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Predictions for millions of protein three-dimensional structures are only a few

clicks away since the release of AlphaFold2 results for UniProt. However, many

proteins have so-called intrinsically disordered regions (IDRs) that do not adopt

unique structures in isolation. These IDRs are associated with several diseases,

including Alzheimer’s Disease. We showed that three recent disorder measures

of AlphaFold2 predictions (pLDDT, “experimentally resolved” prediction and

“relative solvent accessibility”) correlated to some extent with IDRs. However,

expert methods predict IDRs more reliably by combining complex machine

learning models with expert-crafted input features and evolutionary

information from multiple sequence alignments (MSAs). MSAs are not always

available, especially for IDRs, and are computationally expensive to generate,

limiting the scalability of the associated tools. Here, we present the novel

method SETH that predicts residue disorder from embeddings generated by

the protein LanguageModel ProtT5, which explicitly only uses single sequences

as input. Thereby, our method, relying on a relatively shallow convolutional

neural network, outperformed much more complex solutions while being

much faster, allowing to create predictions for the human proteome in

about 1 hour on a consumer-grade PC with one NVIDIA GeForce RTX 3060.

Trained on a continuous disorder scale (CheZOD scores), our method captured

subtle variations in disorder, thereby providing important information beyond
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Abbreviations: 3D, three-dimensional, i.e., coordinates of all atoms/residues in a protein; AI, artificial
intelligence;AlphaFold2: AI-basedmethod reliably predicting protein 3D structure fromMSAs (Jumper
et al., 2021); ANN, an artificial feed-forward neural network; AUC, area under the receiver operating
characteristic curve; CheZOD scores, chemical shift Z-scores from NMR (Nielsen and Mulder, 2019);
CI, confidence interval, here typically used as the 95% CI implying an interval between ±1.96*Standard
Error; CNN, convolutional neural network; ColabFold, protocol for fast execution of AlphaFold2
(Mirdita et al., 2022); GPU, graphical processing unit; IDP, intrinsically disordered proteins (Dunker
et al., 2013); IDR, intrinsically disordered regions (Dunker et al., 2013); LinReg, a linear regression
model; LogReg, a logistic regression model; MSA, multiple sequence alignment; NMR, nuclear
magnetic resonance; PCA, principle component analysis; PIDE, percentage pairwise sequence
identity; pLDDT, predicted local distance difference test from AlphaFold2 (Jumper et al., 2021);
pLM, protein Language Model; ProtT5, particular pLM (Elnaggar et al., 2021); RSA, relative solvent
accessible surface area of a residue; SETH, a CNN for continuous disorder prediction (our best model);
SOTA, state-of-the-art; t-SNE, t-distributed stochastic neighbor embedding; ρ, Spearman correlation
coefficient.
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the binary classification of most methods. High performance paired with speed

revealed that SETH’s nuanced disorder predictions for entire proteomes

capture aspects of the evolution of organisms. Additionally, SETH could also

be used to filter out regions or proteins with probable low-quality AlphaFold2

3D structures to prioritize running the compute-intensive predictions for large

data sets. SETH is freely publicly available at: https://github.com/Rostlab/SETH.

KEYWORDS

protein disorder, residue disorder, IDP, IDR, protein structure prediction, AlphaFold2,
protein language model

Introduction

IDRs crucial for life

Protein sequence determines protein three-dimensional (3D)

structure, which, in turn, determines protein function. While this

dogma usually refers to proteins folding into well-defined 3D

structures, other proteins do not adopt unique 3D structures in

isolation. Instead, these so-called intrinsically disordered proteins

[IDPs (Dunker et al., 2013)] with intrinsically disordered regions

(IDRs) sample their accessible conformational space, thereby

expanding their functional spectrum (Wright and Dyson, 1999;

Radivojac et al., 2004; Tompa et al., 2005; Tompa et al., 2006; Tompa

et al., 2008; Uversky et al., 2009; Schlessinger et al., 2011) and

possibly providingmechanisms to copewith evolutionary challenges

(Tantos et al., 2009; Vicedo et al., 2015a; Vicedo et al., 2015b). The

difference between long IDRs and long loops (neither helix nor

strand) can be reliably predicted from sequences (Schlessinger et al.,

2007b). For very short regions, IDRs and loops are technically not

distinguishable in a predictive sense. Therefore, IDRs have to be

longer than some minimal length Lmin for identification. While the

precise value for Lmin remains obscure, Lmin = 10 is clearly too

short and Lmin = 30 is clearly sufficient, as may be many values in

between (Schlessinger et al., 2011). Using the more conservative

Lmin = 30, about 20–50% of all proteins in an organism are

predicted to contain IDRs, with higher abundance in eukaryotes,

especially in mammals (Romero et al., 1998; Liu et al., 2002;

Schlessinger et al., 2011). Additionally, every fourth protein has

been predicted as completely disordered (Dunker et al., 2008). This

ubiquitous nature of disorder highlights its importance for the

correct functioning of cells and makes the identification of IDRs

crucial for understanding protein function. Alzheimer’s disease and

Huntington’s disease, which are related to malfunctioning of

disordered proteins/IDRs upon mutation, further underline this

importance (Dyson and Wright, 2005; Dunker et al., 2008).

CheZOD scores best characterize IDRs
experimentally

The experimental study of protein disorder remains difficult.

X-ray crystallography is challenged by the lack of rigidity and

nuclear magnetic resonance (NMR) remains limited to proteins

shorter than average [~450 residues (Howard, 1998; Oldfield et al.,

2013; Nwanochie and Uversky, 2019)]. An additional

complication is that upon binding to substrates, IDRs may

appear ordered (Nielsen and Mulder, 2019). Arguably, today’s

best experimental approach toward capturing IDRs are NMR-

derived chemical shift Z-scores (CheZOD scores), despite the

length-limitation (Nielsen and Mulder, 2019). In contrast to

binary measures such as “missing X-Ray coordinates” (Romero

et al., 1998), CheZOD scores provide a well-calibrated measure for

the nuances of per-residue disorder. CheZOD scores are computed

from the difference of chemical shift values obtained in NMR

spectroscopy (Howard, 1998) and computed random coil chemical

shift values (Nielsen and Mulder, 2020).

Many prediction methods available

The limited scalability of labor-intensive and expensive wet-lab

experiments has spawned many computational tools predicting

IDRs, including (from old to new): PONDR (Romero et al., 1998;

Peng et al., 2005), NORSp (Liu et al., 2002), DISOPRED2 (Ward

et al., 2004), IUPred (Dosztanyi et al., 2005), FoldIndex (Prilusky

et al., 2005), RONN (Yang et al., 2005), PrDOS (Ishida and

Kinoshita, 2007), NORSnet (Schlessinger et al., 2007a),

PreDisorder (Deng et al., 2009), MetaDisorder-MD

(Schlessinger et al., 2009), ESpritz (Walsh et al., 2012),

MetaDisorder (Kozlowski and Bujnicki, 2012), AUCpreD

(Wang et al., 2016), SPOT-Disorder (Hanson et al., 2016),

SPOT-Disorder-Single (Hanson et al., 2018), SPOT-Disorder2

(Hanson et al., 2019), rawMSA (Mirabello and Wallner, 2019),

ODiNPred (Dass et al., 2020) and flDPnn (Hu et al., 2021). As for

almost every phenotype since the introduction of the combination

of machine learning and evolutionary information (EI), derived

from multiple sequence alignments [MSAs (Rost and Sander,

1993)], MSA-based predictions out-performed methods not

using MSAs (Nielsen and Mulder, 2019; Dass et al., 2020).

However, using MSAs slows down inference and performs

worse for proteins in small families. This complicates the

prediction of IDRs, which are inherently difficult to align due

to, e.g., reduced sequence conservation in comparison to

structured regions (Radivojac et al., 2002; Lange et al., 2016).
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Besides these methods directly predicting disorder,

AlphaFold2 (Jumper et al., 2021), Nature’s method of the year

2021 (Marx, 2022), which provided a leap in the quality of

protein structure predictions from MSAs and increases the

width of structural coverage (Bordin et al., 2022), also

provides measures indicative of IDRs. One of these, the

pLDDT (predicted local distance difference test), estimates the

performance of AlphaFold2 depending on prediction strength,

i.e., it measures prediction reliability as introduced for secondary

structure prediction (Rost and Sander, 1993). However, instead

of measuring it from the class output, AlphaFold2 uses different

objective functions and predicts its own reliability. The pLDDT

distinguishes formidably well between trustworthy and less

reliable predictions (Jumper et al., 2021). Additionally, low

values for pLDDT have been suggested to predict IDRs rather

accurately (Akdel et al., 2021; Wilson et al., 2021; Piovesan et al.,

2022) or to predict non-existing proteins (Monzon et al., 2022).

