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The 3D architectures of RNAs are essential for understanding their cellular functions.
While an accurate scoring function based on the statistics of known RNA structures is a
key component for successful RNA structure prediction or evaluation, there are few
tools or web servers that can be directly used to make comprehensive statistical
analysis for RNA 3D structures. In this work, we developed RNAStat, an integrated tool
for making statistics on RNA 3D structures. For given RNA structures, RNAStat
automatically calculates RNA structural properties such as size and shape, and
shows their distributions. Based on the RNA structure annotation from DSSR,
RNAStat provides statistical information of RNA secondary structure motifs
including canonical/non-canonical base pairs, stems, and various loops. In
particular, the geometry of base-pairing/stacking can be calculated in RNAStat by
constructing a local coordinate system for each base. In addition, RNAStat also
supplies the distribution of distance between any atoms to the users to help build
distance-based RNA statistical potentials. To test the usability of the tool, we
established a non-redundant RNA 3D structure dataset, and based on the dataset,
we made a comprehensive statistical analysis on RNA structures, which could have the
guiding significance for RNA structure modeling. The python code of RNAStat, the
dataset used in this work, and corresponding statistical data files are freely available at
GitHub (https://github.com/RNA-folding-lab/RNAStat).
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1 INTRODUCTION

RNA molecules play important roles in various biological processes, ranging from carrying
genetic information, participating in protein synthesis, catalyzing biochemical reactions, and
regulating gene expressions, to acting as a structural molecule in cellular organelles (Doherty
and Doudna, 2001; Dethoff et al., 2012; Cech and Steitz, 2014). Generally, to perform functions,
RNAs need to form special tertiary structures, which typically can be determined by
experimental methods such as cryo-electron microscopy, X-ray crystallography, and nuclear
magnetic resonance spectroscopy (NMR) (Fernandez-Leiro and Scheres, 2016; Rose et al., 2017;
Westhof and Leontis, 2021). However, the structures deposited in Protein Data Bank (PDB) are
still limited, since it is expensive and time-consuming to experimentally derive high-resolution
RNA 3D structures (Rose et al., 2017; Westhof and Leontis, 2021). This situation has led to a
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great demand in structural biology to envisage the RNA
structures using prediction methods (Hajdin et al., 2010; Shi
Y.-Z. et al., 2014; Miao et al., 2017; Schlick and Pyle, 2017).

In the last decade, there are some computational models have
been developed for predicting RNA 3D structures, among which
the knowledge-based fragment assembly methods (Gan et al.,
2004; Das and Baker, 2007; Parisien and Major, 2008; Das et al.,
2010; Flores et al., 2010; Cao and Chen, 2011; Rother et al., 2011;
Popenda et al., 2012; Zhao et al., 2012; Jian et al., 2019; Zhang
et al., 2021) and the physics-based coarse-grained (CG) models
have gained more attention (Jonikas et al., 2009; Flores and
Altman, 2010; Pasquali and Derreumaux, 2010; Flores et al.,
2012; Denesyuk and Thirumalai, 2013; Xia et al., 2013; Shi
YZ. et al., 2014; Šulc et al., 2014; Krokhotin et al., 2015;
Boniecki et al., 2016). For example, the FARNA/FARFAR can
assemble trinucleotide fragments into 3D structures
corresponding to an RNA sequence with the use of the Monte
Carlo algorithm and a knowledge-based energy function, and the
parameters of energy function were determined from the
statistical analysis of known RNA 3D structures (Das and
Baker, 2007; Das et al., 2010). The SimRNA with a CG
representation, which employs a statistical potential derived
from PDB structures, and can fold RNAs using only sequence
information (Boniecki et al., 2016). Recently, we have also
provided a new CG model to predict 3D structures and
stability of an RNA in ion solutions from sequence alone (Shi
Y.-Z. et al., 2014, 2015, 2018; Jin et al., 2019). Although the
potential energy of our model is mainly physics-based, the
potentials, especially bonded potentials, were also
parameterized by the statistical analysis on the available 3D
structures of RNAs in PDB (Shi YZ. et al., 2014; Jin et al., 2019).

