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Clustered regularly interspaced short palindromic repeats (CRISPR)-based gene
editing has been widely used in various cell types and organisms. To make
genome editing with Clustered regularly interspaced short palindromic repeats far
more precise and practical, wemust concentrate on the design of optimal gRNA and
the selection of appropriate Cas enzymes. Numerous computational tools have been
created in recent years to help researchers design the best gRNA for Clustered
regularly interspaced short palindromic repeats researches. There are two
approaches for designing an appropriate gRNA sequence (which targets our
desired sites with high precision): experimental and predicting-based approaches.
It is essential to reduce off-target sites when designing an optimal gRNA. Here we
review both traditional and machine learning-based approaches for designing an
appropriate gRNA sequence and predicting off-target sites. In this review, we
summarize the key characteristics of all available tools (as far as possible) and
compare them together. Machine learning-based tools and web servers are
believed to become the most effective and reliable methods for predicting on-
target and off-target activities of Clustered regularly interspaced short palindromic
repeats in the future. However, these predictions are not so precise now and the
performance of these algorithms -especially deep learning one’s-depends on the
amount of data used during training phase. So, as more features are discovered and
incorporated into these models, predictions become more in line with experimental
observations. We must concentrate on the creation of ideal gRNA and the choice of
suitable Cas enzymes in order to make genome editing with Clustered regularly
interspaced short palindromic repeats far more accurate and feasible.
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1 Introduction

Over the last decade, the Clustered regularly interspaced short palindromic repeats
(CRISPR)/Cas system has become the dominant tool for genome editing due to its
simplicity, high performance, accuracy, and programmability (Gaj et al., 2013; Jacquin
et al., 2019; Afzal et al., 2020). In addition, other influential factors such as ease of use, low
cost, high speed, multiplex potential, and higher specific DNA targeting ability have increased
the success and popularity of CRISPR across the global scientific community (Mali et al., 2013).
The unique characteristics of this technology have made it one of the broad topics in molecular
biology, synthetic biology, and genetic engineering (Jinek et al., 2012). Gene activation
(CRISPRa), gene repression, CRISPR interference (CRISPRi), and epigenome editing are
popular tasks in genome engineering using CRISPER. The basic overflow of the CRISPR
systems is illustrated in Figure 1.
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As shown in Figure 2, CRISPR systems have three main
components. The first one is a short synthetic guide RNA sequence
(gRNA) necessary for Cas binding. The gRNA targets the
Cas9 endonuclease (a protein which can cleave the DNA
sequences) to define DNA. The gRNA can be supplied as a two-
part system consisting of crRNA and tracrRNA, or as a single guide
RNA (sgRNA), where the crRNA and tracrRNA are connected by a
linker. The target’s recognition is facilitated by the protospacer-
adjacent motif (PAM). Cleavage occurs on both strands 3 bp
upstream of the PAM.

To use CRISPR for genome engineering, we need to select two
components: Cas9 and gRNA (Gasiunas et al., 2012; Cox et al., 2015).
Once a genome modification is decided, the first step is to identify the
best site/sites for targeting Cas-induced DSBs (Jinek et al., 2014). The
second step is to design the appropriative gRNA (Cui et al., 2018).

After designing gRNA, the only requirement for cleaving a
CRISPR target site is finding a 3-base pair (3 bp) PAM. The form
of PAM varies depending on the bacterial species of the Cas9 gene. For
example, the most commonly used Cas9 nuclease, derived from
S.pyogenes, recognizes a PAM sequence of NGG (Rabinowitz et al.,
2020). Using the frequency of “GG” = 5.21% in the reference human
genome, there would be an expected 161,284,793 NGG PAM sites in
the human genome, or roughly one “GG” dinucleotide every 42 bases.
So, cleaving unwanted sites, called off-target sites, is very common
(Duan et al., 2021). Therefore, CRISPR target sites should be selected
in such a way that minimizes potential off-target cleavage (Herai,
2019; Rabinowitz et al., 2020). But this is not always straightforward as
it is not guaranteed that the desired cleaves will appear on just the

selected site. Unfortunately, the existence of these unwanted cleaves is
possible in every experiment. Therefore, activity (on-target) and
specificity (off-target) are two critical factors considered when
designing a genomic edition with CRISPR (Herai, 2019).

According to research, the accuracy of CRISPR-based genomic
edition depends on two issues: 1) the choice of Cas enzyme with
suitable cutting power, 2) the choice of the appropriate cutting site,
which relies on the performance of the gRNA. To achieve this, in the
first step, we must select the optimal gRNAs contains high on-target
activity and low (no) off-target efficiency (Moreno-Mateos et al., 2015;
Luo et al., 2019; Manibalan et al., 2020).We will discuss this issue later.
In the second step, wemust select a suitable Cas enzyme [15]. In recent
years, different variants of the Cas enzyme have been discovered. We
can proceed according to Figure 3 to choose the proper Cas, depending
on the type of editing. The choice of the Cas enzyme is effective on the
PAM and the gRNA design.

In recent years, researchers have taken two main approaches for
designing gRNAs, including experimental and machine learning-
based methods (ML) (Lin and Luo, 2019). ML-based methods
utilize the results of computational algorithms trained with real
data to predict the effects of gRNAs instead of designing an actual
experiment. Experimental methods are very costly and time-
consuming (Chuai et al., 2017; Lin and Luo, 2019). In contrast, ML
models are inexpensive and manageable. However, in terms of
accuracy, they are still very different from experimental methods
(Höijer et al., 2020). The accuracy of ML methods is highly
dependent on the training process and the availability of adequate
training data. Recent advances in the genome-wide analyses help
researchers to discover all off-target sites, while the detection methods
like Polymerase Chain Reaction (PCR) based methods, cannot find all
of these sites. Using new sequencing technology, such as next-
generation sequencing (NGS), and third generation sequencing
which based on long-reads, can help us to detect more off-target
sites. Mainly, single-molecule real-time sequencing (SMRT), has
shown promising performance in genome sequencing. Researchers
use these techniques to find more accurate information about off-
target sites and use them in training their computational models (Lin
and Wong, 2018; Höijer et al., 2020). Also, there are some repetitive,
low complexity, AT/GC-rich regions, known as dark, in which ML-
based tools cannot predict on-target and off-target sites in these areas.
But amplification-free long-read sequencing technology helps to

FIGURE 2
Main components of CRISPR (Duan et al., 2021).

FIGURE1
Basic overflow of CRISPR systems.
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reveal Cas9 target sites even in these dark regions (Höijer et al., 2020).
As the number of available features about on-target and off-target sites
and the creation of large databases in this field increases, the
predictions of ML-based methods become closer to experimental
observations (Jiang et al., 2016; Abadi et al., 2017).

Some recent research has shown that ML-based methods can
determine the extent of effective interactions and side-effects
(changing unwanted sites) of each gRNA precisely (Abadi et al.,
2017; Lin and Wong, 2018). Such a process can significantly
accelerate the process of gRNA design for any part of human
DNA, thus allowing us to edit anywhere in DNA (Jiang et al.,
2016). However, existing models still have challenging issues, such
as data imbalance, data heterogeneity, insufficient training data,
generalizability, and cross-species inefficiency (Chuai et al., 2017).

We described the basic concepts of CRISPR systems and
introduced activity and specificity as two main challenges in this
area (Moreno-Mateos et al., 2015; Herai, 2019). In the rest of the
paper, we provide an overview of computational approaches,
especially machine and deep learning (MDL) algorithms, which we
believe are the most effective and reliable methods for predicting
gRNAs effects. The summary of our review is presented in Tables
1–Tables3, only for tools with active access link. Table 1 illustrates
computational tools and software packages related to CRISPR systems;
Table 2 summarizes tools and software packages related to finding off-
target sites; Table 3 shows those related to gRNA design; and finally,
Table 4 reports MDL-based tools and software packages related to
CRISPR systems.