Furthermore, the “experimentally resolved” prediction of

AlphaFold2 should also contain information on disorder, since

missing coordinates in experimentally recorded structures were

an established definition of disorder (Dunker et al., 1998;

Monastyrskyy et al., 2014). Lastly, the relative solvent

accessible surface area of a residue [RSA (Connolly, 1983;

Rost and Sander, 1994)] and its window average, calculated

for AlphaFold2 structure predictions, were also reported to be

disorder predictors (Akdel et al., 2021; Piovesan et al., 2022; Redl

et al., 2022).

Here, we bypassed the problem of generating MSAs for IDRs,

by using embeddings from pre-trained protein language models

(pLMs). Inspired by recent leaps in Natural Language Processing

(NLP), pLMs learn to predict masked amino acids (tokens) given

their surrounding protein sequence (Asgari and Mofrad, 2015;

Alley et al., 2019; Bepler and Berger, 2019; Heinzinger et al., 2019;

Bepler and Berger, 2021; Elnaggar et al., 2021; Ofer et al., 2021;

Rives et al., 2021; Wu et al., 2021). Toward this end, amino acids

correspond to words/tokens in NLP, while sentences correspond

to full-length proteins in most current pLMs. As no information

other than the amino acid sequence is required at any stage (self-

supervised learning), pLMs efficiently leverage large but

unlabeled databases with billions of protein sequences, such as

BFD with more than two billion sequences (Steinegger et al.,

2019). The information learned by the pLM during so-called

(pre-) training can be retrieved and transferred afterwards

(transfer learning), by encoding a protein sequence in vector

representations (embeddings). In their simplest form,

embeddings mirror the last “hidden” states/values of pLMs. In

analogy to NLPs implicitly learning grammar, embeddings from

pLMs capture some aspects of the language of life as written in

protein sequences (Alley et al., 2019; Heinzinger et al., 2019; Ofer

et al., 2021; Rives et al., 2021), which suffices as exclusive input to

many methods predicting aspects of protein structure and

function (Asgari and Mofrad, 2015; Alley et al., 2019;

Heinzinger et al., 2019; Littmann et al., 2021a; Littmann et al.,

2021b; Littmann et al., 2021c; Elnaggar et al., 2021; Heinzinger

et al., 2021; Marquet et al., 2021; Rives et al., 2021).

First, we compared to which extent embeddings from five

pLMs [ESM-1b (Rives et al., 2021), ProtBERT (Elnaggar et al.,

2021), SeqVec (Heinzinger et al., 2019), ProtT5 (Elnaggar et al.,

2021) and ProSE (Bepler and Berger, 2021)] could predict the

degree of disorder of a residue as defined by CheZOD scores.

Toward that end, we fit a minimal machine learning model

(linear regression) on each of the five pLM embeddings. No pLM

was fine-tuned in any way. The best performing embeddings

served as input to partly a little more complex models, namely a

logistic regression (LogReg), another linear regression (LinReg;

trained on the full training set, as opposed to the linear regression

used to compare pLMs, which was only trained on 90% of the

training set), a two-layer neural network (ANN), and a two-layer

convolutional neural network (CNN; dubbed SETH (Self-

supervised Embeddings predicT chemical sHift Z-scores)). By

training regression and classification models, we also investigated

the benefit of training on nuanced CheZOD scores compared to

binary disorder classification. The combination of using a rather

simplistic model and embeddings from single protein sequences

enabled the final method SETH to predict disorder for the entire

Swiss-Prot with over 566,000 proteins (The UniProt Consortium

et al., 2021) in approximately 7 h on a machine with one RTX

A6000 GPU with 48 GB vRAM.

Since recent work showed that AlphaFold2’s (smoothed)

pLDDT and (smoothed) RSA can be used to predict disorder

(Akdel et al., 2021; Wilson et al., 2021; Piovesan et al., 2022; Redl

et al., 2022), we tested AlphaFold2 on CheZOD scores (following

the advice of John Jumper, we also analyzed “experimentally

resolved” predictions). Furthermore, we investigated the

agreement between the disorder predictions of our best

method and the pLDDT for 17 organisms, to establish SETH

as a speed-up pre-filter for AlphaFold2. Lastly, we visually

analyzed whether the predicted disorder spectrum carried any

information about the evolution of 37 organisms.

Methods

Data sets

CheZOD scores
To streamline comparability to existing methods, we used

two datasets available from ODiNPred (Dass et al., 2020) for

training (file name CheZOD1325 in GitHub; 1,325 proteins) and

testing (file name CheZOD in GitHub; 117 proteins). Each

dataset contains protein sequences and CheZOD scores for

each residue. The CheZOD score measures the degree of

disorder of the residue and is calculated from the difference

between chemical shift values obtained by NMR spectroscopy

(Howard, 1998) and computed random coil chemical shifts

(Nielsen and Mulder, 2020). These differences vary
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considerably between ordered and disordered residues, thereby

continuously measuring the nuances of order/disorder for each

residue (Nielsen and Mulder, 2020).

Redundancy reduction (CheZOD1174 and
CheZOD117)

To avoid overestimating performance through pairs of

proteins with too similar sequences between training and

testing sets, we constructed non-redundant subsets. Firstly, we

built profiles (position specific scoring matrices; PSSMs) from

multiple sequence alignments (MSAs) for proteins in the test set,

obtained through three iterations with MMSeqs2 [(Steinegger

and Söding, 2017); using default parameters, except for “--num-

iterations 3”, an established number of iterations, also applied in

ColabFold (Mirdita et al., 2022) and enabling sensitive but still

fast sequence searches (Steinegger and Söding, 2017)] against

proteins in the training set. Next, any protein in the training set

with >20% PIDE (percentage pairwise sequence identity) to any

test set profile using bi-directional coverage [with default

coverage threshold of 80%, focusing on joining proteins with

similar domain composition (Hauser et al., 2016)] was removed

using MMSeqs2 high-sensitivity (--s 7.5) search. The value

PIDE<20% was, for simplicity, concluded from an earlier

analysis of the reach of homology-based inference for the

structural similarity of protein pairs (Rost, 1999). The training

set had been constructed such that all protein pairs had <50%
PIDE (Dass et al., 2020), and we did not reduce the redundancy

within the training set any further. Secondly, we removed all

residues without valid CheZOD scores [indicated by CheZOD

scores≥900; for all models apart from SETH, they were removed

after embedding generation, while for SETH (CNN) they were

removed before, to enable undisturbed passing of information

from neighboring residues]. The resulting training set (dubbed

CheZOD1174) contained 1,174 proteins with a total of

132,545 residues (at an average length of 113 residues, these

proteins were about 3–4 times shorter than most existing

proteins). The resulting dataset for testing (dubbed

CheZOD117) contained 117 sequences with a total of

13,069 residues (average length 112). Consequently, we did

not alter the test set published alongside ODiNPred, which

has been used to evaluate 26 disorder prediction methods

(Nielsen and Mulder, 2019), enabling a direct comparison of

the results. However, we altered the training data published and

used for ODiNPred, to reduce the overlap between training and

testing.

Dataset distributions
After preparing the data, we analyzed the distributions of the

CheZOD scores for both CheZOD117 and CheZOD1174

(Supplementary Figure S1). The CheZOD scores in these sets

ranged from -5.6 to 16.2. Nielsen and Mulder had previously

established a threshold of eight to differentiate between disorder

(CheZOD score≤8) and order (CheZOD score>8) (Nielsen and

Mulder, 2016). In both sets, the CheZOD score distributions were

bimodal, but while there was an over-representation of ordered

residues in the training set CheZOD1174 (72% ordered),

disordered residues were most prevalent in the test set

CheZOD117 (31% ordered). As artificial intelligence (AI)

always optimizes for similar distributions in train and test, the

train-test set discrepancy provided an additional safeguard

against over-estimating performance.