Furthermore, the existing knowledge-based methods usually
produce an ensemble of candidate structures, which should be
further evaluated to recognize the best candidates as close to
native structures as possible (Huang and Zou, 2011; Miao and
Westhof, 2017; Yan et al., 2018; Tan et al., 2019; Magnus et al.,
2020). To address this issue, several statistical potentials have
been developed to evaluate RNA 3D structures (Bernauer et al.,
2011; Capriotti et al., 2011; Wang et al., 2015; Li et al., 2016; Li
et al., 2018; Masso, 2018; Yu et al., 2019; Zhang et al., 2020), such
as RASP (Capriotti et al., 2011), RNA KB potentials (Bernauer
et al., 2011), 3dRNAscore (Wang et al., 2015), and DFIRE (Zhang
et al., 2020). Generally, these potentials are proportional to the
frequencies of occurrence of atom pairs, angles, or dihedral angles
in PDB structures based on Boltzmann or Bayesian formulations
(Huang and Zou, 2011; Yan et al., 2018; Tan et al., 2019). For
example, Capriotti et al. have built the RASP by calculating the
density distribution of distance between any two atoms in all the
known RNA structures (Capriotti et al., 2011). The 3dRNAscore
introduced byWang et al. uses seven typical RNA dihedral angles
as well as distance-dependent geometrical descriptions for atom
pairs to construct the statistical potentials (Wang et al., 2015). In
addition to structure evaluation, very recently, Xiong et al. have
proposed a fully knowledge-based function (BRiQ) based on
statistics of orientation distribution of one base around
another base from the PDB structures for improving RNA
model refinement (Xiong et al., 2021).

Obviously, all these advances on RNA structure modeling
indicate that to gather various statistics of RNA 3D structures is
generally essential to predict RNA tertiary structures. However,
there are few tools or web servers that can be used to make
comprehensive statistical analysis for RNA 3D structures
(Andronescu et al., 2008; Cock et al., 2009; Baulin et al., 2016;
Danaee et al., 2018; Magnus et al., 2020). Recently, Baulin et al.
have proposed a database URSDB (the Universe of RNA
structures database) to store information (e.g., annotations of
main structural elements) obtained all RNA-containing PDBs
(Baulin et al., 2016). Although the URSDB can allow the user to
get statistics on structural motifs (base pairs, stems, and loops)
based on the information provided by the software of DSSR
(dissecting the spatial structure of RNA) (Lu et al., 2015; Lu,
2020), these statistics on RNA secondary structure motifs could
be far from enough to help RNA 3D structure modeling (Miao
and Westhof, 2017; Tan et al., 2019). Fortunately, several works
have provided statistics of RNA structures from different aspects.
For example, both the RNA 3D Motif Atlas and bpRNA can
provide a statistical summary of the hairpin and internal loop
motifs (Parlea et al., 2016; Danaee et al., 2018). The RNA
STRAND can also provide information on structural features
such as types and sizes for stems and loops (Andronescu et al.,
2008). To build scoring function for RNA structure prediction,
Bottaro et al. as well as Das and Baker have developed methods to
calculate the geometrical properties of RNA base-pairing and
base-stacking (Bottaro et al., 2014; Das and Baker, 2007). Despite
all this progress, with the rapidly increasing number of RNA
structures deposited in PDB (Supplementary Figure S1 in the
Supplementary Material) (Rose et al., 2017; Westhof and Leontis,
2021), an available tool to convenient access comprehensive
statistical information of RNA 3D structures is still necessary.

Here, we present a novel tool, named as RNAStat, special for
the statistical analysis of RNA 3D structures. It can be used to
calculate structural information of RNA 3D structure(s) at
different levels: global 3D structural level, secondary structure
level, and atomic level. We first introduced the function and
principle of the RNAStat. Afterward, based on a non-redundant

FIGURE 1 | The basic functions of RNAStat for RNA 3D structure
calculation and statistical analysis.
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RNA structure dataset established by us, we utilized the RNAStat
to perform statistical analysis for RNA 3D structures, and
provided various statistical data of RNA structural properties
(e.g., size/shape, geometry of base-pairing/stacking, secondary
structure motifs, and atom-atom distance). Throughout the
article, we also discussed the potential value of these statistics
on RNA 3D structure prediction and evaluation.

