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Motivation: The definition of the genome distribution of the Myc transcription

factor is extremely important since it may help predict its transcriptional activity

particularly in the context of cancer. Myc is among the most powerful

oncogenes involved in the occurrence and development of more than 80%

of different types of pediatric and adult cancers. Myc regulates thousands of

genes which can be in part different, depending on the type of tissues and

tumours. Myc distribution along the genome has been determined

experimentally through chromatin immunoprecipitation This approach,

although powerful, is very time consuming and cannot be routinely applied

to tumours of individual patients. Thus, it becomes of paramount importance to

develop in silico tools that can effectively and rapidly predict its distribution on a

given cell genome. New advanced computational tools (DeeperBind) can then

be successfully employed to determine the function of Myc in a specific

tumour, and may help to devise new directions and approaches to

experiments first and personalized and more effective therapeutic

treatments for a single patient later on.

Results: The use of DeeperBind with DeepRAM on Colab platform (Google) can

effectively predict the binding sites for the MYC factor with an accuracy above

0.96 AUC, when trained with multiple cell lines. The analysis of the filters in

DeeperBind trained models shows, besides the consensus sequence CACGTG

classically associated to the MYC factor, also the other consensus sequences

G/C box or TGGGA, respectively bound by the SP1 and MIZ-1 transcription

factors, which are known to mediate the MYC repressive response. Overall, our

findings suggest a stronger synergy between the machine learning tools as

DeeperBind and biological experiments, whichmay reduce the time consuming

experiments by providing a direction to guide them.
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1 Introduction

The myelocytomatosis, or MYC, gene belongs to a family of oncogenes coding for

transcription factors involved in cell growth and in the activation and the expression

of many pro-proliferative genes. In particular the MYC gene and its coded

transcription factor lie at the crossroad of many signal transduction pathways and

constitutes an early response downstream of many ligand-membrane receptor
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complexes, (Armelin et al., 1984).Given its important role,

MYC expression is heavily regulated by several molecular

mechanisms acting on many trascriptional regulatory

motifs found within its proximal promoter region,

(LaurenceHurley et al., 2006; Lorenzin et al., 2016). MYC

over expression is very common in several diagnosed types of

cancer in which it is expressed constitutively, (Ahmadiyeh

et al., 2010). A significant example is the Burkitt lymphoma in

which MYC disregulations and mutations are well studied

pathogenic causes, (Bhatia et al., 1993), (Magrath, 1990).

MYC encoded protein mechanism of action involves the

formation of an heterodimer with the related transcription

factor MAX, (Blackwood and Eisenman, 1991) (see Figure 1

for a schematic picture of this mechanism). The heterodimer

binds a 6-base DNA sequence (CACGTG) called E-box. Ifox.

Iftbox1 the binding occurs within a gene promoter and

possibly nearby the transcription start site of the gene, it

usually results in the activation of gene transcription.

MYC/Max can also bind other DNA sequences which are

slightly divergent from the canonical E-box such as CAtGTG,

or CACGcG and have different affinity for the transcription

factor, (Eisenman, 2001). Several studies have shown that the

use of different genome DNA binding sequences may depend

on the internal concentration of the Myc/Max complex, (Sabo

et al., 2014). In pathological condition in which the MYC gene

is amplified and overexpressed, it has been found that Myc can

also regulate transcription through a repressive mechanism,

(Herkert and Eilers, 2010). However, in that case, it has been

quite difficult to identify a specific DNA site recognized by the

Myc/Max complex onto the genome. It rather seems that such

repressive function is exerted by Myc by associating to

chromatin through the interaction with other transcription

factors. Several lines of evidence have shown that Myc can

associate with either the Sp1 transcription factor or with the

initiator Miz-1factor, (Iraci et al., 2011). The interaction with

SP1 or MIZ-1 allows Myc to recruit or regulate multiple

chromatin modifiers and readers such as Histone

Deacetylases, Sirtuins, Histone Demethylases and DNA

Methyl Transferase; in other words, proteins involved in

inducing heterochromatin formation to silence gene

transcription, (Corey et al., 2021). The possibility to predict

binding of MYC to genomic DNA appears relatively easy, as it

should be sufficient to bioinformatically identify the 6-base

DNA sequences that can be recognized by the Myc/Max

complex. However, sequence specificity alone cannot fully

explain the MYC-MAX complex binding dynamic and

occupancy across the genome, (Guo et al., 2014). Indeed,

the binding is strictly regulated by the chromatin context.