Input embeddings

Five pLMs
Protein sequences from both sets (CheZOD117,

CheZOD1174) were encoded as distributed vector

representations (embeddings) using five pLMs: 1) SeqVec

(Heinzinger et al., 2019), based on the NLP algorithm ELMo

(Peters et al., 2018), is a stack of bi-directional long short-term

memory cells (LSTM (Hochreiter and Schmidhuber, 1997))

trained on a 50% non-redundant version of UniProt (The

UniProt Consortium et al., 2021) [UniRef50 (Suzek et al.,

2015)]. 2) ProtBERT (Elnaggar et al., 2021), based on the

NLP algorithm BERT (Devlin et al., 2018), trained on BFD,

the Big Fantastic Database (Steinegger and Söding, 2018;

Steinegger et al., 2019), with over 2.1 billion protein

sequences. 3) ESM-1b (Rives et al., 2021), conceptually similar

to (Prot)BERT (both use a stack of Transformer encoder modules

(Vaswani et al., 2017)), but trained on UniRef50. 4) ProtT5-XL-

U50 (Elnaggar et al., 2021) (dubbed ProtT5 for simplicity), based

on the NLP sequence-to-sequence model T5 (Transformer

encoder-decoder architecture) (Raffel et al., 2020), trained on

BFD and fine-tuned on Uniref50. 5) ProSE (Bepler and Berger,

2021), consisting of LSTMs trained on 76M unlabeled protein

sequences in UniRef90 and additionally on predicting intra-

residue contacts and structural similarity from 28k SCOPe

proteins (Fox et al., 2014). While ProtBERT and ESM-1b were

trained on reconstructing corrupted tokens/amino acids from

non-corrupted (protein) sequence context (i.e., masked language

modeling), ProtT5 was trained by teacher forcing, i.e., input and

targets were fed to the model, with inputs being corrupted

protein sequences and targets being identical to the inputs but

shifted to the right (span generation with span size of one for

ProtT5). In contrast, SeqVec was trained on predicting the next

amino acid, given all previous amino acids in the protein

sequence (referred to as auto-regressive pre-training). All

pLMs, except for ProSE, were optimized only through self-

supervised learning, i.e., exclusively using unlabeled sequences

for pre-training. In contrast, ProSE was trained on three tasks

simultaneously (multi-task learning), i.e., masked language

modeling was used to train on 76M unlabeled sequences in

UniRef90 and training to predict residue-residue contacts

together with structural similarity was performed using 28k

labeled protein sequences from SCOPe (Fox et al., 2014).

Frontiers in Bioinformatics frontiersin.org04

Ilzhöfer et al. 10.3389/fbinf.2022.1019597

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2022.1019597


Embeddings: Last hidden layer
Embeddings were extracted from the last hidden layer of the

pLMs, with ProtT5 per-residue embeddings being derived from

the last attention layer of the model’s encoder-side using half-

precision. The bio_embeddings package was used to generate the

embeddings (Dallago et al., 2021). The resulting output is a single

vector for each input residue, yielding an LxN-dimensional

matrix (L: protein length, N: embedding dimension; N =

1,024 for SeqVec/ProtBERT/ProtT5; N = 1,280 for ESM-1b;

N = 6,165 for ProSE).

Choosing embeddings best suited for IDR
prediction

To find the most informative pLM embeddings for predicting

IDRs/CheZOD score residue disorder, we randomly chose 90% of

the proteins in CheZOD1174 and trained a linear regression model

on each of the five pLM embeddings to predict continuous CheZOD

scores. To simplify the comparison and “triangulation” of our

results, we also compared these five embedding-based models to

inputting the standard one-hot encodings (i.e., 20 instead of 1,024/

1280/6,165 input units per residue). One-hot encodings represent

each residue/sequence position by a 20-dimensional vector, for the

20 standard amino acids essentially contained in all proteins. Each

position in the vector corresponds to one amino acid, i.e., the

elements of the vector are binary: one for the position in the

vector corresponding to the encoded amino acid, zero otherwise.

The special case “X” (unknown amino acid) was encoded in a 20-

dimensional vector containing only 0s. The linear regressions were

implemented with the LinearRegression module of scikit-learn

(Pedregosa et al., 2011) with all parameters left at default values.

We evaluated the models on the remaining 10% of CheZOD1174

using the Spearman correlation coefficient (ρ; Eq. 2) and the AUC

(area under the receiver operating characteristic curve; Eq. 3; see

Methods Evaluation).

Unsupervised embedding analysis
Lastly, we analyzed the ProtT5 embeddings of CheZOD117 in

more detail by creating a t-distributed stochastic neighbor

embedding [t-SNE (van der Maaten and Hinton, 2008)] using

scikit-learn (Pedregosa et al., 2011). PCA (principle component

analysis (Wold et al., 1987)) initialized the t-SNE to enable higher

reliability of the resulting structure (Kobak and Berens, 2019).

Furthermore, following a rule of thumb previously established

(Kobak and Berens, 2019), the perplexity was chosen at the high

value of 130 (1% of the sample size) to emphasize the global data

structure (Kobak and Berens, 2019) in order to identify putative

clusters of order or disorder (defaults for all other parameters).

New disorder prediction methods

We optimized four models to predict disorder: 1) linear

regression (dubbed LinReg), 2) multi-layer artificial neural

network (dubbed ANN), 3) two-layer CNN (dubbed SETH)

and 4) logistic regression (dubbed LogReg). The models used

throughout this work were deliberately kept simple to gain speed

and avoid over-fitting. Three of our models were trained on

regression (LinReg, ANN and SETH), while LogReg was trained

on discriminating disordered from ordered residues (binary

classification: disorder: CheZOD score≤8, order: CheZOD

score>8 (Nielsen and Mulder, 2016)).

SETH was implemented in PyTorch (Paszke et al., 2019)

using Conv2d for the convolutional layers, MSELoss as loss

function and Adam as optimizer (learning rate of 0.001),

activating amsgrad (Reddi et al., 2018). Additionally, we

padded to receive one output per residue and set all random

seeds to 42 for reproducibility. Lastly, we randomly split

CheZOD1174 into training (90% of proteins: optimize

weights) and validation (10%: for early-stopping after

10 epochs without improvement, hyper-parameter

optimization: of the best performing models, we chose that

with the most constraints (Supplementary Figure S3, red bar),

resulting in a kernel size of (5,1), 28 output channels of the first

convolutional layer, the activation function Tanh between the

two convolutional layers and the weight decay parameter of

0.001 in the optimizer). Details for LinReg, ANN and LogReg are

in Supplementary Material S1.1 and Supplementary Figure S2.

AlphaFold2

AlphaFold2 (Jumper et al., 2021) predicts a reliability for each

residue prediction, namely, the pLDDT. This score and its

running average over a window of consecutive residues have

been claimed to predict disorder (Akdel et al., 2021; Wilson et al.,

2021; Piovesan et al., 2022; Redl et al., 2022). Another objective

function predicted by AlphaFold2, namely, the “experimentally

resolved” prediction (Jumper et al., 2021) is likely also

informative, as missing coordinates in experimental structures

have been used to define disorder (Dunker et al., 1998;

Monastyrskyy et al., 2014). To analyze these AlphaFold2

predictions against CheZOD scores, we applied ColabFold

(Mirdita et al., 2022) to predict 3D structures for all proteins

in CheZOD117. ColabFold speeds up AlphaFold2 predictions 40-

60x mostly by replacing jackhmmer (Johnson et al., 2010) and

HHblits (Remmert et al., 2012) in the computationally expensive

MSA generation by MMSeqs2 (Steinegger and Söding, 2017)

without losing much in performance. We generated MSAs by

searching UniClust30 (Mirdita et al., 2017) and the environment

database ColabFoldDB (Mirdita et al., 2022). We used neither

templates nor Amber force-field relaxation (Hornak et al., 2006),

as those do not significantly improve performance (Jumper et al.,

2021; Mirdita et al., 2022) although increasing runtime manifold

(especially the Amber relaxation). As ColabFold currently does

not support outputting the “experimentally resolved” head, we

added this feature by averaging over the sigmoid of the raw
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“experimentally resolved” logits output of AlphaFold2 for each

atom in a residue. After having generated the pLDDT values and

the “experimentally resolved” predictions, we additionally

calculated the smoothed pLDDT for each residue, using a

sliding window of 21 consecutive residues following previous

findings (Akdel et al., 2021). While sliding the window over the

sequence, the center residue of the window was always assigned

the mean of all values within the window (instead of padding,

windows closer than 10 residues to the N- and C-terminus were

shrunk asymmetrically, e.g., for the N-terminal position i (i =

1,. . .,10, starting at i = 1 at the N-terminus): averaging over (i-1)

positions left of i).

It has also been reported that the window-averaged RSA

calculated from AlphaFold2’s 3D predictions correlates with

IDRs (Akdel et al., 2021; Piovesan et al., 2022; Redl et al.,

2022). Consequently, we also added this measure to our

evaluation. With the pipeline provided alongside one of the

analyses reporting the RSA as a disorder predictor (Piovesan

et al., 2022), we calculated the RSA for the residues of the

CheZOD117 set, leaving all parameters at default. Then we

smoothed the RSA by averaging over 25 consecutive residues

as suggested elsewhere (Piovesan et al., 2022). While the use of

the “experimentally resolved” predictions is new here (thanks to

John Jumper for the recommendation), all other ways of

processing AlphaFold2 predictions to predict disorder were

taken from other work.

