TDA) to construct the networks (Liao
et al., 2019). All of these methods result in a graph visualized as a
node-link diagram. Figures 6A,B provides an overview of how
networks are used to represent microbial interactions.

Functional Profiling
As mentioned above on (relative) abundance, one could also look
into the metabolic functions of microbial populations.

Analysis—Depending on the type of sequencing, different
programs and methods can be used for functional profiling.

FIGURE 6 | An overview of the visual encodings used to display classification method results and interactions between taxa; (A) taxa interaction network (Wu et al.,
2020), (B) taxa interaction network visualized using TDA in TMAP (Liao et al., 2019), (C) visual representation of the results of the Random Forest classifier in BiomMiner
(Shamsaddini et al., 2020).
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Galloway-Peña and Hanson (2020) provide a nice overview
including use cases and shortcomings. Using 16S rRNA
sequencing, methods such as PICRUSt (Langille et al., 2013)
and Tax4Fun (Aßhauer et al., 2015) allow to predict the gene
content potential functionality based on a comparison between
relative abundances and the reference genome of the taxa present.
An important note of the authors that came up in the expert panel
discussions as well is that these however are rough approximations,
as they don’t take into account actual protein expressions. Using
shotgun andmetatranscriptome sequencing approaches, tools such
as MetaGeneMark (Zhu et al., 2010) and Glimmer-MG (Kelley
et al., 2012) carry out protein sequence homology based searches
against databases of orthologues, enzymes, or protein domains and
families for gene identification and annotation. The results could
then be used for pathway enrichment analysis.

Visualization—The link between taxa and functions can be
visualized using bipartite graphs (Figure 7C) or interactive stacked
bar charts using highlighting, as was done in Burrito (McNally et al.,

2018). The result of functional profiling are typically represented in a
metabolic pathway network (Figure 7D) (Zhang et al., 2019).

Longitudinal Analysis
As mentioned before in the section on differential abundance and
repeated in the section on biomarker discovery, to gain a deeper
understanding of causal relationships between the microbiome
and various sample cohorts (e.g., grouped by disease state),
longitudinal studies are required (Secrier and Schneider, 2013).
Given the literature reviewed in this study, two tools were found
to allow for longitudinal microbiome time series analysis; TIME
(Baksi et al., 2018), and q2-longitudinal (Bokulich et al., 2018),
which is an extension on QIIME2.

Analysis—In q2-longitudinal, linear mixed effect models are
used to test for differential abundance. Changes of microbial sample
compositions are captured across time using unweighted UniFrac,
whereas in TIME dynamic time warping distance is used to capture
groups of taxa showing similar trends over time. TIME identifies

FIGURE 7 | An overview of the visual encodings used to display feature volatility and functional profiling; (A) eveloution of relative abundance over time visualized
using a linechart in q2-longitudinal (Bokulich et al., 2018), (B) associations between taxa based on Granger causality testing represented in a node-link diagram in TIME
(Baksi et al., 2018), (C) taxa-function relationship displayed using a bipartite graph in BURRITO (McNally et al., 2018), (D) KEGG metabolic pathway network (Zhang
et al., 2019), (E) taxa clustered based on similar trends in time in the web-app TIME (Baksi et al., 2018).
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causal relationships among taxa using Granger Lasso causality.
Stationary taxonomic groups (meaning no inter-microbial
competition) are identified using an augmented dickey fuller test.

Visualization—Both tools allow for exploration of feature
volatility using volatility plots (line charts) (Figure 7A). causal
relationships between taxa are displayed using node-link diagrams
(Figure 7B); clustering of taxa showing similar trends over time is
visualized using a radial tree structure (Figure 7E).

Still, to the best of our knowledge no methods for longitudinal
mediation analysis allowing for the identification of causal
relationships between intervention, microbiome and response
are incorporated yet.