The simple methylation of the central cytosine of the E box or

the methylation of any of the cytosines of the CACGCG

sequence can totally abate the binding of the transcription

factor to DNA, (Giovanni et al., 2005). Thus prediction of the

distribution of Myc, along genome of a given cell, must take

into account DNA modifications. For what regards the

mapping of the Myc factor on repressed/silenced genes, the

attempt is even more complicated, since at the moment we

have no clue about the existence of DNA consensus sequences

that can be used as marks for such an activity. The accurate

prediction of the genome distribution of Myc on a given cell

genome is of paramount importance, considering that Myc is

one of the most powerful oncogenes directly involved in the

arising and progression of more than 80% of different types of

cancer. Myc regulates about two thousand genes which can be,

however, in part different, depending on the type of tissues

and tumours. Thus, it is a priority to devise computational

tools that may help determine the function of Myc in a specific

tumour, possibly in that of single patients, in order to

administer personalized and more effective therapeutic

treatments. Although several standard bioinformatic tools

have been used to address that problem, results have not

been particularly effective especially for what regards gene

repressed by MYC.

Recently, the scientific community witnessed the

outstanding performances of the Deep Learning algorithm

in many fields, (LeCun et al., 2015), (Geoffrey, 2018), despite

the fact this algorithm was originally developed for image

recognition (see (Hinton et al., 1990), (Hinton et al., 2006)).

The versatilily of the Deep Learning algorithm suggested then

new applications in tandem with a specific encoding and

representations of DNA sequences. In this work we take a

further step and use the DeepBind tool, developed in the

Canadian Institute for Advanced Research ((Alipanahi et al.,

2015)). With a revolutionary new representation of DNA

FIGURE 1
Regulation of MYC expression and binding mechanism.
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sequences, going beyond the one-hot-encoding, using data

coming via the Chip-Seq databases, researchers were able to

predict binding sites and further discern new patterns

associated with them, (Hassanzadeh and Wang, 2016),

(Trabelsi et al., 2019). There are two main advantages in

using DeepBind and its refinement DeeperBind. First,

DeepBind does not require a large amount of data, in

comparison with the other models of DeepRAM and more

generally the models coming from Deep Learning

architectures. This is a very convenient feature, since large

datasets are rarely available, at least not in an homogeneous

fashion, in biological databases. Then, the second advantage

consists in the fact that DeepBind allows the researchers to

view and analyze the filters of the neural network, hence

discovering the features that enabled the algorithm to

detect the binding sites. For example, ChIPanalyser (see

(Radu Zabet and Adryan, 2015) and refs. therein) and

other similar bioconductor packages need consensus

sequences and other key information about the

transcription factor in order to be able to predict binding

sites. On the contrary Deepbind and DeeperBind are able to

find old and new consensus sequences associated to a given

transcription factor, while at the same time enhancing the

performance of binding site recognition. The paves the road to

a revolutionary application of the Deep Learning algorithm

beyond the supervised tasks. As we shall see in our present

work, the analysis of the filters is able to suggest new directions

in research by discovering new sequences associated with the

MYC-MAX binding dynamics that could be then better

explored with further experimental analysis.

2 Materials and methods

The DeepBind architecture is a convolutional neural network

(CNN) with one convolutional layer followed by a non-linear

thresholding, a max-pooling layer and one/two fully connected

layers to estimate the intensity of inputs. The DeeperBind model,

(Hassanzadeh and Wang, 2016), is a further development of

DeepBind with twice the depth two LSTM (Long short-term

memory) recurrent layers stacked on top of the convolutional

layers. While the convolutional layers extract the features by

applying several PWM-like filters, the RNN (recurrent neural

network) captures the sequential dependencies of the sub-motifes

identified by the convolutional part of the network.We

performed the training via the DeepRAM tool on the Colab

platform. It performs an automatic calibration by training

40 different models whose architecture is summarized in

Figure 2, with randomly sampled hyperparameters and

choosing according to the performance of the corresponding

model. After the best hyperparameter set is identified, six

different models are trained with it. Among this six models

DeepRAM will select and save the one with the highest precision.

First, we explored the model functionality and behaviour on a

relatively small dataset consisting of the collection of

300 sequences from the experiments belonging to just the

H1 cell line. Once done with this first exploratory run and

selected the best hyperparameters, we proceeded with the

training of the model with the given hyperparameters with

12,000 sequences obtained with the dataset JFK_4000 obtained

by selecting 4000 sequences from the experiments in Chip-Seq.

We take sequences of length 301, three times larger than the ones

FIGURE 2
The architecture of the CNN DeeperBind model.
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examined by the DeepRAM models in Deepbind and

Deeperbind. We also remark that one feature of the model is

the random initialization of the filters parameters: consensus

sequences are learned as the algorithm progresses and determines

the weights of our model.