2 Computational approaches in CRISPR

Computational approaches are an essential part of CRISPR
research. The bioinformatics studies have made significant
contributions to the initial discovery of CRISPR (Alkhnbashi et al.,
2014; Makarova et al., 2015). We summarize some of them in Table 1.
Bioinformatics tools play a significant role in these fields: 1)
determination of the specific differences between the CRISPR/Cas
systems from archaeal and bacterial sources; 2) determination of
required repeat spacer sequences for processing the mature
CRISPR RNA (crRNA); 3) prediction of the transcribed strand of

CRISPR arrays; 4) determination of CRISPR leader sequences; 5)
classification of Cas proteins; 6) prediction of proper gRNA; 7)
prediction of on-target and off-target effects; and so on (Listgarten
et al., 2016; Lin and Wong, 2018; Listgarten et al., 2018; Herai, 2019;
Alkhnbashi et al., 2020; Smith et al., 2020).

According to our review, low cleavage efficiency and off-target
effects hamper CRISPR development and application. So, prediction
of proper gRNA and prediction of on-target and off-target effects is so
critical. In the rest of the paper, we will focus on the tools that have
been developed for designing optimal gRNA with low off-target
effects.

2.1 gRNA design

There are two fundamental questions in CRISPR researches. The
first question is: what are the targets of the given gRNA? Some
methods, such as CRISPResso (Pinello et al., 2016) and
CRISPRTarget (Biswas et al., 2013), try to calculate potential
targets by taking a gRNA as input and using computational
algorithms (more details are described in Table 3). Tools like
CRISPRTarget (Biswas et al., 2013) offer a way to answer this
question using a ML-based approach (Table 4 shows more details).
The second important question is how to be confident about the
accuracy of CRISPR edits. Most of the tools or methods in CRISPR’s
field have been developed to answer these two questions. In Tables 2, 3,
we tried to collect all of them and describe their details.

Also, we realized that most of researches in CRISPR area mainly
focus on increasing cleavage activity (more on-targets) and cleavage
efficiency (low off-target sites). As known, low efficiency makes
CRISPR editing unreliable and also hampers CRISPR development
and application (Wang et al., 2019a). Unfortunately, the high focus on
more activity induces more off-target cleavage, which can be toxic.
Therefore, we must maintain a balance between these two criteria.
These issues can be resolved by designing successful CRISPR gRNA
and choosing an appropriate Cas protein (Kuscu et al., 2014; Shen
et al., 2018).

As mentioned earlier, cleavage efficiency varies significantly
among different target sites and cell lines (Yan et al., 2018). Several
features can influence the gRNA binding ability and the Cas enzyme

FIGURE 3
Selection of Cas enzyme.
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TABLE 1 Tools and software packages related to CRISPR systems.

Name Main functionality Input Cell type Interface Year Source

CRISPRidentify
Mitrofanov et al.
(2021)*

It detects All possible CRISPR arrays Genome sequences Bacteria and
archaeal

Standalone
application

2021 https://github.com/BackofenLab/
CRISPRidentify

CRISPRloci
Alkhnbashi et al.
(2021)*

Definition of CRISPR leaders for each
locus; Prediction of all CRISPR arrays
in the correct orientation; annotation
of Cas genes and associated
information, include the Cas subtypes

Protein, genomic
DNA, CRISPR repeats
or viral sequences are
accepted

Bacteria,
archaeal
and viral

Webserver and
standalone versions
(Python, Perl and
Java)

2021 Webserver: https://rna.informatik.
unifreiburg.deCRISPRloci

Standalone version: https://github.
com/BackofenLab/CRISPRloci

ANNOgesic Yu et al.
(2018)

It can detect several genomic features,
including genes, CDSs, tRNAs, rRNAs,
TSSs, PSs, transcripts, terminators,
UTRs, sRNAs, sORFs, circular RNAs,
CRISPR-related RNAs, riboswitches,
and RNA-thermometers

RNA-seg Bacterial
and
archaeal
genome

Command-line
(Python)

2018 The software: https://pypi.org/
project/ANNOge/https://hub.
docker.com/r/silasysh/annogesic/
Documentation: http://annogesic.
readthed.ocs.io/

CRISPR-DAV Wang
et al. (2017)

A pipeline to analyze the CRISPR NGS
data in a high-throughput manner.
Output: read counts in various stages;
read depths and indel frequencies in
amplicon; counts and percentages of
indel reads; frequencies of allele, SNP
and HDR.

Files that describe
software paths,
parameters, mplicon,
CRISPR sites, and
FASTQ sources

Any
selected
genome

Command line
Interface (Perl
and R)

2017 https://github.com/pinetree1/
crispr-dav.git and https://hub.
docker.com/r/pinetree1/crispr-dav

Cas-analyzer Park
et al. (2017)*

It is an NGS data analyzer. It
categorizes and sorts the results. The
position and size of insertions or
deletions are depicted as interactive
graphs

Deep sequencing data Any
selected
genome

Web user interface
(JavaScript)

2017 http://www.rgenome.net/cas-
analyzer/

CRISPRAnalyzeR
Winter et al. (2017)*

An application to analyze, document,
and explore pooled CRISR/
Cas9 screens. Reagent phenotypes such
as efficiency scores and predicted
genomic binding sites are displayed

An sgRNA library or
screening data

Any
selected
genome

Open-source web or
standalone
application

2017 http://www.crispranalyzer.org

source code at: http://www.github.
com/boutroslab/CRISPRAnalyzeR

CRISPRcloud Jeong
et al. (2017)

An application to extract, cluster, and
analyze raw next-generation
sequencing files derived from pooled
screening experiments

sgRNA read counts
data

Human and
mouse

Cloud-based web
application

2017 http://crispr.nrihub.org

CRISPRdigger Ge et al.
(2016)

can Discover Direct Repeats (DRs) for
CRISPRs and achieve a higher accuracy
for a query genome

A genome sequence Any
selected
genome

Command line
application

2016 http://www.healthinformaticslab.
org/supp/

BATCH-GE Boel et al.
(2016)

It detects and reports indel mutations
and other precise genome editing
events and calculates the
corresponding mutagenesis efficiencies

NGS-derived
sequencing data, DNA
of interest

Any
selected
genome

Command line
application

2016 https://github.com/
WouterSteyaert/BATCH-GE.git

CRISPRleader O’Brien
and BaileyGT-Scan.
(2014)

It detects leader sequences and shows
full annotation of the CRISPR array
and its strand orientation as well as
conserved core leader boundaries

Genome sequence Archaea
and bacteria

Command line
application (HTML
pages)

2016 http://www.bioinf.unifreiburg.de/
Software/CRISPRleader/

CRISPRDetect Biswas
et al. (2016)*

It enables accurate identification of
CRISPR arrays in genomes and their
direction, repeat spacer boundaries,
substitutions, insertions or deletions in
repeats and spacers. It lists Cas genes
that are annotated in the genome

Four inputs: genomic
sequence, word size,
min of word repeat,
and max gap between
repeats

Archaea
and bacteria

Web application and
command line
(PERL)

2016 http://bioanalysis.otago.ac.nz/
CRISPRDetect/

CRISPR-GA Güell
et al. (2014)

It estimates the HR, NHEJ, and a
complete report of the location and
characteristics of the indels

The genomic region Any
selected
genome

Web user interface
(implemented in R)

2014 http://crispr-ga.net.
Documentation at: http://crispr-ga.
net/documentation.html

Crass Skennerton et al.
(2013)

It identifies and reconstructs CRISPR
loci from raw metagenomic data
without the need for assembly or prior
knowledge of CRISPR in the data set.

Raw file in FASTA or
FASTq format

All genome Command line
interface

2013 http://bioinformatics.ninja/crass
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TABLE 2 Tools and software packages related to finding off-target sites.