3.4 Tools and Platforms
Situating all publications on a timeline (see Figure 2) it becomes clear
that initially (2009–2014) tools were mainly made available as
standalone downloadable software. Quickly, tools were made
available as web applications as well. R and Python are often used
to run the analyses on the server side of these web applications (Chong
et al., 2020; Reeder et al., 2020), but packages and libraries do also exist
to run analyses in the R studio or python programming environments
(McMurdie and Holmes, 2013; Buza et al., 2019). The main reason to
develop software or web-apps is to remove the constraint of coding, as
not all biologist know how to code and learning R or Pythonmight be
a bit cumbersome (Huse et al., 2014; Chong et al., 2020). Hence they
most often serve as complete analysis pipelines in which microbiome
researchers upload their data and can perform different analyses
through a point-and-click user interface (Huse et al., 2014). The
major problem however with these applications is maintenance. Since
standalone software is not open source, updates most often stop when
funding stops, as there is nobody who can keep everything up to date
besides the developers. A solution to partly alleviate this could be the
use of R and Python based server apps like R Shiny (Chang et al.,
2015), as was done in Microbiome Explorer (Reeder et al., 2020) or
MicrobiomeAnalyst (Chong et al., 2020). Looking into the R packages
and Python libraries, three types of packages and libraries can be
distinguished: the complete analysis pipeline packages which allow
for a thorough and diverse analysis of the microbiome [e.g.,
Phyloseq (McMurdie and Holmes, 2013), MicrobiomeExplorer
(Reeder et al., 2020), IMAP (Buza et al., 2019)], the extensions
on these complete packages [e.g. phylogeo (Charlop-Powers and
Brady, 2015)], and the computational- or visualization
algorithms [e.g. SPIECE-EASI (Kurtz et al., 2015), TMAP
(Liao et al., 2019)]. These extensions and algorithms both
focus on revealing one particular aspect of the microbiome.
During the expert panel group workshops, it became clear that R
is primarily used among the participating bio-statisticians. For
the creation of a custom visualization, visualization experts
make use of web based environments and its according
coding languages (HTML, CSS, and JS), and dedicated
visualization libraries [D3 (Bostock et al., 2011), p5, etc.].

4 DISCUSSION

Based on the expert panel focus group workshops, the main interest
in microbiome research is in the identification of associations

between the microbiome and host characteristics; be it
environmental or health related factors within or among humans,
or growth indicators in agriculture. Relevant analysis methods are
mainly differential abundance analysis and biomarker discovery.
Although these analyses often include metrics like alpha diversity as
model parameters, or start from preliminary exploration of the data
by looking at the taxonomic compositions and diversity between
groups. These methods often include baseline characteristics (e.g.,
diversity metrics) as model parameters, and proceed from
preliminary exploratory analysis of the data.

When it comes to revealing these aspects in the data, several
approaches are available. For some aspects the same approach is
used exclusively, whereas for others different schools of thought
apply. Within sample (alpha) diversity is captured using either
richness- or evenness-measures, but a uniform standard is missing
(Hagerty et al., 2020). Between sample (beta) diversity is always
measured using a distance metric on relative OTU abundance, and
stored in a distance matrix. None of the currently implemented
distance metrics however accounts for the compositional structure
of the data. This compositionality is also one of themajor problems
for the reliability of statistical hypothesis testing models, which are
central in differential abundance testing. Based on the card sorting
within the focus group discussions, it became clear that biomarker
discovery can rely either on statistical hypothesis testing or
predictive modeling. Therefore, many of the methods used in
differential abundance testing are found to be used for
biomarker discovery as well. Consequently, the same overlap
can be found in methods based on predictive modeling which
are used for sample classification. Amajor interest expressed by the
expert panel group is the ability to perform causal analysis, which is
currently insufficiently developed in differential abundance
analysis and biomarker discovery. To do so, the necessity of
longitudinal studies and analysis was stressed.