2 MATERIALS AND METHODS

The RNAStat provided in this work can be used to make
calculation (or statistics) for given RNA structure(s) in the
following aspects: 1) the radius of gyration (i.e., size): and
shape; 2) the secondary structure motifs; 3) the geometry of
base-pairing and base-stacking; 4) the distances between atoms;
see Figure 1.

2.1 Radius of Gyration
The mean radius of gyration Rg is often used as geometric
measure of the size of RNA as well as DNA and protein (Hyeon
et al., 2006; Rawat and Biswas, 2009), since it can be easily
determined by experimental methods such as small angle
neutron scattering or X-ray scattering. For RNAs, it is
possible to assume equal masses for all nonhydrogen atoms,
so that the R2

g of a given RNA 3D structure (in PDB format,
e.g.,.cif) can be calculated by (Hyeon et al., 2006)

〈R 2
g 〉 � 1

N
∑N
i�1
〈(ri − r0)2〉 (1)

where N is the number of heavy atoms (C, P, N, and O) in the
RNA molecule, ri is the position of the ith atom. The r0 in Eq. 1
represents the coordinates of the geometric center of RNA,
calculated using r0 � 1

N∑N
i�1ri.

FIGURE 2 | (A) The schematic diagram of size and shape for an RNA 3D structure (PDB ID: 4QLM). Rg is the radius of gyration, Δ represents the asphericity
parameter and S is the shape parameter, and their values are calculated by the RNAStat (Eqs 1–4). The 3D structure of 4QLM is shown with the PyMol (http://www.
pymol.org). (B) Radius of gyration (Rg ) as a function of length of RNA (N). Dots: R’

gs of RNA structures in our dataset. Red line: the best-fit line to the data that shows the
scaling law Rg � 6.7L0.31. Blue line: the best-fit line (Rg � 5.1L0.37) to the data for RNAs with length less than 100 nt. (C, D)Distributions of the asphericity parameter
Δ (C) and shape parameter S (D) for RNA structures in our dataset.
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2.2 Shape
Since the shape of RNAs is rather important in determining the
overall motion of RNA and their interaction with other
biomolecules, two rotationally invariant quantities, the
asphericity parameter Δ and shape parameter S, and are used
to characterize the deviation of an RNA conformation from the
spherical shape (Figure 2A) (Hyeon et al., 2006). Based on the
Refs. (Hyeon et al., 2006; Rawat and Biswas, 2009), the Δ and S
can be determined from the inertia tensor,

Tαβ � 1
2
∑N
i�1
∑N
j�1
(riα − rjα)(riβ − rjβ) (2)

where α, β � x, y, z, are the coordinate component, and riα is
the α -th component of the position of the ith atom. Due to the
R2
g � trT, the eigenvalues (λ1, λ2, λ3) of the matrix Tαβ are the

squares of the three principal radii of gyration. Thus, the Δ and S
can be directly calculated by

S � 27∏3
i�1(λi − λ)
(trT)3 (3)

Δ � 3
2
∑3

i�1(λi − λ)2
(trT)2 (4)

where λ � (λ1 + λ2 + λ3)/3. As shown in Eqs 2–4, the shape
parameter S measures the prolateness or oblateness of a
conformation and the asphericity parameter Δ characterizes
the average deviation of the conformation from spherical
symmetry. The S satisfies the bound −1/4≤ S≤ 2, and S> 0
represents prolate ellipsoid, S< 0 corresponds to oblate
ellipsoid, while S � 0 infers symmetric sphere. The Δ is in the
range of [0, 1], where Δ � 0 means that the RNA molecule is a
perfect sphere, and otherwise, the value of Δ indicates the extent
of anisotropy.

2.3 Secondary Structure Motifs
To obtain the secondary structure motifs for an RNA PDB
structure, the RNAStat can directly call the DSSR through the
corresponding python command (e.g., x3dna-dssr.exe--json “+
”-o � file); The DSSR is an integrated and automated command-
line tool for analysis and annotation of RNA tertiary structures,
and it can characterize nucleotides, base pairs, pseudoknots,