Name Main functionality Input Cell type Interface Year Source

CALITAS Fennell
et al. (2021)

CALITAS is a CRISPR-Cas-aware
aligner and integrated off-target
search algorithm. It supports an
unlimited number of mismatches
and gaps and allows PAM
mismatches or PAM-less searches

gRNA, one or more local
regions of a target sequence

Human Standalone
application

2021 https://github.com/
editasmedicine/calitas

CRISPR-SE Li et al.
(2021)

It is an accurate and fast search
engine using a brute force
approach to find all off-target sites

gRNA Human and mouse
genomes

Web user interface 2021 The webserver: http://
renlab.sdsc.edu/
CRISPRSE/

The source code: https://
github.com/bil022/
CRISPR-SE

CRISPRitz
Cancellieri et al.
(2020)*

It enumerates and annotates
putative off-target sequences and
assesses their potential impact on
the functional genome. It has three
outputs: i) all off-target sites; ii) an
overall mismatch and bulge profile
for each guide; iii) motif matrices

PAM sequence, a list of guides,
References genome (required)
and genomic annotations and
number of mismatches
(optional)

All genome Standalone
application

2019 https://github.com/
pinellolab/CRISPRitz

https://github.com/
InfOmics/CRISPRitz

CHOPCHOP
v3.0 Labun et al.
(2019)

It Identifies sgRNA targets. Five
outputs: i) the number of off-
targets, ii) whether the off-targets
contain mismatches or are perfect
hits, and iii) where the target site
lies within the gene iv) the results
are ranked by GC-content

Four inputs: i) the target; ii)
species; iii) CRISPR effector
and iv) the purpose of the
experiment

200 genomes Command-line
program and web
user interface

2019 Server: https://chopchop.
cbu.uib.no

The local installation:
https://bitbucket.org/
valenlab/chopchop

CRSeek Dampier
et al. (2018)

It finds all on-target and off-target
sites

Interested sequence All genome Command line
interface (Python)

2018 https://github.com/
DamLabResources/crseek)

CRISPR-RT Zhu
et al. (2018)*

It retrieves all the protentional
targets and relevant information
for gRNAs in CRISPR-C2c2
system

An RNA/DNA sequence 10 genomes include
human

Web application 2017 http://bioinfolab.miamioh.
edu/CRISPR-RT

PhytoCRISPEX
Rastogi et al. (2016)

It finds potential targets and shows
the gene name with start, stop, and
sequence of the sgRNA targets. It
also shows the results of checks at
level one and two

DNA sequences 13 algae (diatoms,
haptophytes, etc.), or
any user defined
genome

Web interface and
UNIX-based
standalone
application

2016 http://www.phytocrispex.
biologie.ens.fr/CRISPEx/
crispexdownloads/

CRISPResso Pinello
et al. (2015)*

It finds potential on and off-targets Two files for paired-end reads
or a single file for single-end
reads, and the References
amplicon sequence

Any selected genome Command line
interface or web
server

2015 http://github.com/
lucapinello/CRISPResso.
Web application www.
crispresso.rocks

Cas-OFFinder Bae
et al. (2014)*

It searches for potential off-target
sites and shows their locations,
position, direction, and number of
mismatches

Genome sequence Any selected genome Command line
program (written
in OpenCL) and
website

2014 http://www.rgenome.net/
cas-offinder

CasOT Xiao et al.
(2014)

It finds potential off-target sites in
any given genome with user-
specified types of PAMs, and
number of mismatches

target sites or genome and a
genome annotation file
(optional)

Any selected genome Command-line
program (a Perl
script)

2014 http://eendb.zfgenetics.
org/casot/

COSMID Cradick
et al. (2014)*

It retrieves all off-target sites
matching the user-supplied criteria
in comparison to the guide strand
with chromosomal location

The guide sequence, type of
PAM, allowed number of
mismatches, insertions and
deletions, genome of interest,
and primer design parameters

7 genomes including
human and mouse

web user interface 2014 http://crispr.bme.
gatech.edu

CRISPRdirect Naito
et al. (2015)*

It outputs a list of on and off-target
sites with details (target position,
target sequence, the number of
target sites in the genome, GC
content, and calculated melting
temperature)

Two inputs: i) an accession
number, and ii) a genome
coordinate or an arbitrary
nucleotide sequence up to
10 kbp

9 genomes including
human and mouse,
rat etc.

Web user interface 2014 http://crispr.dbcls.jp

(Continued on following page)
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cutting efficacy. Sequence composite features (nucleotide position,
GC content), genetic and epigenetic features (chromatin
accessibility, gene expression), and energetic properties (RNA
secondary structure, melting temperature, free energy) are the
most important influential features on cleavage efficiency
(Pallarès Masmitjà et al., 2019; Wang et al., 2020). Based on
these features, many computational tools have been developed
for designing highly efficient gRNAs. In the rest of this section,
we will discuss the most popular ones.

Rule set 1 (Liu et al., 2020) is a ML-based model that uses a
support vector machine (SVM), a supervised ML method, and
contains a linear regression method for classifying gRNAs. Rule
set 1 uses sequence-based features, and its predictive data is
highly correlated with experimental results (Xu et al., 2015).
Rule set 2 (Liu et al., 2020) is an improved version of Rule set
1 and counts the nucleotides independent location of the gRNA
target site within the gene to improve results (Doench et al.,
2016). It is a powerful model, used for both CRISPR Knock Out
(CRISPR KO) and CRISPR activation/interference (CRISPRa/i)
experiments. Another powerful model-based package has been
developed and implemented at the Broad Institute to predict
gRNA efficiency, named sgRNA Designer (Pallarès Masmitjà
et al., 2019).

Elastic Net is another ML-based and regularized regression-based
method (Li and Lin, 2010). Although there are significant differences
in nucleotide preference between CRISPR KO and CRISPRa/I, the
Elastic Net algorithm is used to construct models for both CRISPR KO
and CRISPRa/i. Also, this practical algorithm has been applied in
Spacer Scoring for CRISPR (SSC) software to predict the gRNA
efficiency (Qin et al., 2019). Additionally, well-known platforms
such as E-CRISP (Heigwer et al., 2014), CHOPCHOP (Labun
et al., 2019), and CRISPRFOCUS (Cao et al., 2017) have applied
this method.

Moreno and his colleagues designed another logistic
regression-based method and integrated it into CRISPRscan to
predict the gRNA precision (Moreno-Mateos et al., 2015).

Additionally, they have applied extra features such as guanine
enrichment and adenine depletion, which increase the gRNA
activity (Cui et al., 2018).

Another ML-based method is WU-CRISPR (Wong et al.,
2015) which uses sequence composite features like guanine
enrichment and adenine depletion, and some other novel
features to build a higher precision model. The CRISPR/
Cas9 target online predictor (CCTop) (Stemmer et al., 2015), a
platform for CRISPR target prediction, takes advantage of this
model. The SgRNAScorer is another software that uses SVM to
calculate gRNA on-target scores. The new version of this software
can predict other Cas systems such as SaCas9 (Qin et al., 2019)
and AsCpf1 [94].

To avoid unwanted effects in other sites except for desired target
sites (off-target), researchers try to modify a spacer sequence that does
not adopt other sites in the genome. Tools such as CRISPRpred
(Hwang and Bae, 2021), DeepSpCas9, and SgRNAScorer are
usually limited to the set of preprocessed genomes used when
training ML models. To build good gRNAs in genomes other than
those used in the training process, researchers can use web-based tools
such as CRISPy (Blin et al., 2016). Looking at Tables 1–Tables 4, we
have listed the genome in which the editing takes place (named target
genome) as a significant feature for all tools. The existence of target
genome is even more critical for deep learning-based (DL) methods,
because they are usually unpractical in genomes other than the ones
from which training data was extracted. Basically, being used in all
genomes is a significant strength for ML-based tools. But one tool may
not have the same accuracy over all genomes or even all regions of a
genome (see Figure 7) (Kim et al., 2021). Furthermore, structural
correctness and base-level accuracy of the target genome are
important. The accuracy of a genome differs not only between
genome sequencing technologies but also across genomic regions,
as some stretches of the genome are inherently more difficult to read
(Kim et al., 2021). It is commonly known that certain genomic regions
are more difficult for sequencing and extracting features. AT-rich or
GC-rich regions, which are important for detecting off-target sites, are

TABLE 2 (Continued) Tools and software packages related to finding off-target sites.

