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Ten years ago, the dramatic rise in the number of microbial genomes led to an inflection
point, when the approach of finding short, exact matches in a comprehensive database
became just as accurate as older, slower approaches. The new idea led to a method that
was hundreds of times times faster than those that came before. Today, exact k-mer
matching is a standard technique at the heart of many microbiome analysis tools.
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INTRODUCTION

The field of microbiome research began in the 2000s, at a time when sequencing technology was
rapidly getting less costly, and it first became feasible to sequence an environmental sample
containing an unknown mixture of organisms. The earliest studies (Venter et al., 2004; Gill
et al., 2006) used Sanger sequencing, where sequence lengths were ∼600–800 bp and the cost to
sequence a bacterial genome was $50,000 or more. With the advent of Solexa (later Illumina)
sequencing technology in 2007, read lengths dropped to just 25 bp, but sequencing costs dropped
much faster. Read lengths crept up to 100 bp over the next few years, while costs continued to drop.

In one of the very first microbiome studies to use random shotgun sequencing, published in 2004
(Venter et al., 2004), just under two million reads were generated, averaging 818bp in length. The
analysis began by assembling the reads into contigs, and then analyzing only those contigs with
sufficient depth of coverage. This yielded 2,226 contigs spanning 30.9Mb, which the authors
estimated to represent 1800 different species. The primary tool for identifying species was
BLAST (Altschul et al., 1997), which they used to align all bacterial proteins in the NCBI
database at the time (∼627 thousand proteins) against the 6-frame translations of all contigs.
This was relatively slow, but with just 2,226 contigs, it was feasible.

BLAST remains a powerful tool for determining the best match of any sequence to all known
genomes. However, it is far too slow for analysis of modern shotgun sequencing (or even 16S
sequencing) experiments. Microbiome experiments can easily generate tens of millions of reads, and
it is not unusual to generate well over 100M reads in a single experiment. Any computational step
that processes all these reads needs to be very fast.

How fast exactly? Well, in order to process 100M reads in 24 h, a program would have to process
over 1,150 reads per second. That is far, far faster than BLAST.

MORE GENOMES = A NEW TYPE OF ALGORITHM

By 2009, there were over 500 complete bacterial genomes, with thousands more in progress (Brady
and Salzberg, 2009). As the number of genomes grew, new computational methods were developed
to assist with their analysis, and in particular with the core task of assigning a taxonomic label to each
read. The label might be the name of a species, genus, family, order, class, or even phylum, depending
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on how much information was in the sequence. These early
methods included: CARMA (Krause et al., 2008), which matched
reads to known protein domains, a strategy that worked well
when those domains were present, but that had very low
sensitivity, only 6% in early experiments; Phylopythia
(McHardy et al., 2007), a method that used support vector
machines based on oligonucleotide frequencies, and worked
best on sequences of 3000 bp or longer; MEGAN (Huson et al.,
2007), which used BLAST plus a phylogenetic algorithm; and
PhymmBL (Brady and Salzberg, 2009), a method that used
interpolated Markov models (IMMs) trained on known
species. PhymmBL could handle reads as short as 100 bp,
unlike earlier methods, but running thousands of IMMs on
each read made it relatively slow. None of these methods were
truly superior to BLAST, but they included new ways to assign
a read to a taxonomic category, ranging from species to
phylum.

Once the number of sequenced species grew sufficiently
large, though, it became likelier that most reads in a
metagenomics sample would be similar to at least one of
the previously-sequenced genomes. This is especially true
for well-studied environments such as the human gut
microbiome, which many sequencing projects have targeted.
With complex environmental samples, more of the species in a
sample might not have been seen before, but with over 360,000
prokaryotic genomes available today (of which 25,000 are
complete and the rest are in various stages of assembly, as
described at NCBI https://www.ncbi.nlm.nih.gov/genome/
browse#!/prokaryotes/), the likelihood is far greater now, as
compared to the 2000s, that at least one previously-sequenced
species is very close to something in a sample.