FIGURE 3 | The schematic diagram of the secondary structure information extracted from an RNA 3D structure (ydaO riboswitch, PDB ID: 4QLM) using DSSR
software in RNAStat. (A) 3D structure shownwith the PyMol (http://www.pymol.org) for the RNA. (B) The DSSR software is called to analyze the RNA 3D structures, e.g.,
for the RNA, the secondary structure information including the details of canonical/noncanonical base pairs, stems, and various loops. (C) The secondary structure
drawn based on the secondary structure information from (B) for the RNA. Black lines: backbone. Blue solid circles and blue solid lines: canonical base pairs (A-U,
G-C, and G-U). Red dotted lines: non-canonical base pairs. Dashed boxes: samples of secondary structural motifs.
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loops, stems, and coaxially stacked helices (Lu et al., 2015; Lu,
2020); see an example in Figure 3. Based on the information
extracted from DSSR, for an RNA structure set, the RNAStat can
further provide the statistics of secondary structural elements,
including base-pairs, stems, and various loops. In this work, we
considered all C-G, A-U and G-U pairs to be canonical base pairs,
and all other base pairs to be non-canonical ones, and the
definitions of the secondary structural motifs can be found
everywhere (Leontis and Westhof, 2001) and the simple
illustration of them are also shown in Figure 3.

2.4 Geometry of Base-Pairing and
Base-Stacking
Since base-pairing and base-stacking are critical interactions
that stabilize RNA 3D structures (Butcher and Pyle, 2011;
Bottaro et al., 2014; Wang et al., 2016; Wang et al., 2020), the
RNAStat can calculate the geometry between two bases in
base-pairing/stacking. First, the whole nucleobase (i.e., A, U,
G, and C) is treated as a single rigid group, and a coordinate
system is set up on each base, with the origin (O) at the
geometric center of all the heavy atoms. Similar to the local

referential of a nucleotide introduced by Gendron et al. (2001),
for pyrimidines (or purines), the two unit vectors, u between
coordinates of atom N1 and C8 (C4 in purines), and v between
coordinates of atom N1 and N3, can be built, and the unit
vector Z is oriented along the cross product u × v. The unit
vector X is built between coordinates of the origin (O) and
atom N1, and the unit vector Y is given by Z ×X; see
Figure 4A. Following this definition, the position of base j
in the coordinate system constructed on base i is described by
the vector rij, which can be conveniently expressed in
cylindrical coordinates (ρ,θ,z) (Gendron et al., 2001; Das
and Baker, 2007; Flores et al., 2011; Bottaro et al., 2014).
And then, the geometry of pairing and stacking bases can
be described by the distance ρ and angle θ. Based on the
information of base-pairing from DSSR, the distributions of ρ
and θ can be used to characterize the geometry of different base
pairs including canonical and non-canonical Watson-Crick
base pairs as well as those interacting through the Hoogsteen
or sugar edge; see Figures 4B,C. The definitions of different
types of base-pairing can be found in Ref. (Leontis and
Westhof, 2001). and Supplementary Figure S2 in the
Supplementary Material. Similarly, the stacking geometric

FIGURE 4 | (A) The definition of the local coordinate system for bases, and in the coordinate system of one base (e.g., i), the position of another base (e.g., j) can be
described by the vectors rij , expressed in cylindrical coordinates. (B) Distribution of (ρ, θ) for base U near its paired base A. (C) Distribution of (ρ, θ) for base A near its
paired base C. (D) Distribution of (ρ, θ) for the base G near its stacked base C. In (B–D), the three interacting edges of each base (Watson–Crick, Hoogsteen/C-H, and
sugar) correspond to positions in the three sectors of the map demarcated by the dotted lines, and the dots are from the statistics on the RNA structures in our
dataset (see in Materials and Methods).
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property between two neighboring bases can also be
characterized by ρ-θ planes (Figure 4D).

2.5 Distance Between Any Two Atoms
As described in the Introduction, the most existing statistical
potentials for RNA structure evaluation are based on the
distances between various type atoms (Miao and Westhof,
2017; Tan et al., 2019). Based on the coordinates of all the
heavy atoms in an RNA structure (i.e.,.cif file), the distance
dabij between any two atoms i and j with types of a and b,
respectively, can be simply calculated in Cartesian coordinate by:

dab
ij �

���������(rai − rbj)2
√

(5)

where rai is the coordinates of the ith atom with type of a (e.g., P
and C4′). In the RNAStat, there are two modes for users to
choose: 1) calculating distances between atoms specified by the
user; 2) calculating all distances between any two types of atoms.
In addition to the calculation of distance, the RNAStat can
automatically output the distribution of the distance between
two atom types, and which could be directly used to construct
distance-based statistical potential (Capriotti et al., 2011; Wang
et al., 2015; Tan et al., 2019).