Name Main functionality Input Cell type Interface Year Source

E-CRISP Heigwer
et al. (2014)

It retrieves positions of CRISPR
targets

Gene Id or gene sequence More than
40 genomes

Web user interface 2014 http://www.e-crisp.org/E-
CRISP

GT-Scan O’Brien
and BaileyGT-Scan.
(2014)

It ranks all potential on and off-
targets

Genomic region and target rule
(target length, constrained
positions and positions with
high-, low- or no-target and
off-target specificity)

More than
25 genomes

Web user interface 2014 http://gt-scan.braembl.
org.au

sgRNAcas9 Xie et al.
(2014)*

It predicts all single or paired
CRISPR target sequences and the
corresponding information for
each target site (such as start and
end values, sequence pattern, GC
content, sgRNA offset, etc.)

Sequences of target position All genome Command line
interface (Perl
script)

2014 www.biootools.com

SSFinder Upadhyay
and Sharma. (2014)*

It identifies potential off-target
sites and classifies them

File name and directory of
input sequences

All genome Command line
interface (python)

2014 https://code.google.com/p/
ssfinder/

CRISPRTarget
Biswas et al. (2013)

It predicts the most likely targets of
gRNAs. Targets can be displayed
and scored for flanking sequences
and PAMs

Spacers Any selected genome Web application 2013 http://bioanalysis.otago.ac.
nz/CRISPRTarget

*Means the tools are free of charge to access.
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TABLE 3 Tools and software packages related to gRNA design.

Name Main functionality Input Cell type Interface Year Source

SNP-CRISPR Chen
et al. (2020)

It designs gRNAs for non-
reference genomes to support
allelic targeting. SNP-CRISPR
calculates the gRNA efficiency
score for the variant and the
References sequences

Target genome, variant
information including the
genome coordinates and
sequence changes

Human, Mouse,
Zebrafish, Fly

Web application 2020 https://www.flyrnai.org/tools/
snp_crispr/

AlleleAnalyzer
Keough et al. (2019)

It designs allele-specific dual
gRNAs. It incorporates
single-nucleotide variants and
short insertions and deletions
to design sgRNAs for
precisely editing one or
multiple haplotypes of a
sequenced genome, currently
supporting 11 Cas proteins

Target genome (with
genetic variant
information)

Human Application 2019 https://github.com/
keoughkath/AlleleAnalyzer

CRISPR-Local Sun
et al. (2019)

It designs sgRNAs in plants
and other organisms that
factor in genetic variation and
is optimized to generate
genome-wide sgRNAs

whole-genome sequencing,
mRNA sequencing or
known variants for specific
transgenic receptor lines

Plants Application 2018 http://crispr.hzau.edu.cn/
CRISPR-Local/

CRISPR-P Liu et al.
(2017)*

It helps to design of gRNA. It
output: all targetable sites; the
details and GC content of
each gRNA; the restriction
enzyme site in the targeting
region; and synthetic DNA
oligos; as well as the
microhomology score and the
secondary structure of
sgRNA.

The gene locus tag, genomic
position, or sequence

49 plant genomes Web user
interface

2017 http://cbi.hzau.edu.cn/crispr2/

CRISPR FOCUS Cao
et al. (2017)*

It retrieves all possible gRNA
and prioritize them. It also
provides a rational and high-
throughput approach for
sgRNA library design

Gene symbols or RefSeq IDs Human or mouse
genome

Web application 2017 http://cistrome.org/crispr-
focus/

Guide Picker Hough
et al. (2017)*

It provides rapid guide RNA
generation and selection. It
retrieves guide sequences with
on and off-target sites

The genome and the gene
name

Mouse or human gene Web application
(JavaScript)

2017 https://www.deskgen.com/
guide-picker/

SgTiler Ahmed and
He. (2017)*

It generates graphical
representation for
distribution of sgRNA. It
shows four outputs: i) all
candidate sgRNAs; ii) list of
filtered sgRNAs; iii) list of
sgRNA details; and iv) a
summary report with
important statistics

Three input files: i) FASTA
file; ii) A file with exon
coordinates; and iii) a file of
regulatory regions

Any selected genome Command line
application
(Python)

2017 https://github.com/
HansenHeLab/sgTiler

CRISPOR Concordet
and Haeussler. (2018)

It finds guide RNAs in an
input sequence and ranks
them according to different
scores. It evaluates potential
off-targets in the genome of
interest and predicts on-target
activity

A sequence (typically an
exon), a genome, and the
type of CRISPR nuclease

More than 150 genomes Web and
standalone
command line
application

2016 http://crispor.org

CRISPR-DO Ma et al.
(2016)

It retrieves information about
target sequences, overlaps
with exons, putative
regulatory sequences and
SNPs in the spCas9 CRISPR
system

sgRNA Human, mouse,
zebrafish, fly and worm

Web application 2016 http://cistrome.org/crispr/

Breaking-Cas
Oliveros et al. (2016)*

It retrieves all sequences,
coordinates, scores, and
annotation details of every
gRNA and off-targets

The name of the References
organism, the
characteristics of the Cas-
like nuclease, and the
sequence(s) of the intended
target genomic

All eukaryotic genomes Web application 2016 http://bioinfogp.cnb.csic.es/
tools/breakingcas

(Continued on following page)
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tough because they respond poorly to the amplification protocols
required by some platforms. Palindromic sequences or hairpin
structures similar to gRNA structures are difficult to denature,
making such regions challenging for sequencing tools (Selvakumar
et al., 2022).

2.1.1 Selecting the best gRNA
There may be several gRNAs for an experiment, in which case

we have to pick the best one. Many computational approaches

have been developed for scoring and selecting the best gRNAs.
Some of them use experimental data to score a gRNA. According
to the different criteria, these methods consider a specific score for
each gRNA. The criteria and final score calculation are different in
each algorithm. CHOPCHOP (Labun et al., 2019) provides
multiple scores for users, such as Rule Set 1 and Rule set 2,
SSC (Xu et al., 2015), CRISPRscan [13], and deepCpf1 (Kim
et al., 2018). E-CRISP (Heigwer et al., 2014) uses a particular
score to determine the quality of each gRNA, named SAE, which

TABLE 3 (Continued) Tools and software packages related to gRNA design.