This observation led us to the idea, back in 2012, that we could
forego sequence alignment (e.g., BLAST) and instead identify
reads by looking for exact matches of short sequences. Exact
matching is far faster than alignment, because it requires a simple
table lookup. In its optimal implementation, exact matching
requires constant time, while alignment time is at least
proportional to the length n of the query sequence (and
optimal alignment requires O(n2) time).

For this approach to succeed, we need first to choose a value k
for the length of our exact matches. K needs to be large enough
that we can safely assume, in almost all cases, that a match of
length k is not simply a random match, but rather that the two
matching sequences came from the same species, or at least from
very closely related species. Thus we can quickly rule out small
values such as k � 6, because every one of the 4,096 possible 6-
mers is likely to be present in most bacterial genomes. At larger
values, e.g., k � 20, the vast majority of random k-mers will not be
present in a given bacterial genome, since there are 420 (just over
one trillion) 20-mers, and a typical bacterial genome has just one
to five million 20-mers.

Thus if we find a 20-base exact match between a read and a
genome, there’s a very good chance that the read comes from the
same or a similar species. Why not increase the value of k even
more, which will make this inferencemore precise (i.e., avoid false
positives)? Clearly, for metagenomic analysis the value of k
cannot be longer than a read. When Kraken first appeared it

was not unusual to generate 75 bp reads, so 75 is an initial upper
bound for k.

There are at least two reasons for reducing the value of the
upper bound, though. The first reason is sequencing error: even if
the species in a sample exactly matches a known genome, some of
the reads will have errors. Illumina technology has a very low
error rate, less than 0.5%, so it is reasonable to expect that most
75 bp reads will have one or 0 errors. If the single error is precisely
in the middle of the read, then the reads must contain a 37-mer
with no errors, suggesting that we might set k � 37. The second
reason is the simple fact that the species in a microbiome will not
be identical to previously-sequenced genomes. We cannot know
in advance how similar they will be, but longer values of k will
mean that we will fail to recognize some species. Thus we can
probably choose a value of k somewhere between 20 and 37, with
higher values yielding lower sensitivity but greater precision.

When we developed Kraken, we initially chose k � 31 for
technical reasons: first because larger values of k reduce the
number of queries to our data structure per sequence; and
second because 31 is the largest value of k for which we could
fit a k-mer into a 64-bit integer. In subsequent work, k � 31
worked well across a very wide range of databases and
experiments, and therefore we kept it as the default value,
although the user can adjust k when building the Kraken
database.

SPEED MATTERS

When using exact matches instead of a full-blown alignment of
reads to genomes, we know that we will never exceed the
sensitivity of BLAST. Thus the usefulness of Kraken, and the
many competitors that have emerged since, is dependent on its
speed. Essentially, we need to find out whether or not a k-mer has
ever been seen before, and identify where it appeared, as fast as
possible. We decided early on that even a single k-mer match
would be enough to label a read, but that we’d look at every k-mer
in order to maximize sensitivity. Thus for 100 bp reads with k �
31, we would do exactly 70 lookups into our database.

Fortuitously, a very fast k-mer counter, called Jellyfish
(Marçais and Kingsford, 2011) had recently been developed by
our colleagues Guillaume Marçais and Carl Kingsford. Jellyfish
counts k-mers in a set of DNA sequences (reads or genomes, of
any length) and stores the k-mer counts in a specialized, highly
optimized hash array. It can then query this array very rapidly to
report, for any k-mer, how often it has occurred.

For metagenomic classification, we do not need to know how
often a k-mer has appeared, but only what species it occurs in.
Every species has a unique taxonomic identifier, available from
NCBI, and taking advantage of this, wemodified Jellyfish’s output
so that for each genome in the database, it would simply store that
taxonomy ID next to every k-mer in the genome. The only
question was what to do for k-mers that appear in more than
one genome. To keep the data structure from growing too
enormous, we wanted to store exactly one ID with each
k-mer. We solved this problem by using the lowest common
ancestor (LCA) of all the genomes in which a k-mer appeared. At
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the time it is building the database, if Kraken encounters a k-mer
that it has seen before, it queries the NCBI taxonomy and finds
the identifier of the LCA, which might be at the genus, family, or
higher level.