A wide variety of visual encodings exists to represent the data
aspects concealed in the OTU abundance tables. Some of these
are more unconventional than others, but standard charts (e.g.,
bar chart, line chart) are most common. Some of them are
unconditionally bound to a certain data aspect; hierarchical
structures within the data (e.g., taxonomic level) are visualized
exclusively using tree structures, connected components are
typically used to express relationships (e.g., between taxa, or
between functions and taxa), and line charts are most
conventional to display evolution over time. Other data
aspects on the contrary have been visually represented in
many different ways. (Relative) abundance has been visually
encoded using channels such as length (e.g., bar chart), color
saturation (e.g., heatmap), angle (e.g., Krona), and area (e.g.,
bubble plot). Based on visualization theory, length would be the
most effective channel to display quantitative information such as
(relative) abundance (Munzner, 2014), but the use of bar charts
however limits the amount of information that can be displayed
for it to be still informative. Color saturation on the other hand
would be the least effective channel from the ones listed, whereas
heatmaps would be the only choice to visually represent the entire
data on a static manner. For this reason, heatmaps are also used to
visualize beta diversity. It provides a nice overview of the (dis)
similarities between samples, although it can become a bit
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cumbersome to read when the amount of samples is too large.
Since the interest is often not limited to the discovery of (dis)similar
samples but also in revealing the underlying patterns between
samples, ordination basedmethods aremost prevalent in literature.
They allow additional data features to be included in the
visualization for interpretation, which is not possible using
standard heatmaps. The downside of ordination based methods
however is that these are limited to a visual representation in a 2 or
3 dimensional space, which might not capture the entire variance
to be explained. By displaying the samples using TDA (i.e., node-
link diagram), distance between samples is expressed in the edges
between the nodes (samples), and therefore no longer relies on the
geometric space (Lum et al., 2013). The visualization of the
outcomes of statistical models could be as simple as using bar
charts and box plots, but have been conducted many times by
means of custom visuals as well. In general, the choice depends on
the information of interest. If the interest is a list of potential
biomarkers (i.e., most important features), a simple bar chart will
do and is highly effective according to visualization theory
(Munzner, 2014). If the interest is on the effect sizes or any
other parameters, more complex and custom visuals are needed.

Here, it is important to also address the issue of visual literacy. In
general, the advantage that comes with using standard charts is that
everyone can read them. The amount and richness of information that
can be shared with them is however limited. On the other hand,
custom representations can provide more information in a single
graphic but can become hard to read. They should be used with care,
by providing the right amount of context needed by the user to
understand. An example that emerged during one the workshops was
the Rocky Mountain Plot (Figure 5E) used in tidyMicro (Carpenter
et al., 2021) to highlight taxa counts correlated with subjects’ age. One
could draw conclusions based on the highly correlated taxa counts, but
important additional information is missing to draw more accurate
conclusions (e.g., variability). Hence, the custom visualization can
provide the solution to bring more context to the data analysts, as
multiple data aspects can be embedded in the same visual and no
longer need to be looked at in isolation [e.g., GraPhlAn (Asnicar et al.,
2015)]. In creating these custom visuals, it is imperative that a user-
driven design process is used in which visualization expert and
domain expert work closely together (Munzner, 2009). Yet, current
papers on microbiome visualization and visual analysis mention
nothing about the use of design process.

5 LIMITATIONS

It is sometimes hard to make a clear distinction between tools, as
some of them are actually algorithms (e.g., SPIEC-EASI) or visual

encodings (e.g., Krona, GraPhlAn) that act and were specifically
developed as microbiome visualization tools, but are also
embedded as encodings in other tools.

Given the contact constraints added through the COVID-19
pandemic, one of the workshops had be done virtually. As not all
participants were familiar with the tools used during this session,
additional time was required to familiarize. Nevertheless, both
meetings provided a clear overview of some important research
topics to cover in microbiome research. The workshop setting was
found to be key in structuring discussions, from which interesting
information could be obtained such as pointing out current
problems and shortcomings. Due to the interdisciplinary
composition of the workshops, an additional result was that
participants could quickly familiarize themselves in other research
domains. We understand that providing examples during the
workshops could prime answers into a certain direction.
However, due to the interdisciplinary setting of the workshops,
we also believe that providing an example helps participants to come
to a common understanding of the question asked.
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