Name Main functionality Input Cell type Interface Year Source

CT-Finder Zhu et al.
(2016)

It helps users to design
gRNAs optimized for
specificity and shows Graphic
visualization of on and off-
target sites in Cas9n and
RFNs

DNA sequence, a
References genome, the on
and off-target PAM
sequences, and length of
gRNA and seed region

Human, mouse,
Arabidops

Web application 2016 http://bioinfolab.miamioh.
edu/ct-finder

CRISPETa
Pulido-Quetglas et al.
(2017)

It helps to design sgRNAs One or more target regions Human, mouse,
zebrafish, Drosophila,
melanogaster and
Caenorhabditis elegans

Command-line
and web
application

2016 Server: http://crispeta.crg.eu/
manual Source code: https://
github.com/guigolab/
CRISPETA

CLD Heigwer et al.
(2016)*

It helps to design sgRNAs Three files: i) the genome
sequence, ii) a parameter
(Hwang and Bae, 2021) file,
and iii) a gene list

All organisms Command line
application

2016 htts://github.com/

CRISPy-web Blin
et al. (2016)*

It scans for gRNAs and
potential off-targets

Target sequence or gene Any microbial genome Web application 2016 http://crispy.
secondarymetabolites.org

EuPaGDT Peng and
Tarleton. (2015)

It finds all gRNAs. It also
scores, and ranks them.
Additionally, it assists users in
designing single-stranded
oligonucleotides for
homology-directed repair

Sequence or gene Eukaryotic organisms Web application 2015 http://grna.ctegd.uga.edu

Spacer Scoring for
CRISPR(SSC) Xu
et al. (2015)*

It predicts SgRNA efficiency DNA sequence Any selected genome Web application 2015 http://crispr.dfci.harvard.edu/
SSC/

Cas-Designer Park
et al. (2015)*

It aids researchers in choosing
appropriate target sites in a
gene of interest. It outputs a
list of all possible gRNAs and
their potential off-target sites,
including bulge-type sites,
and also an out-of-frame
score for each

DNA sequence Most of genomes (Wang
et al. (2019a)

Command line
interface

2015 http://rgenome.net/cas-
designer/

CRISPR multitargeter
Prykhozhij et al.
(2015)

It searches input sequences
for single-sgRNA and two-
sgRNA/Cas9 nickase
targeting

sgRNA, GC% 12 genomes like zebrafish Web application 2015 http://www.multicrispr.net/

CRISPR-ERA Liu
et al. (2015)*

It designs gRNA. It outputs
sgRNAs, on and off target
location, and details of them
with their E- and S-scores etc.

Target gene or genomic site 9 common prokaryotic
and eukaryotic organisms

Web application 2015 http://crisprera.stanford.edu/
InitAction.action

CCTop Stemmer et al.
(2015)*

It identifies and ranks all
candidate sgRNA target sites
according to their off-target
quality and displays full
documentation

Target genome site 15 common prokaryotic
and eukaryotic organisms

application
(python)

2015 http://crispr.cos.uniheidelberg.
de/

CRISPRseek Zhu et al.
(2014)*

It identifies gRNAs and also
scores and ranks them to
minimize off-target cleavage

Any sequence Any selected genome Command line
application ®

2014 http://www.bioconductor.org

*Means the tools are free of charge to access.
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TABLE 4 MDL-based tools and software packages related to CRISPR systems.

Name Main functionality Input Cell type Interface Model Year Source

C-RNNCrispr
Zhang et al. (2020)

It predicts sgRNA on-
target activity. It is a
transfer learning
approach by using small-
sized datasets to fine-tune

Datasets to fine-tune 4 cell line Standalone
software

CNN and
BGRU

2020 https://github.
com/Peppags/C_
RNNCrispr

CRISPRpred
Muhammad Rafid
et al. (2020)

It predicts sgRNA on-
target activity

Position independent and
position specific features

Human Standalone
software

SVM and
random
forest

2020 https://github.
com/Rafid013/
CRISPRpredSEQ

DeepCpf1 Kwon
et al. (2019)

It predicts the activity of
AsCpf1 (location of all
targetable sequences and
efficiency of each;
information on GC
contents, positions,
strands, and
DeepCpf1 scores.)

Cell line types, information on
the sequences of a target and
its surroundings, and
References sequences

All genome Web tool CNN 2019 http://deepcrispr.
info/

DeepHF Wang et al.
(2019a)

It predicts SpCas9 activity
for each gRNA (all
targetable sequences,
restriction sites, strands,
and predicted efficiency)

Various types of
SpCas9 nucleases, DNA
sequences

All genomes Web tool CNN 2019 http://www.
DeepHF.com/

CINDEL Iyombe.
(2019)

It predicts the indel
frequencies of CRISPR/
Cas12 with TTTV PAM
sequence (targetable
sequences, positions,
strands, GC contents, and
INDEL scores)

References sequences Web tool - 2019 http://big.
hanyang.ac.kr/
cindel

DeepSpCas9 Kim
et al. (2019)

It predicts SpCas9 activity
for each gRNA (positions,
GC content, and
DeepSpCas9 scores)

Target sequence information
with its surroundings, and
gene symbols

Human Web tool CNN 2019 http://deepcrispr.
info/DeepSpCas9

Microhomology-
Predictor Hwang
et al. (2021)

It predicts the deletion
patterns by calculating the
scores of possible deletion
patterns produced by a
MMEJ pathway following
DNA cleavage by ZFNs,
TALENs, or Cas9. All
possible deletion patterns
and the pattern scores can
be checked

Target sites with high out-of-
frame scores

All genome Web tool - 2019 http://www.
rgenome.net/
mich-calculator

inDelphi Cloney.
(2019)

It predicts the spectrum of
cut-site, possible sgRNA
sequences, predicted
mutation patterns,
possible frameshift
codons, and their
frequencies

Sequences of both sides of
cleavage in various cell types

Human and mouse Standalone
software

- 2019 https://indelphi.
giffordlab.mit.edu

FORECasT Allen
et al. (2019)

It predicts editing
outcomes (possible
mutation patterns and
predicted frequencies of
the mutation patterns and
frame shifts) of the
CRISPR/Cas9 system with
NGG PAM.

Target DNA sequences and
the cleavage sites

Most of genomes Web tool - 2018 https://partslab.
sanger.ac.uk/
FORECasT

CRISPR-GNL Wang
et al. (2019b)

It is an algorithm for
CRISPR on-target activity
prediction

Normalized gene editing
activity from 8,101 gRNAs
and 2,488 features

human, mouse,
zebrafishDrosophila, Cioa
intestinalis

Stand alone
application

regression
models

2019 https://github.
com/
TerminatorJ/
GNL_Scorer

DeepCRISPR Chuai
et al. (2018)

It predicts whole genome
on and off-target profiles

sgRNA sequences with an
NGG PAM

Human Web tool CNN 2018 http://www.
deepcrispr.net/

(Continued on following page)
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combines three scores: specificity, annotation and efficacy.
E-CRISP uses Rule Set 1 and SSC too. CCTop (Stemmer et al.,
2015) calculates the CRISPRater score to predict the efficiency of
gRNAs. CCTop also calculates off-target scores for each sequence.
The CRISPOR (Concordet and Haeussler, 2018) ranks gRNAs
according to different scores, such as on-target activity and
protentional off-targets scores.

To score a gRNA or determine whether it is suitable for the
desired genome editing or not, we need to determine potential
targets of a gRNA in the selected genome and determine which
of these potential targets are desirable. Hence, the number of on-
target and off-target sites is critical in gRNA evaluation. In other
words, since genomic edits are permanent and very sensitive, it is
crucial to determine potential targets before the main editing occurs
and then remove or reduce them (Yan et al., 2018). Therefore, many
researchers have focused on this issue. Furthermore, many

developers have attempted to develop practical tools for this
purpose. We will discuss these tools in the next section.

2.2 Prediction of CRISPR specificity (off-
target sites)

The prediction of off-target mutations in CRISPR/Cas9 is a hot
topic owing to its relevance to gene-editing research. Cas nucleases
may cleave unintended genomic sites and cause unexpected mutations
called off-target cleavage (Listgarten et al., 2018). Even though the
CRISPR/Cas9 system is routinely used in a large variety of tasks, there
is also a significant concern that off-target effects may reduce its
effectiveness of CRISPR. In response to this concern, researchers have
concluded that the best way to mitigate off-target effects is to know
when and where they occur and then design guides to avoid them

TABLE 4 (Continued) MDL-based tools and software packages related to CRISPR systems.