2.6 Dataset Used in This Work
To test the RNAStat, we established a non-redundant dataset
based on the RNA 3D Hub set (Release nrlist_3.157_4.0 Å), in
which the sequence identity between any two chains in the set is
less than 95% (Leontis and Zirbel, 2012). Firstly, we collected
1,245 representative RNAs of all the different clusters with a
resolution <4.0 Å from RNA 3D Hub list, which can be
downloaded from http://rna.bgsu.edu/rna3dhub/nrlist. Then,
we deleted the structure of non-RNA strands in the dataset.
Afterwards, we removed the RNA structures with sequence
identity ˃ 80% using the BLASTN program (Camacho et al.,
2009). Finally, through the prior operation steps, 748 RNA
structures were retained and their 3D structure files were
downloaded from the PDB. The final RNA structure dataset
used in this work can be found in the Supplementary Material as
well as at GitHub (https://github.com/RNA-folding-lab/
RNAStat), including PDB IDs, and PDB CIF files.

3 RESULTS AND DISCUSSION

3.1 Overview of the RNAStat
In this work, we present the RNAStat, an integrated tool for
making comprehensive statistics on RNA 3D structures. As
shown in Figure 1, the RNAStat can be used to do statistical
analysis for RNA 3D structures at different levels, such as global
3D structure level, secondary structure level, and atom level. The
code of the RNAStat in python can be found at GitHub through
https://github.com/RNA-folding-lab/RNAStat. In the following,
we will give a brief introduction of the usage method of the tool.

The input to RNAStat is the coordinate file(s) of RNA 3D
structure(s) in CIF format. Based on the needs of users, the input

can be a single PDB file of an RNA structure or the PDB files for a
given RNA structure set. For each PDB file, the RNAStat can
calculate the size and shape of the RNA through Eqs 1–4 (in
section of Materials andMethods), and call the DSSR to obtain its
secondary structure motifs, e.g., the information of base-pairs,
stems and various loops; see Figure 3. In the RNAStat, the
distance between any heavy atom pair can also be calculated
by Eq. 5, and the atom pair types can be specified by the user or
default to all kinds of atom types, where 85 heavy atom types in
four nucleotides (A, U, G, and C) are considered (Wang et al.,
2015; Tan et al., 2019); see Supplementary Table S2 in the
Supplementary Material. In addition, based on the information
of base-pairing and the coordinates of atoms in two paired bases,
the geometrical properties of base-pairing and base-stacking can
also be calculated.

More importantly, for RNA structure set, the RNAstat can
provide statistical information for all the above structural
properties as well as the frequency distribution of various base
pairs, which could be directly used to build statistical potentials
for RNA structure evaluation or refinement (Miao et al., 2017;
Tan et al., 2019; Xiong et al., 2021). The details of the methods for
the calculations and statistical analysis can be found in section of
Materials and Methods.

3.2 Test on the RNA Structure Set
To show the applicability of the RNAStat tool, we established a
non-redundant RNA 3D structure dataset (see Materials and
Methods), and took it as an example for RNA 3D structure
analysis and statistic. Simultaneously, based on the RNA
structure set, we also provided various statistical results of
RNA structures, and which could contribute to building RNA
statistical potentials or energy function of RNA CG models.

3.2.1 Size and Shape of RNA Structures
We calculated the radius of gyration Rg for the 748 RNA
structures in the dataset using Eq. 1, and found that Rg

generally increases with RNA length L; seen in Figure 2B.
Further regression analysis showed that Rg of RNA structures
can be calculated by

Rg � 6.7L0.31, (6)

indicating that Rg of folded RNA structures follows the Flory
scaling law (Tanner, 2016; Hyeon et al., 2006). Although this is in
accordance with the result from Hyeon et al. (i.e., Rg � 5.5L1/3)
(Hyeon et al., 2006), the parameters are slightly different. The
reasons may be that the RNA structures in our non-redundant
dataset are more diverse, and each Rg is calculated based on the
entire RNA structure no matter how many chains in the RNA,
instead of based on each RNA chain. As shown in
Supplementary Figure S3 in the Supplementary Material, the
length of most RNAs in dataset is in the range of (10, 100). The
corresponding regression equation for these short RNAs is Rg �
5.1L0.37 (Figure 2B), suggesting that the length-dependence of
structure size is relatively weak for long RNAs due to the more
compact conformations. In addition, since RNA is a
polyelectrolyte, its size also depends on the ion concentration
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(Woodson, 2005; Tan and Chen, 2006; Tan et al., 2015), which is
one of the reasons why the R’

gs of RNAs with same length have a
significant difference.