Thus at the conclusion of the database construction step,
Kraken has stored a single taxonomic identifier with every
distinct k-mer across every genome. The database is stored in
a file that is then used for metagenomic classification.

To classify a 100 bp read, Kraken simply walks through it,
from position 1 to 70, and looks up all the 31-mers in its database.
In most cases, all the k-mers are from the same genome and it can
simply output that genome’s identifier. If the k-mers yield
multiple IDs, then Kraken computes the subtree of all the
species that it found, and outputs a taxonomy label
corresponding to the path in the tree with the most k-mers.
(Our 2014 paper (Wood and Salzberg, 2014) contains more
details.)

This strategy, simple as it is, turned out to be very accurate,
with precision of >99% (meaning its false positive rate was <1%)
and sensitivity of just over 90%. As expected, BLAST was slightly
more sensitive, about 1% higher, and had slightly lower precision,
less than 1% lower. (These results were on a simulated dataset in
the original study; other results varied but the overall findings
were consistent.) One benefit of Kraken’s algorithm is that as the
database of known genomes grows, Kraken’s sensitivity has
increased over time.

Kraken’s big advantage was speed: in the original paper, we
showed that it can classify 1.5 million 92 bp reads per minute (rpm)
on a single 2.1 GHz CPU, while Megablast (the “fast” version of
BLAST) achieved a rate of 7,143 rpm (Wood and Salzberg, 2014).
The fast version of Kraken, Kraken-Q, was even faster, running at
3.9 million rpm, making it >500 times faster than Megablast. Other
programs were much slower than Megablast. With slightly longer
reads (156bp), Kraken clocked in at 892 K rpm, Kraken-Q ran at
2,842 K rpm, while Megablast processed 2,830 rpm. Thus for the
longer reads, Kraken was about 315 times faster and Kraken-Q ran
over 1,000 times faster than Megablast.

To illustrate the practical consequences of these speed
differences, if we classified a relatively small run of 30 million
Illumina reads, Kraken would take about 20 min. Megablast, in
contrast, would take 70 h. Analyzing the output of a single run of
a current-generation Illumina sequencer, which can generate
three billion paired-end reads, would take 100 times longer,
which would be less than a day and a half for Kraken, but
10 months with Megablast. This illustrates how the dramatic

gains in DNA sequencing efficiency have driven the need for
far faster computational methods, even when a solution such as
BLAST might initially seem adequate.

CONCLUSION

Since we first released Kraken, many other methods have been
developed for metagenomics analysis, some of them direct
competitors and some that solved related but distinct
problems. A recent benchmarking analysis (Ye et al., 2019)
compared 20 different metagenomics classifiers on a variety of
tasks, and Kraken (along with its successors, KrakenUniq
(Breitwieser et al., 2018) and Kraken 2 (Wood et al., 2019))
remains one of the fastest and most accurate methods for
identifying reads in a microbiome sample. That study
concluded that methods using exact matching of long k-mers,
the idea pioneered in Kraken, were among the best scoring
methods, and that most of the k-mer based methods
performed similarly to one another.

From an algorithmic perspective, classifying metagenomics reads
is a straightforward alignment problem that can be solved by
aligning each read to every genome known to science. Optimal
solutions to this problem have been known for decades (Fickett,
1984), but they require time that is quadratic in the lengths of the
sequences, which is far too slow. As a practical matter, very fast
methods are required to keep pace with both the volume of sequence
data and the number of sequenced genomes, both of which have
been growing at an exponential rate for the past 2 decades. The
success of Kraken demonstrates that exact matching of a relatively
long subsequence delivers the requisite speed, and with a sufficiently
large database of genomes, it also delivers similar accuracy as
compared to other methods that are far slower.
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