Name Main functionality Input Cell type Interface Model Year Source

TUSCAN Wilson
et al. (2018)

It predicts the degree of
CRISPR/Cas9 activity and
classifies them into active
and inactive categories

All genome Software Random
forest

2018 https://github.
com/BauerLab/
TUSCAN

SgRNAScorer Chari
et al. (2017)

It identifies sgRNA sites
and their activities for any
PAM sequence of interest

Sequence with a defined
spacer length and PAM
sequence

Human and mouse Web tool SVM 2017 https://
sgrnascorer.
cancer.gov/

CRF Wang and
Liang. (2017)*

CRF uses a classifier to
filter out invalid CRISPR
arrays from all putative
candidates

DNA/RNA sequence in
FASTA format

Bacteria and archaea Web tool Random
forest

2017 http://bioinfolab.
miamioh.edu/crf/
home.php

GE-CRISPR Kaur
et al. (2016)

It predicts and analyses
sgRNAs efficiency and
gives information like
secondary structure of
sgRNA, PAM, start and
end of coordinates, and
GC%

Desired gene or genome
sequence in FASTA format

In any trained model SVM 2016 http://bioinfo.
imtech.res.in/
manojk/gecrispr/

CRISPRscan
Moreno-Mateos
et al. (2015)

It’s a predictive sgRNA-
scoring algorithm that
captures the sequence
features affecting the
activity of CRISPR/
Cas9 in vivo

DNA sequence Fish Web tool Linier
regression

2015 http://www.
crisprscan.org/

WU-CRISPR Wong
et al. (2015)

It predicts potential
sgRNAs and scores of
them

Gene IDs Human and mouse Web tool and
stand-alone
software

SVM 2015 http://crispr.
wustl.edu

SSC Xu et al. (2015) It’s a program for
predicting editing activity
of SpCas9 and giving all
possible targets with the
efficiency scores of
various editing modes
such as knockout,
CRISPRi, or CRISPRa

Target sequences with the
length of spacers (19 nt or
20 nt) as

Web tool Elastic Net 2015 http://cistrome.
org/SSC/

CRISPRstrand
Alkhnbashi et al.
(2014)

It determines the crRNA-
encoding strand at
CRISPR loci by predicting
the correct orientation of
repeats. It also determines
whether repeats lie on the
forward or reverse strand

Attribute type, attribute order,
size of the terminal regions,
number of blocks within the
terminal regions

Bacteria and archaea Integrated in
CRISPRmap
web server

graph
kernels

2014 http://rna.
informatik.uni-
freiburg.de/
CRISPRmap

*Means the tools are free of charge to access.
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while balancing for on-target efficiency. By predicting CRISPR cutting
specificity and designing optimal gRNAs, off-target effects can be
effectively relieved. As noted earlier, careful CRISPR target selection
and low concentrations of CRISPR components can reduce off-target
cleavage (Zetsche et al., 2020).

The off-target predictive modelling problem can be broken down
into three main tasks. Given a gRNA to evaluate off-target activity, one
needs to (Afzal et al., 2020) search the whole genome for potential
targets; in other words, search those regions of the genome matching
the guide sequence with up to X number of mismatches (Gaj et al.,
2013); score each potential target found in step 1 according to its
activity (Jacquin et al., 2019); collect the second stage scores and
evaluate the final score of a gRNA. Several solutions have been
presented for these tasks, including Cas-OFFinder (Bae et al.,
2014), CRISPOR (Concordet and Haeussler, 2018), CHOPCHOP
(Labun et al., 2019), and e-CRISPR (Tarasava et al., 2018). These
models differ in their search algorithms and the completeness of the
search process. Completeness is dictated by options such as the
maximum number of mismatches, allowed PAMs, and the search
algorithm used.

There are two basic methods to predict the specificity of CRISPR
gRNAs: the alignment-based and the scoring-based methods. In the
following, we will explain these approaches and give successful
examples of each one. Also, the overview of these approaches is
depicted in Figure 4.

2.2.1 Alignment-based methods
In the alignment-based method, gRNAs are aligned to a given

genome, and off-target sequences and sites are returned. These
methods are mainly used to find out all potential off-target sites in
silico. Choosing a search engine and setting search parameters
plays an important role in evaluating these tools (Liu et al., 2020).
For example, if we set the maximum number of mismatches to a
large number, like four or more, we will probably find all possible
off-targets. The observed rate of off-target activity is about 59%
when there is one mismatch between the target DNA and gRNA
sequences and decreases toward 0% when four or more mismatches
exist (Kim et al., 2021). So, it can be concluded that an increased
number of mismatches decreases the likelihood of off-target
activity.

Common sequence alignment tools use BLAST, BLAT, Bowtie,
Bowtie2, BWA or customized search engines. Table 5 summarizes the
search engine of famous alignment-based tools in CRISPR.

Compared to methods which use BLAST, Bowtie and BWA as
search engine, methods like GuideScan (Perez et al., 2017), Cas-
OFFinder (Bae et al., 2014), FlashFry (McKenna and Shendure,
2018), Crisflash (Jacquin et al., 2019), CRISPRitz (Cancellieri et al.,

2020), and finally, CRISPR-SE (Li et al., 2021)are faster due to the use
of Brute force search engine. In addition, unlike most methods
that support only a limited number of mismatches (mostly 3 or 4),
Cas-OFFinder, CRISPRitz and CRISPR-SE have more preference due
to their support of any number of mismatches.

The Bowtie and BWA are traditional tools for short sequence
alignment that can be used for off-target sites detection (de Ruijter and
Guldenmund, 2016). However, they cannot identify small PAMs since
they were developed for NGS read alignment. Moreover, these tools
allow very limited mismatches with default parameters, so they cannot
identify all potential off-target sites.

Most tools, like CCTop (Stemmer et al., 2015), modify default
algorithms and parameters and utilize Bowtie (de Ruijter and
Guldenmund, 2016) to find off-target sites. CCTop follows three
main steps. In the first step, CCTop identifies PAM sites; In the
second step, it modifies default parameters (up to five mismatches
against one in default) of Bowtie, and uses them to search for
matches and mismatches in protospacer sequences. In the
third step, it evaluates the off-target score for each
candidate gRNA.

SeqMAp (Jiang and Wong, 2008) is an ultrafast short sequence
mapping tool used in sgRNAcas9 (Xie et al., 2014) to find off-target
sites. The sgRNAcas9 classifies all off-target sites into three categories
and scores them to choose the best gRNA.

CasOT (Xiao et al., 2014) is another tool that can find Cas9 on-
target and off-target sites with up to six mismatches in the seed region
(12 nucleotides adjacent to the PAM). This tool can also determine
whether off-targets are within a coding exon (Listgarten et al., 2016) or
not. FlashFry (McKenna and Shendure, 2018) is another alignment-
based method that defines off-targets with high speed. Additionally, it
chooses the best gRNA and provides useful information such as
annotating off-target sites, on and off-target scores, GC content,
etc. FlashFry is a good choice for many applications because of its
high speed and comprehensive output. Crisflash (Jacquin et al., 2019)
is another one that belongs to the alignment-based approaches
group. Crisflash designs gRNAs with a tree-based algorithm and
uses user-supplied variant data to optimizes gRNA accuracy. It
uses an N-ary tree structure, which searches up to four
mismatches. CRISPRitz (Cancellieri et al., 2020) used a four-bit-
based encoding to represent each nucleotide to allow for efficient
bitwise operations. CRISPRitz supports off-targets with both
mismatches and indels.

FIGURE 4
Basic methods to predict the specificity of CRISPR gRNAs.

TABLE 5 Themost popular alignment-basedmethods and related search engines.