Figure 2C depicts the distribution of asphericity parameter Δ
of RNA structures in the dataset, where Δ spans over the whole
range from 0 to 0.8, and ∼60% has Δ<0.2, suggesting that RNAs
are mostly spherical in nature (Hyeon et al., 2006; Tan et al.,
2015). The distribution of the shape parameter S for RNA
structures is displayed in Figure 2D. The plot exhibits that
almost all RNAs have S > 0, and the distribution has a
significant peak around S � 0, implying that RNAs do not
deviate much from the spherical symmetry. Our statistics on Δ
and S are very close to the results from RNA complexes reported
in Ref. (Hyeon et al., 2006), while are with the different from those
of single-chain RNAs.

3.2.2 Statistics on RNA Secondary Motifs
Since RNA structure formation is generally hierarchical (Brion
and Westhof, 1997), the information of RNA secondary
structures could be the key to evaluate or predict RNA tertiary
structures. The DSSR software can be called by the RNAStat to
analyze all the RNA tertiary structures in the dataset; see Figure 3.

Based on the results from DSSR, various statistics on RNA
secondary motifs can be showed.

As shown in Figure 5; Supplementary Tables S3–S5 in the
Supplementary Material, the guanine nucleotide (i.e., G) and the
base pairs of G-C/C-G are the most common in the RNA dataset,
e.g., the probability of occurrence of G (∼34%) is apparently
higher than that of the other bases. Using the dataset of RNA
structures, we found that the number of base pairs Nbp grows
linearly with the sequence length L with the slope as ∼0.48
(i.e., Nbp � 0.48L), and the number of non-canonical base pair
NNon

bp also increases significantly with L: NNon
bp � 0.21L; see

Figure 5B, suggesting that interaction of non-canonical base-
pairing is rather important in 3D structure modeling for RNAs,
especially for large RNAs (Das et al., 2010; Tan et al., 2015).

Figure 5C shows the probability of the occurrence of base
pairs including canonical and non-canonical base pairs; seen also
in Supplementary Table S4 in the Supplementary Material, and
due to the proportional relation between base-pairing strength
and their relative probability, this statistic of base pairs can be
directly used to parameterize the base-pairing energy function for
RNA models. For example, based on the relative probability
between G-C/C-G (∼40%) and A-U/U-A (∼20%), we have set

FIGURE 5 | (A) The probability of the occurrence of nucleotides in the non-redundant dataset. (B) The counts of base-pairs as a function of length N for RNA
structures in the dataset. Green squares: canonical base pairs. Purple triangle: non-canonical base pairs. Blue circle: all canonical and non-canonical base pairs. (C) The
probability of the occurrence of base pairs including canonical and non-canonical ones.
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that the energy of G-C is twice the strength of the A-U in our CG
model (Shi Y.-Z. et al., 2014; Jin et al., 2019), and the common
non-canonical base pairs (e.g., A-G, A-A, and G-G) will be
further taken into account. In addition, base-pair stacking
make a significant contribution to the stability of an RNA
structure (Schlick and Pyle, 2017; Miao and Westhof, 2017;
Brion and Westhof, 1997; Laing and Schlick, 2009), and the
stacking interaction parameters can also be obtained from the
statistical frequency of base-pair stack (Supplementary Table S5
in the Supplementary Material), which could improve the
predictions of RNA secondary (or 3D) structures and their
thermodynamic stability (Dima et al., 2005; Gardner et al.,
2011; Sloma and Mathews, 2017).