We then sorted each of the retrieved experimental data

according to the score associated to each peak, that is, the

Myc binding site, selecting peaks with the highest score from

each experiment. For the purpose of our study we extracted

301 nt long sequences from the hg19 human genome assembly.

Each sequence was centered on the middle point of the

corresponding peak. The sequences thus obtained form the set

of positive sequences, in other words, the sequences bound by

MYC. Given the set of positive sequences, we generated a set of

negative sequences through dinucleotide shuffling, that is the

process of randomly shuffling a DNA sequence while preserving

the counts of the 16 different dinucleotides. In such a way, the

model is prevented from simply relying on the low-level statistics

of genomic regions, such as promoters or coding regions, to

discriminate positives from negatives.

We summarize in the next two tables the splitting into

training, validation and test that we followed for each of our

datasets and the composition of our datasets in terms of positive

and negative sequences:

3 Results

We run our models with different datasets elucidated in

Table 1 The databases can be downloaded at https://github.com/

TABLE 1 Our DeepBind models on myc and AUC.

Architecture Dataset ID Size AUC

DeepBind* H1 ENCFF002DAQ 2700 0.76

DeepBind* IGP_2000 ENCFF569IGP 6000 0.9032

DeepBind* JKF_4000 ENCFF465JKF 12,000 0.8926

DeepBind* B4_2000 ENCFF465JKF, ENCFF502JKO, ENCFF569IGP, ENCFF695IQU 24,000 0.9319

ECLSTM B4_2000 ENCFF465JKF, ENCFF502JKO, ENCFF569IGP, ENCFF695IQU 24,000 0.9409

ECLSTM IQU10k ENCFF695IQU 30,000 0.9378

DeepBind-E* B4_2000 ENCFF465JKF, ENCFF502JKO, ENCFF569IGP, ENCFF695IQU 24,000 0.9636

ECLSTM B4_2000 ENCFF465JKF, ENCFF502JKO, ENCFF569IGP, ENCFF695IQU 24,000 0.9583

FIGURE 3
Red dot represents AUC of our model, green dots the various DeepBind architectures ((Hassanzadeh and Wang, 2016) and Refs. therein).

Training Validation Test Positive seq. Negative seq.

70% 20% 10% 33% 66%
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MedChaabane/deepRAM. Column 2 in Table 1 reports the

dataset label, that we use to refer to it in our paper. We

summarize our results in Table 1 and Figure 3.Those results

have accuracies expressed via AUC (area under the ROC curve),

a statistical device, measuring the accuracy of a binary response:

the closer to 1 the better is the accuracy. For a thorough

explanation of this statistical concept, see (Swets, 1988) and

the expository (Fawcett, 2006) with refs. Therein.

Table 2 reports the AUC for DeepBind (ref. (Hassanzadeh

and Wang, 2016)), measuring the accuracy in Myc binding site

(peak) recognition for the cell line H1-hESC, in parenthesis an

estimation of the error.

So, we notice an accuracy slightly larger than the original

Deepbind experiments, though it is not possible to make a

full comparison between experiments, due to a different

training set size and context. In fact our model, a

modification of Deepbind, is focussing on the myc

transcription factor only and it is training on all cell lines,

thus enhancing the generalization capability of our

algorithm. Another important difference is that our model

takes a convolution spanning 301 nt, versus the more

common 100 nt one of DeepBind and DeepBinder models.

We also report a more appropriate graphic comparison with

the other models, with a similar training set size in Figure 3;

however those models regarded also other transcription

factors besides Myc.

As Figure 4 shows, at the end of the training, we can examine

the learned filters, containing the information the algorithm

effectively uses to reach the high accuracy binary classification.