Search
engine

Methods

BLAST CRISPRTarget (Biswas et al., 2013), CRISPR-P (Liu et al., 2017),
and CRISPR-GA (Luyten et al., 2004)

BOWTIE CRISPR-ERA (Liu et al., 2015), CHOPCHOP (Labun et al.,
2019), CasFinder (Upadhyay and Sharma, 2014), CCTop
(Stemmer et al., 2015), E-CRISP (Heigwer et al., 2014), and CLD
(Heigwer et al., 2016)

BWA CRISPR-DO (Ma et al., 2016), CRISPOR (Concordet and
Haeussler, 2018), and CRISPETa (Pulido-Quetglas et al., 2017)

BRUTE FORCE GuideScan (Perez et al., 2017), Cas-OFFinder (Bae et al., 2014),
FlashFry (McKenna and Shendure, 2018), Crisflash (Jacquin
et al., 2019), CRISPRitz (Cancellieri et al., 2020), and CRISPR-SE
(Li et al., 2021)
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CALITAS (Fennell et al., 2021) is a new CRISPR-Cas-aware
aligner tool which uses a modified and CRISPR-tuned version of
the Needleman–Wunsch algorithm, supports an unlimited number of
mismatches and gaps, and allows PAM mismatches or PAM-less
searches. CALITAS returns a single best alignment for a given off-
target site and it enables off-targets to be referenced directly using
alignment coordinate.

CHOPCHOP v3.0 (Labun et al., 2019), a well-known model, is
another tool that uses Bowtie with parameters–V and–L to detect off-
target sites [90]. But, CRISPOR uses BWA to find all potential off-
target sites iteratively and can find all validated off-targets as well as
Cas-OFFinder (Bae et al., 2014).

Sequence alignment tools like CRISPy (Qin et al., 2019) and
CRISPRdirect (Heigwer et al., 2016) rely on a minimum of one
K-mer exact match. They are likely to miss some off-targets,
spatially with a high number of mismatches and ultra-short gRNAs
(20-mer). So, the accuracy of these methods cannot be very high.

In recent years, some tools like GuideScan (Perez et al., 2017), Cas-
OfFinder (Bae et al., 2014), and CRISPR-SE (Li et al., 2021) have been

developed with Brute force algorithm as their search engine.
GuideScan uses a “tree” data structure with a brute-force algorithm
that guarantees the search accuracy. Another tool in this category is
Cas-OFFinder. Cas-OFFinder is one of the most popular tools for
detecting potential off-target sites, with no limit to the number of
mismatches, PAM types, or gRNA length. In our opinion, the most
significant advantage of Cas-OFFinder is its high running speed due to
using GPUs. It can also predict off-target sites with one-bp deletions or
insertions.

OffScan (Cui et al., 2020) is the last one we considered in this study
that is, belongs to the alignment-based approaches group. OffScan is
not limited by the number of mismatches and allows custom PAM.
Besides, OffScan adopts the FM-index, which efficiently improves
query speed and reduce memory consumption.

Here, we discussed several alignment-based methods for the
prediction of the gRNA output and realized that Cas-OFFinder
may be the best option for identifying all potential off-targets with
any Cas nucleases among these tools. Although users can reduce the
number of outputs by restricting the maximum mismatches while
exploring off-target cleavage, there are always redundant outputs;
many are false positives.

On the whole, all nucleotide positions containing mismatches do
not have the same decisive effect on off-target cleavage, but this issue is
not considered in alignment-based methods. Because of this problem,
and in order to increase the accuracy of the off-target detection
methods, adding the features that influence the non-specific
binding of CRISPR gRNAs to the methods is essential. As a result,
another group of approaches emerged called scoring-based methods,
which are discussed in the following sub-section.

2.2.2 Scoring-based methods
In the scoring-based method, the gRNAs identified in the

alignment process are scored and ranked, and the sgRNA with the
highest score is selected. There are two groups of scoring-based
approaches: 1) hypothesis-driven-based approaches, where off-

FIGURE 5
Average accuracy of off-target prediction.

FIGURE 6
Average accuracy of off-target prediction in DL-based methods.
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targets are scored based on the contribution of specific genome context
factors to gRNA specificity; 2) learning-based approaches, where
gRNAs are scored and predicted from a training model that
considers the different features affecting specificity.

MIT (Hsu et al., 2013) is the first popular score-based tool for
CRISPR off-target evaluation. To score the off-target efficiency of each
gRNA, it counts and evaluates the contributions made by different
mismatch positions. It also calculates a weight matrix to determine off-
target efficiency for each gRNA (Chuai et al., 2017). TheMIT score has
been integrated into many CRISPR gRNA design tools, such as
CHOPCHOP v3.0 CHOP (Labun et al., 2019) and CRISPOR
(Concordet and Haeussler, 2018).

Another popular score-based tool for off-target evaluation is CFD
(Cutting Frequency Determination). It is noticeable that gRNA can
bind genome loci with non-canonical PAMs such as NAG, NCG, and
NGA. So, CFD has added PAM features to their scoring metrics
(Abadi et al., 2017). Also, for examining correlations between RNAs
and off-targets, gRNAs with mismatches and indels in target
sequences are added. GUIDE-seq (Tsai et al., 2015) validated
the CFD score and proved that it performs better than the MIT
score. The CFD score has been integrated into CRISPRscan
(Moreno-Mateos et al., 2015), GuideScan (Perez et al., 2017),
CRISPOR (Concordet and Haeussler, 2018), and others.
CRISPRoff (Carlson-Stevermer et al., 2020) and uCRISPR
(Carlson-Stevermer et al., 2020) integrated energetic properties
into their scoring metrics. They both yielded better accuracy than
MIT and CFD in off-target prediction.

Scoring-based methods consider only a few features, and
unfortunately, all practical features cannot be considered. Also,
most features are not understood yet, while learning-based
methods use combinations of multiple features to build complex
models for better prediction of off-target sites. These models are
based on ML and, more recently, DL methods.

DL-based methods are attractive for CRISPR gRNA target efficacy
prediction. They are mainly based on CNNs. Table 4 introduces some

famous models that use MDL models for gRNA on-target prediction.
These models used neural networks to extract features from the input
genomic sequence. Generally, they are superior to models that use
classical ML tools in prediction accuracy.

DeepCRISPR (Chuai et al., 2018) is a DL-based platform that
combines gRNA on-target and off-target site predictions. As
mentioned, in DL-based models, we do not need to identify all
effective features, as they are detected automatically using the deep
neural network. DeepCRISPR learns all possible sequence and
epigenetic features that may affect gRNA Knock Out (KO) efficacy
(Hana et al., 2021) in its learning process with a large dataset that is,
gathered for it.

CRISPR-Cpf1 (Kim et al., 2017) is a ML-based model that
achieved high efficiency, although it suffers minor off-target effects.
DeepCpf1 (Kwon et al., 2019) is another highly used DL-based
algorithm, mainly used in predicting Cpf1 activity. It uses
chromatin accessibility data. It showed a significant improvement
in the accuracy of Cpf1 activity prediction. CRISPR-DT (Zhu and
LiangCRISPR-, 2019) is a recently developed platform for predicting
the Cpf1 target efficiency. This model has been implemented with the
SVM algorithm and displays better performance than the DL-based
models such as DeepCpf1.

CRISPOR (Concordet and Haeussler, 2018) may be the best
tool for designing gRNAs. CRISPOR combines multiple tools and
gathers a large dataset to develop a highly efficient CRISPR gRNA
design. CRISPOR contains 417 genomes and 19 PAM types,
making it useful in almost all genomes. CRISPOR calculates
two specificity scores: MIT and CFD. Additionally, it calculates
ten efficiency scores, including Rule Set 2, CRISPRscan,
microhomology, Lindel scores (Chen et al., 2019) and others
for outcome prediction. CRISPOR designs primers for each
gRNA as well as off-target sites. These primers are helpful
when conducting on and off-target validation. CRISPOR
enables the filtering of gRNAs with genomic variants based on
well-known variant databases.