Furthermore, the distribution of length of RNA secondary
structure motifs (e.g., stem and loops) could be helpful in the
evaluation of structures predicted by ab initio models (Brion
and Westhof, 1997; Danaee et al., 2018). Figure 6A displays
the distribution of the length of stem, which is defined by the
number of continuous canonical base pairs (Lu et al., 2015).
Although the distribution of stem length for the RNAs in
dataset is very broad, there is a prominent peak around ∼2 bp
and the length of stem greater than 10 bp occur much less
frequently; see Figure 6A, suggesting that stems are constantly
interrupted by loops (Figure 6B) (Danaee et al., 2018). For
hairpin loops shown in Figure 6C, we found that hairpin loops

are most likely to have a length of 4 nt, i.e., tetraloops, which
have been proved to be extremely stable by thermodynamic
experiments (Butcher and Pyle, 2011), and the heptaloops
(i.e., hairpin loops of length 7 nt) are the second most
frequent, in line with the results from bpRNA, and RNA 3D
Motif Atlas (Danaee et al., 2018; Parlea et al., 2016). On the
contrary, the distribution of the bulge loop length only has one
very significant peak at 1 nt, and almost all the bulge loops are
with length less than 5 nt; seen in Figure 6D. The reasons
could be that one stem interrupted by short bulge loops (e.g.,
1 nt) is generally as stable as continuous helix with same
sequence due to the coaxial-stacking interaction between
two stems (Shi et al., 2015; Butcher and Pyle, 2011), while
the stability of RNAs is reduced with the increase of the length
of bulge loop (Zhang et al., 2019). As shown in Figures 6E,F,
the distributions of internal/junction loop lengths are more
complex, with more than one broad peak. For example, there
are about four visible peaks observed for internal loop at 2, 4, 6,
and 9 nt, respectively. Since the bases in two sides (5′ and 3′) of
an internal loop often pairing together in non-canonical way,
the internal loops often tend to be symmetric in order to keep a
more stable structure (Laing and Schlick, 2009; Butcher and
Pyle, 2011; Gardner et al., 2011). However, we only calculated
the length of the entire loop without distinguishing 5′ and 3’
loop sequences, for simplicity in the present version of the

FIGURE 6 | The distribution of length of RNA secondary structure motifs in the dataset. (A)Histogram of the occurrence for the length of stems. (B–F)Histogram of
the occurrence for the length of loops (B) all loops; (C) hairpin loops; (D) bulge loops; (E) internal loops; (F) junction loops.
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RNAStat. More detailed statistics of internal/multi-loops
should be taken into account in the future to help improve
their energy parameters calculation.

3.2.3 Statistics on Geometry of Base-Pairing and
Base-Stacking
On account of the importance of the geometrical configuration of
base-pair/stacking in RNA 3D modeling (Das and Baker, 2007;
Bottaro et al., 2014), the RNAStat provides the calculation or
statistic of geometry of base-pairing/stacking for RNA structures;
see the section of Materials and Methods. For the RNA structure
dataset used in this work, the statistical results of base pairs
including canonical and non-canonical ones are shown in
Figure 4 and Supplementary Figure S4 in the Supplementary
Material. For example, Figure 4B shows the geometric position
(ρ, θ) distribution of the base U around its paired base A in A-U
base pairs. Obviously, the base U appears frequently around base
A at ρ ∼ 7Å and θ ∼ 0o corresponding to the position of canonical
Watson-Crick base pairs, while the other two high probability of
occurrence positions are around θ ∼ 100o and θ ∼ 280o, where
the two bases can interact through the Hoogsteen or sugar edge;

see Supplementary Figure S3 in the Supplementary Material.
Naturally, the base U is almost unobservable at θ ∈ (180, 260o),
where is occupied by the sugar. In contrast, the G-A base pair
prefer to interact through the sugar edges; see Supplementary
Figure S2 in the Supplementary Material. As shown in
Figure 4D; Supplementary Figure S4 Supplementary
Material, for the distribution of two stacking bases, e.g.,
adjacent C and G pairing with their complementary bases
respectively, the base G occurs mainly above or below the base
C with ρ ∼ 3Å, and θ ∼ 0o (Butcher and Pyle, 2011; Bottaro et al.,
2014). In addition, the 3D probability distribution for each base
pair can also be present (Supplementary Figure S7 in the
Supplementary Material), based on which, the 3D Gaussians
for each possible Leontis-Westhof (LW) base pair type and for
each applicable choice of two residue types can be fitted to obtain
the corresponding mean and standard deviation; see
Supplementary Table S6; Supplementary Figure S8 in the
Supplementary Material.