Evaluation

We followed a previous analysis in evaluating our

performance (same evaluation measures and test set) for easy

comparability (Nielsen and Mulder, 2019). This allowed a direct

comparison to (alphabetical list): AUCPred with and without

evolution (Wang et al., 2016), DisEMBL (Linding et al., 2003),

DISOPRED2 (Ward et al., 2004), DISOPRED3 (Jones and

Cozzetto, 2015), DISpro (Cheng et al., 2005), DynaMine (Cilia

et al., 2014), DISPROT/VSL2b (Vucetic et al., 2005), ESpritz

(Walsh et al., 2012), GlobPlot (Linding et al., 2003), IUPred

(Dosztanyi et al., 2005), MetaDisorder (Kozlowski and Bujnicki,

2012), MFDp2 (Mizianty et al., 2013), PrDOS (Ishida and

Kinoshita, 2007), RONN (Yang et al., 2005), s2D (Sormanni

et al., 2015), SPOT-Disorder (Hanson et al., 2016). We added

results for flDPnn (Hu et al., 2021) and ODiNPred (Dass et al.,

2020) using the publicly available web-servers. SPOT-Disorder2

(Hanson et al., 2019) predictions were custom-generated by the

program’s developers for all but one protein in test set

CheZOD117 (10010: failed run).

We estimated the Spearman correlation, ρ, and its 95%

confidence interval (CI) over n = 1,000 bootstrap sets in all

cases (Efron and Tibshirani, 1991). For each bootstrap set, a

random sample of the size of the test set (=m) was drawn with

replacement from the test set. For each of these sampled sets, the

ρ was calculated. If ui is the rank of the ith value in the ground

truth CheZOD scores and vi the rank of the ith value in the

predicted CheZOD scores (or the rank of the respective

predictive values for LogReg and AlphaFold2) of the method,

the ρ was calculated with Eq. (1). The final ρ was derived from

averaging over those 1,000 values and the 95% CI was estimated

by computing the standard deviation of the ρ over the sampled

sets and multiplying it by 1.96. The standard deviation was

calculated with Eq. 2, where xi is the ρ of an individual

bootstrap set and 〈x〉 is the average ρ over all bootstrap sets.

ρ (Spearman correlation) � ∑m
i�1[(ui − 1

m∑m
j�1uj)*(vi − 1

m∑m
j�1vj)]																																			∑m

i�1(ui − 1
m∑m

j�1uj)2

*∑m
i�1(vi − 1

m∑m
j�1vj)2

√
(1)

Standard deviation �
													∑n

i�1(xi − 〈x〉)2
n

√
(2)

Furthermore, the AUC and its 95% CI were estimated for

each model evaluated here, again, by applying the same

bootstrapping procedure. As the AUC requires binarized

ground truth class labels, continuous CheZOD scores were

binarized using the threshold of eight (disorder CheZOD

score≤8 and order CheZOD score>8 (Nielsen and Mulder,

2016)) for the calculation of the AUC (Eq. (3); scikit-learn

implementation). In Eq. 3, I[.] is the indicator function, m+/-

are the number of ordered/disordered samples in the test set

(classifying the samples according to the ground truth class label)

and yi
+/- is the ith predicted value in the ordered/disordered

samples.

AUC � ∑m−
j�1∑m+

i�1(I[y+
i >y−

j ])
m+*m− (3)

Lastly, we plotted the receiver operating characteristic curve

for our models (SETH, LinReg/LinReg1D, ANN and LogReg), as

well as for AlphaFold2’s pLDDT (Supplementary Figure S5).

Additional tests

Runtime
We analyzed the runtime for the best method introduced

here (SETH), by clocking the predictions for the human

proteome (20,352 proteins) and the Swiss-Prot database

[566,969 proteins (The UniProt Consortium et al., 2021)].

This evaluation was performed on a machine with two AMD

EPYC™ ROME 7352 CPUs at 2.30 GHz each with 24/48 cores, a

256 GB RAM (16 × 16 GB) DDR4-3200 MHz ECC, one RTX

A6000 GPU with 48GB RAM, a 278 GB SSD scratch disk and a

7.3 TB HDD. However, the final model constituting SETH can

also easily be deployed on any machine holding a GPU

with ≥8 GB RAM at some cost in speed, allowing to run

SETH, e.g., in Google Colab. To reflect this, we also
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benchmarked the speed for running the entire human proteome

on a smaller GPU (single NVIDIA GeForce RTX 3060 with

12 GB vRAM). Lastly, we benchmarked the speed on our test set

CheZOD117 on an AMD Ryzen 5 5500U CPU, to reflect that

SETH can even efficiently be run without a GPU for small sets.

All values for runtime included all steps required: 1) load ProtT5,

2) load SETH model checkpoint, 3) read sequences from FASTA

files, 4) create embeddings, 5) create predictions and 6) write

results into a file.

Comparison: CheZOD score predictions and
pLDDT in 17 organisms

From the AlphaFold database with 3D predictions (Jumper

et al., 2021), we downloaded the available files ending in “F1-

model-v2. pdb” for all proteins listed in UniProt (The UniProt

Consortium et al., 2021) for 19 organisms (Supplementary Table

S2). A few files (0.3% of proteins) appeared with seemingly

corrupted format (no separator between some values) and

were removed. For all others, we extracted the pLDDT values.

For three organisms (Leishmania infantum, Schistosoma

mansoni and Plasmodium falciparum) we predicted disorder

with SETH using the sequences provided in UniProt (The

UniProt Consortium et al., 2021); for the remaining

16 organisms (Supplementary Table S2) we used the

sequences present in Swiss-Prot, due to already having

generated this data (see Runtime). Due to GPU resources, we

did not predict disorder for proteins with >9,000 residues (0% of

Leishmania infantum + Schistosoma mansoni, 0.7% - 40 proteins

- of Plasmodium falciparum, 0.004% - 25 proteins - of Swiss-

Prot). None of the proteins for the CheZOD sets (CheZOD117,

CheZOD1174) were that long (for obvious reasons related to the

length-limitation of NMR).

To compare disorder predictions and pLDDT, only the

subset of the data where both AlphaFold2 and disorder

predictions were available were used. The resulting set

contained 17 of the above downloaded 19 organisms

(Supplementary Table S2; two organisms: no overlap in the

predictions available for AlphaFold2 and SETH) with

105,881 proteins containing a total of 47M residues. We

referred to this data set as the 17-ORGANISM-set.

Spectrum of predicted CheZOD score
distributions for entire organisms

The spectra of predicted subcellular location reveal aspects

pertaining to the evolution of species (Marot-Lassauzaie et al.,

2021). Consequently, we tried the same concept on predicted

CheZOD scores for Swiss-Prot. For technical reasons (GPU

memory), we excluded proteins longer than 9,000 residues

from our analysis. In the entire Swiss-Prot, 0.004% of the

proteins reached this length and were excluded. For the other

99.996%, we first converted all predicted CheZOD score

distributions (consisting of all disorder predictions of all

residues within one organism) of all Swiss-Prot organisms

into vectors by counting CheZOD scores in eight bins (-15,

-11.125, -7.25, -3.375, 0.5, 4.375, 8.25, 12.125, 16). After

normalization (dividing raw counts by all residues in the

organism), we PCA-plotted 37 organisms of Swiss-Prot with

at least 1,500 proteins [(Wold et al., 1987); to keep clarity in the

plot, some organisms with at least 1,500 proteins were neglected),

using the standard implementation of R (prcomp (R Core Team,

2021)].

Results

Success of minimalist: Single sequence,
simple model

While state-of-the-art (SOTA) methods usually rely on MSA

input to predict IDRs, the methods introduced here use pLMs to

encode single protein sequences as embeddings that served as the

sole input feature for any prediction. To find the most

informative pLM for IDRs, we predicted CheZOD scores

through the minimalistic approach of linear regressions on

top of embeddings from five pLMs (ProtT5 (Elnaggar et al.,

2021), ProSE (Bepler and Berger, 2021), ESM-1b (Rives et al.,

2021), ProtBERT (Elnaggar et al., 2021), SeqVec (Heinzinger

et al., 2019). Following the recent assessment of 26 methods

(Nielsen and Mulder, 2019), we calculated the Spearman

correlation coefficient ρ between true and predicted CheZOD

scores and the AUC for 10% of CheZOD1174, not used in

training, to evaluate the models.