By analyzing the filters, we discovered two consensus

sequences: one for the MYC factor and, surprisingly, another

one, that we call “non-canonical”. Such new sequence shares

similarities with the one recognized by the RPBJ factor. No other

sequence emerges with the same importance as these two, as

expressed in Figure 4.Interestingly, the non-canonical consensus

sequence can be split into two DNA regions which share some

degree of similarity with the DNA consensus sequences

respectively recognized by the SP1 transcription factor (C/G

rich region) or the MIZ-1 initiation factor (TGGGA), usually

used by MYC to exert transcriptional repression. In order to

further explore the pattern-learning capabilities of the model, we

generated the position weight matrices (PWM) for the two filters

in DeeperBind (see Figure 4), which better captured the

consensus sequences. The position weight matrix for DNA

analysis is a 4xN matrix commonly used for representation of

motifs of length N in biological sequences. They are obtained

from sets of aligned sequences in order to check if they are

functionally related and they are now an important tool available,

through various software implementations, for computational

motifs search and discovery. PWM elements are calculated via

the position probability matrix (PPM), which counts and

normalizes the frequency of each of the four nucleotides for

each position in a given sequence, and then checking the distance

between their distribution in the given sequence and the

distribution in a random sequence with the use of the log

likelihood function (related with Kullback Leibler divergence,

an effective method to measure the distance between two

probability distributions). In our analysis, we first annotated

all the sequences we used for our models training, assigning,

when possible, a gene to each sequence. Among the

8000 sequences we started with (Table 1), we were able to

identify 5591 genes. We then built two datasets containing the

sequences corresponding to the genes whose expression is,

respectively, promoted or repressed by Myc. In the end,

comparing the annotated sequences with the validated target

of Myc transcriptional activation and repression, we obtained

53 sequences (of length 301) corresponding to target

transcriptional activation and 21 sequences (of length 301)

corresponding to target transcriptional repression. We then

tested the two PWM obtained from the models filters on each

of the two datasets. We found out that the PWM obtained from

the filter (through a sliding procedure) which learned the

canonical consensus sequence (Figure 4, filter 2) had higher

affinity (score) for 41 sequences among the 53 transcriptional

activation targets compared to the non-canonical one (Figure 4,

filter 1). On the other hand, the non-canonical consensus

sequence (Figure 4, filter 1) had higher affinity for

14 sequences among the 21 transcriptional repression targets

as expected. Our comparison is based on assigning a score to the

TABLE 2 AUC of DeepBind on Myc (Hassanzadeh and Wang, 2016) on
Training and Test datasets.

AUC on training data 0.9114 (0.0006)

AUC on test data 0.9301 (0.0097)

FIGURE 4
Filter 1 (above), filter 2 (below) expressing the learned
consensus sequences in DeeperBind. Coloring for letters marks
nucleotides, coloring for the filters indicates the values for the
weights, hence their importance (the darker, the higher is the
weight).

Frontiers in Bioinformatics frontiersin.org05

Fioresi et al. 10.3389/fbinf.2022.1015993

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2022.1015993


comparison via PWM between the sequence (of length 24) of

filter 1 (resp. filter 2) of Figure 4 and each sequence on each of the

21 (resp. 53) sequences of transcriptional activation

(resp. repression) of Myc. In 14 (resp. 41) instances the score

of filter 1 is higher than the one obtained with filter 2. We

summarize our findings in Table 3.

These findings go in the direction of the current

understanding of Myc binding dynamics and suggest further

investigation in both confirming our qualitative findings for the

new consensus sequence (Figure 4, filter 1) and then in trying

new models to discover novel consensus sequences both for

activation and repression. Our findings support the idea that our

in silico approach can help discriminate those DNA sequences

that can serve as either Myc binding site for active transcription

or sites for indirect association of Myc to genes that are

repressed/silenced (Table 3). The analysis, even if performed

on a small annotated dataset, highlights the capabilities, not yet

fully exploited, of CNN models to extract and generalize the

contextual relevance of regulatory sequences. We further

speculate that, with more annotated data and the

consequently appropriate training, the model could learn

more consensus sequences related with the functional role

played by a given transcription factor.

4 Conclusion

DeeperBind paired with DeepRAM obtaines extraordinary

results in predicting binding sites for the MYC factor, reaching

an accuracy above 0.96 AUC, when trained with multiple cell lines

(see Table 1).We notice a substantial improvement in the accuracy

(AUC), when we move from a training set extracted from just one

cell line to one coming from multiple (up to six) cell lines (see

Figure 2): this is possibly linked to the fact that MYC factor is

independent from the cell line, hence training with variations

enhances the recognizing ability of the algorithm. From the

analysis of the filters, we discover that the model does not only

learn the consensus sequence CACGTG classically associated to

the MYC factor, but learns also other motifs with less significance

for the classification task. For example in Figure 2 we see the

consensus sequence TGGGA, associated with the RPBJ factor,

suggesting a possible correlation between the presence ofMYCand

RPBJ factors. We plan to explore this further in the future. In

conclusion, we believe that mapping each filter on positive

sequences may help to identify which filter is more relevant for

the prediction and were it maps on the actual biological sequence.

It also can suggest new correlations between different factors as

MYC and RPBJ. These capabilities may open the path for novel

biological findings without the extensive use of time and resource

consuming laboratory essays.
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