Supplementary Figures S4–S8 in the Supplementary
Material show the distributions for all the base-pairing and
stacking, and the corresponding data files as well as fitting

FIGURE 7 | (A) The distance distribution between P atoms in our dataset. Three significant peaks are marked by dashed boxes. (B) The distance distributions
between two P atoms in the nearest neighbor nucleotides (a, blue line), second-nearest neighbor nucleotides (c, green line), and paired nucleotides (c, red line),
respectively. (C, D) Schematic diagram of the distances between P atoms in the nearest neighbor nucleotide, second-nearest neighbor nucleotides, and paired
nucleotides. The a, b, and c in (B–D) are corresponding to the three peaks in (A).
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parameters (ρ and θ for all base pairs with different LW types)
can also be found at GitHub (https://github.com/RNA-
folding-lab/RNAStat), which can be directly employed by
the user to establish base-pairing/stacking potentials for
RNA 3D structure prediction or evaluation.

3.2.4 Distributions of the Distance Between Atoms
In view of the fact that most of the knowledge-based statistical
potentials for RNA structure evaluation are based on the
distances between atoms (Bernauer et al., 2011; Capriotti et al.,
2011; Huang and Zou, 2011; Tan et al., 2019). The RNAStat can
also be used to calculate the distance between any two non-
bonded heavy atoms located at different nucleotides in RNA. For
example, the distribution of distance between two atoms with
type of P is shown in Figure 7A. In addition to a very broad peak
at ∼70 Å, there are three noteworthy peaks at ∼5.7 Å, ∼11.2 Å,
and ∼18.4 Å, respectively. The first two peaks are corresponding
to the distances of two P atoms in the nearest neighbor
nucleotides and next-nearest neighbor nucleotides,
respectively, and the third peak represents distance between
two P atoms in paired nucleotides; see Figures 7B,C. More
distance distributions of atoms with various types can also be
found in Supplementary Figure S9 in the Supplementary
Material as well as data files at GitHub. Besides, the RNAStat
tool also allows the users to input the atoms or atom types to
perform statistical analysis for their distances; see in the section of
Materials and Methods.

4 CONCLUSION

In summary, RNAStat is an integrated computational tool to
perform comprehensive statistical analysis for the RNA 3D
structures given by the users. The tool cannot only
automatically calculate RNA global structural properties such
as size and shape, but also analyze atom-atom distance
distributions at atomic level. Furthermore, the tool can
provide statistics of RNA secondary structure elements (e.g.,
canonical/non-canonical base pairs, stems and various loops)
and geometric properties of base-pairing and base-stacking. In
this work, we have established and utilized a non-redundant RNA
3D structure dataset to test the usability of the tool, and the
statistical data could be directly used to build statistical potentials
or energy functions for RNA 3D structure evaluation and
prediction.

Still and all, further improvements need to bemade on the tool to
performmore detailed statistical analysis and tomake it easier to use.
For example, most of the available RNA statistical potentials
generally adopt a distance-dependent scheme, however for
proteins, the orientation-dependent statistical potentials, which
consider the many-body interactions by statistically describing
both distance and relative orientation between interacting atom

groups, and have been proved to have better performance than the
traditional distance-dependent potentials (Masso, 2018; Yu et al.,
2019; Zhang et al., 2020). Thus, in the further development of
RNAStat, the distribution of orientation (e.g., angle and torsion
angle) between atoms as well as the joint probability at the given
relative distance and orientation of observing two atoms should be
taken into account. In addition, although the RNAStat is free-
installation and convenient to use through command lines, it is
still required the python installation or corresponding environment
configuration. Thus, a user-friendly webserver could be further built
after the deepened improvement for the tool. Very recent studies
have shown that RNA scoring functions derived from deep learning
of RNA 3D structures performed well in identification of accurate
structural models (Kurgan and Zhou, 2011; Li et al., 2018; Wang
et al., 2018; Huang et al., 2020; Townshend et al., 2021), which
suggests that more potential structural features of RNAs should be
further mined with the aid of deep neural networks.
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