Embeddings from all pLMs outperformed the random

baseline and the one-hot encodings, both for the correlation

(Figure 1B; ρ) and the binary projection of CheZOD scores

(Figure 1A; AUC). The simplest pLM-type included here, namely

SeqVec, performed consistently and statistically significantly

worse than all other pLMs (Figure 1). The other four

embeddings (ProSE, ESM-1b, ProtT5, ProtBERT) did not

differ to a statistically significant extent, given the small data

set. However, since the linear regression trained on

ProtT5 reached the numerical top both in ρ and AUC, we

used only embeddings from ProtT5 for further analyses.

ProtT5 captured disorder without any
optimization

Next, we analyzed which information about disorder

ProtT5 had already learned during self-supervised pre-

training, i.e., before seeing any disorder-related labels.

Towards this end, t-SNE projected the 1024-dimensional

embeddings onto two dimensions (Figure 2). This suggested

some level of separation between ordered (red) and disordered

(blue) residues (Figure 2A: red colors oriented toward the center

in each cluster), indicating that even raw ProtT5 embeddings
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already captured some aspects of disorder without seeing any

such annotations [ProtT5 only learned to predict masked amino

acid tokens (Elnaggar et al., 2021)]. However, the major signal

seemingly did not cluster the disorder/order phenotype. Instead,

the primary 20 clusters corresponded to the 20 amino acids

(Figure 2B).

SETH (CNN) outperformed other
supervised models

Next, we trained four AI models, inputting

ProtT5 embeddings: three predicted continuous CheZOD scores

(LinReg, ANN, SETH), one predicted binary disorder (LogReg).

We could add the performance of our methods to a recent method

comparison (Nielsen and Mulder, 2019) since we used the same

performance metrics and test set (CheZOD117; Figure 3). We also

added the ODiNPred web application (Dass et al., 2020), the

flDPnnwebserver (Hu et al., 2021) and the performance of the new

method ADOPT ESM-1b (Redl et al., 2022), which also uses pLM

embeddings. Additionally, the program’s developers ran SPOT-

Disorder2 (Hanson et al., 2019) for us, which, however, failed to

run for one test set protein. The performance on the remaining 116

proteins was: ρ = 0.63 ± 0.01 and AUC = 0.88 ± 0.01. When

considering the mean ρ (Figure 3A), our methods SETH and ANN

numerically outperformed all others, both those not using MSAs

(below dashed line in Figure 3), and those using MSAs (above

dashed line in Figure 3). When requiring a statistically significant

difference at the 95% CI (±1.96 standard errors) for the ρ, our
methods (SETH, ANN, LinReg and LogReg) significantly

outperformed all others, except for ODiNPred and ADOPT

ESM-1b. When evaluating the performance based on the mean

AUC, SETH and the simplistic LinReg outperformed all other

evaluated methods. Due to the already high AUC levels of many

methods, the absolute improvement of our models (SETH, ANN,

LinReg and LogReg) to SOTAmethods in terms of AUCwas often

not statistically significant.

The differences between the models introduced here

(LogReg, LinReg, ANN and SETH) were not statistically

significant (neither for AUC nor for ρ). However, SETH had

the highest mean ρ and, together with LinReg, the highest mean

AUC. For a more detailed analysis, we plotted the true and

predicted CheZOD scores (or for LogReg the true CheZOD

scores and the predicted probability for the class “order”) for

CheZOD117 against each other in a 2D histogram for all four

models (Supplementary Figure S6). SETH, ANN and LinReg

agreed well with the ground truth. However, the plots revealed

that SETH, LinReg and ANN tended to overestimate residue

order, as indicated by the higher prediction density above the

diagonal. In contrast to our other models, most of the pairs of

LogReg’s predicted order probability vs. observed CheZOD

FIGURE 1
Performance estimates for training on 90% of CheZOD1174
(Dass et al., 2020) and testing on the remaining 10% using linear
regressions fed by 20-dimensional one-hot encodings or raw
embeddings (without further optimization) from five protein
language models (pLMs): ProtT5 (Elnaggar et al., 2021), ProtBERT
(Elnaggar et al., 2021), ESM-1b (Rives et al., 2021), ProSE (Bepler
and Berger, 2021), SeqVec (Heinzinger et al., 2019). The seventh
row displays the performance of the baseline/random model
computed on 1024-dimensional embeddings sampled randomly
from a standard normal distribution. (A) required to first project
predictions onto a binary state of disorder (CheZOD score≤8)/
order (CheZOD score>8) and measures the area under the
receiver operating characteristic curve (AUC; Eq. 3), while (B)
depicts the Spearman correlation coefficient (ρ; Eq. 2), calculated
using the observed and predicted CheZOD scores. The errors
mark the 95% confidence intervals approximated by multiplying
1.96 with the bootstrap standard deviation (Methods).

FIGURE 2
t-SNE dimensionality reduction (van der Maaten and Hinton,
2008) performed on the 1024-dimensional ProtT5 (Elnaggar et al.,
2021) residue-level embeddings extracted from the last attention
layer of ProtT5 for all sequences in test set CheZOD117
[13,069 residues; (Dass et al., 2020)]. (A) shows the embeddings
colored by order (CheZOD score>8; red) and disorder [CheZOD
score≤8, blue; (Nielsen and Mulder, 2016)]. (B) shows the same
t-SNE projection but with coloring by the 20 standard amino acid
types (here shown in one-letter code; A = Alanine, C=Cysteine,
D = Aspartic acid, E = Glutamic acid, F=Phenylalanine, G =Glycine,
H=Histidine, I=Isoleucine, K = Lysine, L = Leucine, M =Methionine,
N=Asparagine, P=Proline, Q = Glutamine, R = Arginine, S=Serine,
T = Threonine, V=Valine, W = Tryptophan, Y = Tyrosine).
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scores fell into two flat clusters at 0 and 1, confirming that LogReg

tended to predict extreme values optimal for classification. The

removal of short disordered residues (i.e. less than 30 consecutive

residues with observed CheZOD scores≤8) did not change the

Spearman correlation significantly (Supplementary Figure S7).

Shortcomings of SETH

For SETH, our best model (outperforming all others in ρ and
AUC; Figure 3), we added another analysis classifying each

residue in CheZOD117 into one of three classes according to

the observed CheZOD scores: ordered (CheZOD score>8), long

disorder (residues in a disorder (CheZOD score≤8) stretch

with≥30 residues) and short disorder (disordered stretches

with<30 residues). Firstly, SETH clearly missed short disorder

(Figure 4: predicted values for this class were approximately

uniformly distributed in (0,15), with a ρ of only 0.41 ± 0.04).

Secondly, SETH overestimated order (Figure 4 and also

Supplementary Figure S6), as there was a shift of the

distributions of ordered and long disordered residues to the

right from the observed to the predicted scores. Thirdly,

SETH predicted several residues as ordered, for which the

ground truth CheZOD scores suggested long consecutive

regions of disorder (Figure 4B). For a subset of proteins, for

which at least one-third of all residues were in long IDRs but

FIGURE 3
Data: set CheZOD117 (Dass et al., 2020). Performances of all methods introduced here (SETH, ANN, LinReg, LogReg, LinReg1D) in orange, the
ODiNPred web application in grey (Dass et al., 2020), ADOPT ESM-1b in grey (Redl et al., 2022), the fIDPnn server in grey (Hu et al., 2021) and four
disorder measures derived from AlphaFold2 (Jumper et al., 2021) in blue [these are: AlphaFold2_pLDDT, AlphaFold2_pLDDT21: smoothed over 21-
consecutive residues (Akdel et al., 2021), AlphaFold2_exp_res: experimentally resolved prediction, AlphaFold2_rsa_25: running average over
relative solvent accessibility averaged over 25 consecutive residues (Piovesan et al., 2022)]. All other performances were taken from the previous
comparison (Nielsen and Mulder, 2019) using the same test set (see Methods Evaluation). While three of our models (SETH, ANN, LinReg/LinReg1D),
ADOPT ESM-1b andODiNPredwere trained on continuous chemical shift Z-scores (CheZOD scores), the logistic regression, LogReg, was trained on
a binary classification of order/disorder (CheZOD score>8/≤8). ODiNPred and ADOPT ESM-1b used more proteins for training than our models. The
horizontal dotted line separates models using MSAs (above line) from single sequence-based methods (below line). Error bars mark the 95%
confidence interval, approximated by bootstrapping for our methods, AlphaFold2, the ODiNPred web application and the flDPnn server (Methods).
Panel (A): Performance measured with the spearman correlation coefficient (ρ; Eq. 2) between the ground truth and the prediction. Panel (B):
Performance measured with the area under the receiver operating characteristic curve (AUC; Eq. 3) after the binary projection of the ground truth
CheZOD scores [order: CheZOD score>8, disorder: CheZOD score≤8; (Nielsen and Mulder, 2016)].
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SETH predicted order, AlphaFold2’s pLDDT largely supported

our predictions of order (Supplementary Figure S8). For two of

these ten proteins, we found DisProt annotations (Quaglia et al.,

2022), showing disorder to order transition regions (i.e., regions

that can change from disorder to order, e.g., upon binding)

overlapping with the regions of wrongly predicted order

(Supplementary Figure S8). Lastly, SETH’s predicted CheZOD

scores<0 indicated long IDRs (only this class has high counts

below 0, Figure 4). This suggested zero as a second more

conservative threshold for classifying disorder, to filter out

short linker regions falsely labeled as disorder.