FIGURE 7
Spearman correlation for ML-based tools over the different datasets. Each polygon represents a tool, and the edges illustrate the obtained correlation
over the respective dataset.
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Some computational tools use CNNs for feature extraction or
classification of CRISPR Cas. For instance, Seq-deepCpf1 (Kim et al.,
2018; Kwon et al., 2019) has used CNN to extract features from the
input gRNA sequence. And DeepCRISPR incorporates a CNN for
predicting CRISPR/Cas9 gRNA on-target knockout efficiency and
whole-genome off-target profiles. Also, DeepCas9 uses CNN to
automatically learn the sequence determinants and predict the
activities of gRNAs across multiple species genomes (Bhagwat and
Khuri, 2021). Deeper-Bind (Hassanzadeh and Wang, 2016) used a
LSTM layer to learn the dependencies between sequence features; this
helps improve the prediction of protein binding specificity (Zhang
et al., 2020). C-RNNCrispr (Zhang et al., 2020) has used a hybrid
architecture combining CNN with bidirectional GRU (BGRU) to
predict sgRNA cleavage efficacy (Sledzinski et al., 2020).

The performance of these tools is quantitatively assessed with
two commonly used evaluation metrics, including accuracy and
Spearman Correlation Coefficient (SCC) between predicted and
real detected off-target activity. However, other evaluation metrics
like Precision and Sensitivity (Eqs 2, 3) are used in some research as
well. Spearman correlation seems to be a more reliable criterion.
Most of these tools achieve promising accuracy in off-target
prediction. Figures 5, 6 compare the off-target prediction
efficacy of some popular tools. Due to their importance, we
compare the accuracy of DL-based tools in separate diagram.
The average accuracy of these tools is illustrated in the figures,
as their accuracy differs among different genomes. For example,
DeepCRISPR was the most accurate tool in the HEL cell line but
performed poorly in the others. More details can be found in
(Wang et al., 2019a; Zhu and LiangCRISPR-, 2019). Also, as a ML
method, the accuracy differs between the train and test datasets.
Unfortunately, for DeepCas9 and DeepSpCas9 (Chen et al., 2019),
there is no report in their primary reference for the training dataset
and the test dataset in CRISPRLearner (Bhagwat and Khuri, 2021).
Accuracy, Precision, and Sensitivity are defined as follows, where
TP, FP, TN, and FN represent true positive, false positive, true
negative, and false negative, respectively.

Accuracy � TP + TN
TP + FP + TN + FN

(1)

Precision � TP

TP + FP
(2)

Sensitivity � TP

TP + FN
(3)

SCC evaluates the ability of the models to predict the actual
efficiency of each gRNA sequence (Konstantakos et al., 2022).
While some models are trained to minimize the mean squared
error (MSE), the comparison between models on different datasets
is necessarily made using Spearman correlation. Figure 7 compares the
predictive ability of off-target sites in some ML-based tools over five
datasets named Zebrafish_G, Zebrafish_S, HEL, A375, and mESC. In
general, the larger the polygon area, the better the overall performance
of the tool. Figure 7 clearly illustrates the better and more robust
performance of the DeepHF, DeepSpCas9, and DeepCas9 models. As
shown, classic ML-based tools such as Azimuth 2.0 achieve
comparable performance to DL-based tools. Also, even though
E-CRISP is more accurate than some learning-based tools, it does
not achieve high enough correlations. However, E-CRISP has stable
performance across all datasets. In addition, as it is clear from Figure 7,
DeepCRISPR outperforms the other tools on the HEL dataset, and

E-CRISP and CRISPRLearner achieve better results based on this
metric.

As mentioned, gRNAs are typically designed by computational
tools which compare gRNA sequence with a reference genome to
predict the activity of on-target and potential off-targets. However,
these tools can yield false-positive (FP) or false-negative (FN) results.
Furthermore, the DNA in clinical experiments can differ from the
reference genome used in the computational modeling, which means
they would be more false predictions. Therefore, the accuracy is less
than the values shown in Figure 7 in the actual experiment. To resolve
this problem, in-vitro based tools have been developed for the
experimental detection of off-target sites in a particular DNA
sample. Tools like SMRT-OTS and Nano-OTS (Höijer et al., 2020)
use long-read single-molecule sequencing.

In this article, we review both traditional and ML-based
approaches for gRNA designing and predicting off-target sites.
As mentioned before, experimental methods which use third-
generation sequencing technology, have a better performance in
Cas9 target detection on dark genomic regions (Höijer et al., 2020).
This new technology helps us to detect more on-target and off-
target sites and to design optimal gRNA. Furthermore, collected
data in experimental methods, could improve the accuracy of DL-
based tools.

Also, we have presented a comprehensive list of available tools.
Each tool has merits and demerits, and the performance of different
tools differs in different situations. According to our studies, some
tools can be a better choice in some situations; However, others may be
more popular in the scientific community. So, choosing the right tool
depends on the conditions and limitations of an application.

Among the alignment-based methods, tools like CRISPR-P,
Flycrispr, CRISPRseek, Cas-OFFinder, CasOT, sgRNACas9, and
Flashfly have high accuracy and efficiency; however, CRISPR-P and
Flycrispr are only used in specific genomes. Other tools such as
CRISPRseek, Cas-Offinder, and CasOT, are used in almost all
genomes. Moreover, they support only particular types of PAMs,
while methods such as sgRNACas9 and Flashfly are compatible with
all types of PAMs and seem to be a better option for designing gRNAs.

Among the learning-based methods, DL-based methods,
including C-RNNCrispr, DeepCpf1, DeepHF, DeepSpCas9, and
DeepCRISP, have drawn much interest recently. However,
learning-based methods such as CLD, CRISPR-ERA, sgRNA-
design, E-CRISP are significant due to their high accuracy and use
in all genomes. Finally, based on our study, methods such as CRISPR-
SE and E-CRISP are the best options to be used in all genomes with
high accuracy.

3 Conclusion

CRISPR systems have been developed for accurate genome
editing. Since genomic modifications are permanent (Ding et al.,
2018), it is crucial to make precise edits. Most of the tools or
methods in CRISPR’s field have been developed to help users
design proper gRNA with fewer off-target effects. It is considered
that the efficiency of one gRNA may differ among different models
and databases. Users must evaluate several gRNAs using multiple
models and select the best one for their experiments.

The previous successes of CNN and RNN architectures in
bioinformatics motivated other researchers to extend their
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applications with a DL platform, which we believe is the best
solution for predicting off-target effects. DL methods are
inexpensive and fast compared to experimental methods.
However, their accuracy depends on the amount of available
data for a model’s training. Additionally, most of existing
methods have three big problems, which means their predictions
are not exact. First, they calculate scores based on mismatches to the
guide sequence. However, DL-based methods can extract more
efficient features hidden in the input data. In other words, DL-based
methods can capture features other than gRNA sequence-based
features. These features can be utilized and encoded in the input
sequence to improve the performance of the existing DL
architectures. In addition, most proposed DL-based methods use
a one-hot vector representation to encode the input data. (Charlier
et al., 2021). The use of newer encoding and embedding methods
proposed in the field of DL can enhance the efficiency of existing
DL-based methods. Also, the use of gRNA-DNA pair encoding can
be helpful. Second, there is a rapid expansion in experimental data
in CRISPR research. Most methods cannot scale and improve their
performance with this new data. As known, DL-based methods
achieve better performance by training on large datasets, but they
require a pre-processing step to prepare and aggregate data
obtained from diverse sources based on different experimental
methods. This step requires enough knowledge about the type of
input data, the operation mechanism of CRISPR, and the
architecture of the deep neural network. Finally, the most severe
issue is that existing DL-based methods still need to be improved in
providing sufficient precision for clinical practice usage. NGS-
based whole-genome sequencing technologies help to discover
almost all off-target sites in the target genome and create a large
and more accurate train dataset. As the number of instances in a

train dataset increases, the predictions of DL-based methods
become closer to experimental observations.
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