SETH blazingly fast

Using SETH for analyzing proteins and proteomes requires

top performance (Figure 3) and speed. On a machine with one

RTX A6000 GPU with 48GB RAM, predicting the nuances of

disorder for each residue of the entire human proteome

(20,352 proteins) from the individual protein sequences took

approximately 23 min. For Swiss-Prot [566,969 proteins (The

UniProt Consortium et al., 2021)], it took approximately

7 hours. As a rule of thumb, SETH could predict disorder

for approximately 10–20 proteins in 1 s, depending on the

protein length. Even on smaller GPUs such as a single

NVIDIA GeForce RTX 3060 with 12 GB vRAM, computing

predictions for the human proteome still took only an hour.

Lastly, even on an AMD Ryzen 5 5500U CPU, performing

predictions for our test set CheZOD117 (average protein length

112) only took 12 min, showing that for small sets a GPU is not

even necessary.

One of 1,024 embedding dimension
outperformed most methods (LinReg1D)

After training, we also analyzed the regression coefficients of

LinReg to better understand how ProtT5 embeddings affected the

prediction. For the dimension with the highest regression

coefficient (dimension 295 of 1,024; Supplementary Figure

S4), we subsequently plotted the raw embedding values

against the true CheZOD scores (Supplementary Figure S6E)

to visualize the information on order/disorder in the embeddings

without supervised training. The Spearman correlation for this

single dimension (ρ = 0.61) was almost the same as that for

LinReg (ρ = 0.69; LinReg used all 1,024 dimensions in training),

showing that the pLM already learned aspects of disorder during

self-supervised pre-training, i.e., without ever seeing such labels.

However, in contrast to LinReg, the single dimension without

supervised training avoided overestimating residue order (no

accumulation of high density above the diagonal; Supplementary

Figure S6).

To explicitly quantify the influence of this single most

informative dimension, we additionally trained and evaluated

a linear regression inputting only this 295th embedding

dimension (dubbed LinReg1D). LinReg1D reached a ρ of 0.61

(LinReg ρ = 0.69) and an AUC of 0.87 (LinReg AUC = 0.91,

Figure 3). Therefore, this single dimension accounted for 89% or

96% of the performance of LinReg, when considering the ρ or the
AUC respectively. As only a linear transformation was

performed from the raw values to LinReg1D, both showed the

same ρ when correlated with the true CheZOD scores.

When comparing LinReg1D to the other methods evaluated

in the large-scale comparison of disorder predictors (Nielsen and

Mulder, 2019), ODiNPred and ADOPT ESM-1b, even this

extremely reduced model outperformed all other methods not

using MSAs apart from ADOPT ESM-1b and only fell short

compared to the two best-performing methods using MSAs

(SPOT-Disorder (Hanson et al., 2016) and ODiNPred), when

looking at both the AUC and the ρ (Figure 3). However,

compared to our other methods (SETH, LinReg, ANN,

LogReg) LinReg1D performed significantly worse.

FIGURE 4
Data: set CheZOD117 (Dass et al., 2020). All residues in
CheZOD117 were classified into one of three classes: ordered
(chemical shift Z-score (CheZOD score) > 8), short disorder and
long disorder (disordered residues (CheZOD score≤8) in a
disordered region≥30), using the ground truth labels. (A)
Distribution of the observed CheZOD scores (i.e., the ground truth
labels) in the three classes. (B) Distribution of SETH’s predicted
CheZOD scores in the three classes. SETH is a CNN trained on
continuous chemical shift Z-scores and outperformed all state-
of-the-art methods evaluated, as well as all our other methods.
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AlphaFold2 correlated less with CheZOD
scores than top methods

AlphaFold2’s (smoothed) predicted reliability pLDDT and its

(smoothed) predicted RSA have recently been reported to capture

some aspects of IDRs (Akdel et al., 2021;Wilson et al., 2021; Piovesan

et al., 2022; Redl et al., 2022). However, the ρ between AlphaFold2’s

(smoothed) pLDDT and CheZOD scores clearly neither reached the

levels of the top expert solutions (SETH, LinReg, ANN, LogReg,

LinReg1D, ODiNPred or ADOPT ESM-1b; Figure 3A) trained on

CheZOD scores, nor that of many other methods using MSAs

(Nielsen and Mulder, 2019). Looking at the correlation between

pLDDT scores and CheZOD scores in more detail (Supplementary

Figure S6G) revealed that disordered residues (CheZOD score≤8)
were occasionally predicted with high confidence (pLDDT>80)
explaining the rather low ρ. AlphaFold2’s “experimentally

resolved” prediction (AlphaFold2_exp_res, Figure 4) correlated

better with CheZOD scores, reaching the top 10 methods. Even

better was the smoothed RSA value (ρ = 0.64; AlphaFold2_rsa_25,

Figure 4), although still falling behind the top expert solutions (SETH,

LinReg, ANN, LogReg, ODiNPred or ADOPT ESM-1b).

SETH disorder predictions correlated with
AlphaFold2 pLDDT

We analyzed the fitness of SETH as a fast pre-filter to

distinguish between proteins/regions with low and high mean

pLDDTs of AlphaFold2 (Figure 5). For proteins from 17 model

organisms, SETH’s predictions correlated well with theAlphaFold2

pLDDT (ρ = 0.67; Figure 5A, per-organism details: Supplementary

Figure S10). This trend remained after binarizing disorder using a

CheZOD threshold of 8 (Figure 5B). If the goal were to predict the

classification of all proteins into those with mean pLDDT≥70
(wanted) and pLDDT<70 (unwanted), depending on the threshold
in the mean predicted CheZOD score (number on the curve in

Figure 5C), this will result in different pairs of wanted proteins

incorrectly missed (y-axis, Figure 5C) given the proteins correctly

ignored (x-axis, Figure 5C). For instance, at a threshold of eight in

the mean predicted CheZOD scores, a quarter of all proteins could

be avoided at an error rate of only 5% (proteins missed with

pLDDT≥70). The accuracy at this threshold was 0.86. This might

be relevant to prioritize/filter data in large-scale AlphaFold2

predictions.

More importantly, the comparison of the AlphaFold2

pLDDT and SETH’s predictions could also be used to find

out more about the causes of lacking reliable AlphaFold2

predictions. For instance, a lack of reliable AlphaFold2

predictions was often due to disorder in proteins since low

pLDDT values were mostly present for disordered residues

(Figure 5B). However, providing Figure 5B at the organism

level (Supplementary Figure S11) revealed that for some

organisms, especially those with rather low mean pLDDT

values (Supplementary Figure S9), SETH predicted many

residues as ordered for which AlphaFold2’s pLDDT was low.

There were even cases, where nearly the entire protein was

predicted to be ordered, but AlphaFold2 could not predict any

reliable 3D structure (Supplementary Figure S12).

Evolutionary information captured in
CheZOD score distributions

Encouraged by the finding that the spectrum of predicted

subcellular locations (in 10 classes) captures aspects of evolution

(Marot-Lassauzaie et al., 2021), here, we converted the CheZOD

score predictions for an entire organism into a single 8-

dimensional vector containing the binned normalized counts

of predicted CheZOD scores. A simple PCA (Wold et al., 1987)

on the resulting vectors for 37 organisms revealed a clear

connection from the micro-molecular level of per-residue

predictions of CheZOD-disorder to the macro-molecular level

of species evolution (Figure 6). Firstly, eukaryotes and

prokaryotes (Bacteria + Archaea) were clearly separated.

Secondly, even within these major groups, there appeared

some relevant separation into phyla for the bacteria and into

kingdoms for the eukaryotes. However, based on these limited

samples, it also seemed like some groups could not be separated

completely according to their disorder spectra, e.g., the fungi and

the metazoa.

Discussion

We introduced SETH, a shallow CNN, for predicting the

continuum of residue disorder defined by CheZOD scores

(i.e., the difference between observed chemical shifts from

NMR and computed random coil chemical shifts (Nielsen and

Mulder, 2020)). SETH’s exclusive input are embeddings from the

pLM ProtT5 (Elnaggar et al., 2021). Using performance measures

and data sets proposed in a recent analysis (Nielsen and Mulder,

2019), SETH outperformed three even simpler (fewer

parameters) models introduced here, along with 26 other

disorder prediction methods. Predictions of AlphaFold2 have

recently been shown to capture IDRs (Akdel et al., 2021; Wilson

et al., 2021; Piovesan et al., 2022; Redl et al., 2022). However, we

found the correlation between AlphaFold2 predictions and

CheZOD scores to be much lower than for SETH.

Redundancy-reduction affects
performance estimates, not performance

We chose our datasets (training CheZOD1174, and testing

CheZOD117) and performance measures (Eqn. (2) and (3)

following a recent analysis (Nielsen and Mulder, 2019).
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However, since adequate redundancy-reduction is sine qua non

to correctly estimate performance, we additionally removed

151 sequences from ODiNPred’s (Dass et al., 2020) training

set which had, based on alignments with 80% coverage, over 20%

pairwise sequence identity (PIDE) with proteins in the test set

(see Methods 2.1). Unfortunately, the threshold of sequence

FIGURE 5
SETH’s predictions correlated with AlphaFold2’s pLDDT. Data: 17-ORGANISM-set (47,400,204 residues from 105,881 proteins in 17 organisms).
(A) 2-dimensional histogram of AlphaFold2 pLDDT (Jumper et al., 2021) against SETH disorder predictions (black line: optimal regression fit, marginal
histograms on each axis; number: overall Spearman correlation coefficient ρ, Eq. 2). (B)Histograms of the pLDDT of AlphaFold2, for the classes order
(predicted CheZOD>8) and disorder (predicted CheZOD≤8). (C) Cost versus gain analysis using SETH as a pre-filter for AlphaFold2.
Y-axis—Cost: The percentage of proteins with a mean predicted CheZOD score below a certain threshold (thresholds marked as numbers on the
curve), but mean pLDDT≥70 (FN) out of all proteins with mean pLDDT≥70 (P). This gives the percentage of proteins with a pLDDT≥70 missed using
the SETH CheZOD score prediction as a pre-filter. X-axis—Gain: The percentage of proteins with mean CheZOD score < threshold (FN + TN) out of
all proteins (All). This is the percentage of proteins in the entire dataset for which AlphaFold2 will not have to be run at all, or defines a list of priority:
first run AlphaFold2 on the proteins with lower SETH disorder. For instance, with threshold 8, a quarter of all AlphaFold2 predictions can be avoided at
an error rate of only 5%.

FIGURE 6
Evolution captured by spectrum of predicted CheZOD scores. Data: SETH predictions for proteins from 37 organisms taken from Swiss-Prot
(The UniProt Consortium et al., 2021). The plot shows the PCA (Wold et al., 1987) of the binned spectrum of predicted CheZOD scores (8 bins,
meaning 8-dimensional vectors; each vector describes one organism). The colors indicate the super-kingdoms (Eukaryota: reds, Bacteria: blues,
Archaea: violet) as well as the Phyla for the Bacteria and the Kingdoms for the Eukaryotes, as given in UniProt (The UniProt Consortium et al.,
2021). The organism names were shortened (for complete organism names see Supplementary Table S4).
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identity T (here 20% PIDE) crucially depends on the phenotype

(here disorder). In the lack of sufficiently large data sets to

establish T for disorder (and many other phenotypes,

including protein-protein interactions (Park and Marcotte,

2012; Hamp and Rost, 2015)), developers should be as

conservative as possible. However, there is a trade-off: chose T

too low, lose proteins for training/testing, chose T too high, risk

substantially over-estimating performance. With our threshold,

we try to balance both. However, we only removed proteins

which were aligned with 80% coverage, meaning there might still

be some information leakage on a smaller level (3 test proteins

with PIDE>20% to training proteins at a coverage of 10%;

Supplementary Table S5). However, this leakage should be

negligible, since none of the aligned proteins lie above the

HSSP-curve (Rost, 1999). Even if there would still be some

minor leakage of information, this might only balance out the

over-estimates of performance of other methods, since over-

estimating performance has become many times more common

with the rise of AI with immense numbers of free parameters

(often 10-times more parameters than samples), which can often

easily zoom into residual sequence similarity between train and

test set. Also considering that we used a quite conservative T,

other methods tested on the same test set might more likely

overestimate their performance. We cannot answer whether this

over-estimate of any method is statistically insignificant or

significant. That depends on many aspects of the method.

Supervised models picked up class
imbalance

The training and test sets resulting from redundancy

reduction differed substantially in their distributions of

CheZOD scores (Supplementary Figure S1; note the test set

CheZOD117 had not been changed, only the training set). In

a binary projection, the fraction of ordered residues was 72% for

the training and 31% for the testing set. Our regression models

did not use any notion of classes. Thus, we could not correct for

class imbalance. This might explain why our supervised

regression models trained on this imbalanced data (SETH,

LinReg, LinReg1D and ANN) mildly over-predicted the

degree of residue order compared to the raw embedding

values of dimension 295 (Supplementary Figure S6).

Simple classification model LogReg
struggled where SETH excelled

We tested the effect of increasing the model complexity when

inputting only embeddings. For an ideal prediction method

observed and predicted CheZOD scores would perfectly

correlate, i.e., in a scatter plot with observed on the x-axis and

predicted on the y-axis, perfect methods would cluster all points

around the diagonal (Supplementary Figure S6). Qualitatively,

our two most complex methods SETH and ANN came closest to

this, followed by the simpler model LinReg, with more spread-

out clusters (Supplementary Figure S6A–C). In contrast to an

ideal prediction, the simplest model LogReg generated two

clusters, one around probability 0 (disorder) and the other

around 1 (order; Supplementary Figure S6D). Although such

a bifurcation is expected for a logistic regression trained to

classify, the off-diagonal shift of the data showed that LogReg

struggled to capture subtle degrees of disorder/order. This

qualitative analysis was supported by the ρ (Figure 3A: SETH

highest, LogReg lowest). Therefore, we established that the

treatment of disorder as a regression problem (SETH, ANN,

LinReg) improved over the supervised training on binary

assignments (disorder/order; LogReg; Figure 3). This was

interesting because except for ODiNPred (Dass et al., 2020)

and ADOPT (Redl et al., 2022), most SOTA disorder

prediction methods realize a binary classification. However,

the ρ was still similar between all our four models, including

LogReg. Likewise, the performance on binarized CheZOD scores

(order: CheZOD score>8, disorder: CheZOD score≤8), measured

with the AUC did also not vary significantly. Nonetheless, SETH

was consistently superior by all criteria (Figure 3).

Simpler, better, faster

The simplicity of a machine learning model can be proxied by

the number of free parameters. Our top performing models

SETH, ANN, LinReg and LogReg did not reach anywhere

near the simplicity of earlier IDR prediction methods such as

NORS (Liu et al., 2002) or IUPred (Dosztanyi et al., 2005) or

recent adaptations of AlphaFold2 predictions (Akdel et al., 2021;

Wilson et al., 2021; Piovesan et al., 2022; Redl et al., 2022) when

neglecting AlphaFold2’s training and only considering the

disorder prediction from AlphaFold2’s output. Then,

AlphaFold2 binary disorder prediction would only need three

parameters: choice of feature (e.g., RSA vs. pLDDT), averaging

window (e.g., 25 for RSA) and a threshold (RSA < T). However,

we still constrained the size of our models (Supplementary Table

S3). The comparison to one-hot encodings clearly demonstrated

the benefit of increasing model complexity by inputting high

dimensional pLM embeddings (Figure 1). Lastly, our

simplification of LinReg (LinReg1D) based on one of the

1,024 dimensions of ProtT5 (Elnaggar et al., 2021), namely

dimension 295 that carried 86%–96% of the signal of the

entire 1024-dimensional vector (Figure 3), reached the

simplicity of very basic predictors. Still, it outperformed most

complex methods.

Two of our models numerically reached higher AUC values

than all other methods compared (SETH and LinReg, Figure 3B),

irrespective of whether they use MSAs or not. When considering

the ρ (Figure 3A), again two of our methods (SETH and ANN)
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outperformed all others. In terms of statistical significance for the

ρ at the CI = 95% level, all our models along with ODiNPred

(Dass et al., 2020) and ADOPT ESM-1b (Redl et al., 2022)

significantly outperformed all others. Of these top performers,

only ODiNPred relies on MSAs, i.e., this is the only top

performer for which we first need to create informative MSAs

before we can analyze the disorder content of a newly sequenced

proteome. Even using tools such as the blazingly fast MMseqs2

(Steinegger and Söding, 2017), this will still slow down the

analysis. In contrast, ADOPT ESM-1b also only requires pLM

embeddings as input. Given the larger model used by ADOPT

ESM-1b and the larger size of ESM-1b (Rives et al., 2021)

compared to ProtT5 (Elnaggar et al., 2021) used by our tools,

we expect the difference in speed to favor SETHmore than that in

performance.

AlphaFold2 not competitive to pLM-based
methods as proxy for CheZOD disorder

AlphaFold2’s pLDDT correlates with binary descriptions of

IDRs (Akdel et al., 2021; Wilson et al., 2021; Piovesan et al.,

2022). In principle, we confirmed this for CheZOD scores

reflecting non-binary disorder (Supplementary Figure S6G).

However, we also found AlphaFold2 to often be certain about

a predicted structure (high pLDDT) even for regions where

CheZOD scores suggest long IDRs (≥30 residues;

Supplementary Figure S7). One possible explanation for this

might be that while AlphaFold2 was only trained on single

protein domains, some of these proteins were measured as

homo- or heteromers. Consequently, the AlphaFold2

predictions might be biased in regions that are disordered in

isolation but become well-structured upon interaction. This

hypothesis was supported by a very limited analysis

comparing the pLDDT to DisProt annotations [(Quaglia et al.,

2022); Supplementary Figure S8]. Furthermore, the mean

pLDDT is trivially higher for shorter than for longer proteins

(Monzon et al., 2022). As proteins in the test set were shorter

than average (mean sequence length in CheZOD117: 112), this

trivial length-dependence might also explain some outliers.

Comparing several ways to utilize AlphaFold2 predictions as

a direct means to predict CheZOD scores revealed the window-

averaged of the RSA to correlate even better with CheZOD scores

than the prediction of “experimentally resolved” and the

(smoothed) pLDDT (Figure 3). It outperformed all but two

(ODiNPred (Dass et al., 2020), SPOT-dis (Hanson et al.,

2016)) of the methods not based on pLMs. However, all four

methods introduced here (SETH, ANN, LinReg, LogReg) and

ADOPT ESM-1b (Redl et al., 2022) topped this.

Concluding, given the many times higher runtime (we ran

AlphaFold2 (without the MSA generation step and using early

stopping when one of five models reached a pLDDT≥85) and
SETH on the machine with one RTX A6000 GPU with 48 GB

RAM and AlphaFold2 took approximately 170 times as long as

SETH), SETH appeared by far a better method for predicting

disorder as defined by CheZOD scores than AlphaFold2. Even for

the many proteins where AlphaFold2 predictions are already

available, the degree to which SETH outperformed disorder

measures derived from AlphaFold2 and the speed of SETH

suggest to always use SETH instead of AlphaFold2 to predict

CheZOD-like disorder.

Agreement between SETH’s disorder
predictions and AlphaFold2’s pLDDT

AlphaFold2’s recent release of structure predictions (28 July

2022), expanding the AlphaFold2 database to over 200 million

predictions, has considerably expanded the structural coverage in

the protein Universe. However, each day new proteins and

proteomes are discovered and will require AlphaFold2 3D

predictions. Could SETH help to prioritize how to run

AlphaFold2, e.g., choosing the proteins most likely to have

high pLDDTs (i.e., ordered proteins) first and leaving the rest

for later, or completely neglecting the rest (i.e., disordered

proteins)? Toward this end, we analyzed a large set of

residues from 17 organisms and found the correlation

between SETH’s predictions and AlphaFold2’s pLDDT

(Figure 5A) to be much higher than the correlation between

the pLDDT and the ground truth CheZOD scores

(ρ(AlphaFold2_pLDDT, ground truth) = 0.56 vs.

ρ(AlphaFold2_pLDDT, SETH) = 0.67). This confirmed the

agreement in over-prediction of order for SETH and

AlphaFold2 (Supplementary Figure S8) because if SETH and

AlphaFold2 make the same mistakes, a higher correlation is

expected. These findings are at the base of using SETH to

pre-filter or prioritize AlphaFold2 predictions, e.g., using

SETH protein mean CheZOD scores<8 to deprioritize or

exclude some proteins will reduce costs for AlphaFold2 by

one-quarter at an error rate of only 5%.

The comparisons between SETH and AlphaFold2 also might

help to rationalize some predictions, e.g., for organisms with low

mean pLDDT values, SETH often predicted order where

AlphaFold2 could not predict reliable 3D structures

(Supplementary Figures S9, 11). Such cases might suggest that

there are some “principles of protein structure formation” not yet

captured by the outstanding AlphaFold2. More detailed studies

will have to address this speculation.

CheZOD score disorder not equal to
binary disorder

Most methods developed in the field of disorder predictions

are trained on binary data: disordered (IDR: intrinsically

disordered regions/IDP: intrinsically disordered proteins) as
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opposed to well-structured/ordered. Although this is standard

procedure for machine learning, the situation for disorder is

slightly different. There, we assume the set of all experimentally

known 3D structures as deposited in the PDB (Burley et al., 2019)

to be more representative of all well-ordered proteins than

DisProt (Vucetic et al., 2005; Quaglia et al., 2022) of all

disordered proteins, as the diversity of disorder is much more

difficult to capture experimentally. Thus, for disorder we have

many reasons to doubt that today’s experimental data are

representative. This creates a “Gordian knot”: how do we

train on unknown data? In previous work, we tried cutting

through this knot by training on data differing from DisProt

data (long loops, low contact density), but testing on DisProt (Liu

et al., 2002; Schlessinger et al., 2007a; Schlessinger et al., 2007b),

as, for instance, the successful method IUPred did for contacts

(Dosztanyi et al., 2005). Instead, here we used CheZOD scores

(Nielsen andMulder, 2016, 2019; Dass et al., 2020) introduced by

Nielsen and Mulder as the “secret order in disorder”. The

CheZOD perspective appealed to us because of three reasons.

Firstly, it provides details or nuances for each residue. Secondly, it

partially eradicates the need for a minimal threshold of

continuous regions: most loops (non-regular secondary

structure) of, e.g., 5–15 residues are absolutely unrelated to

what we consider disorder, while loops with over

30 consecutive residues clearly fall into two distinct classes of

long-loops in regular structures and disordered regions

(Schlessinger et al., 2007a). Thirdly, the non-binary

classification allowed to describe an entire organism by an 8-

dimensional vector that captured evolution (Figure 6).

A recent large-scale evaluation of disorder prediction

methods (Nielsen and Mulder, 2019; Dass et al., 2020) and

one of CAID’s [Critical Assessment of Protein Intrinsic

Disorder Prediction, (Necci et al., 2021)] top methods

SPOT-Disorder2 show that methods for binary disorder

prediction capture information about CheZOD scores.

Inversely, SETH, trained on CheZOD scores, appears to

capture aspects of binary disorder (as suggested by some

preliminary results from the second round of CAID). On the

other hand, another one of the CAID-top methods for

predicting binary disorder flDPnn (Hu et al., 2021), did not

reach top rank for CheZOD scores (Figure 3). Consequently,

CheZOD scores might be the “secret order in disorder”, but

they probably capture aspects somehow orthogonal to binary

disorder.

Spectra of predicted CheZOD-disorder
capture rudimentary aspects of evolution

Spectra of predicted protein location capture aspects of the

evolution of eukaryotes (Marot-Lassauzaie et al., 2021).

Additionally, the fraction of intrinsically disordered proteins

in a proteome has been revealed as a marker for important

aspects in the evolution of species (Dunker et al., 1998; Liu et al.,

2002; Fuxreiter et al., 2008; Pentony and Jones, 2009; Uversky

et al., 2009; Brown et al., 2011; Schlessinger et al., 2011; Vicedo

et al., 2015a; Vicedo et al., 2015b). However, the single number

(fraction of IDP in proteome) was too simplistic for analyses as

applied to the location spectrum based on 10-dimensional

vectors representing ten different subcellular compartments.

The crucial step was the prediction of non-binary CheZOD

scores and the idea to bin those into a spectrum with eight bins

leading to 8-dimensional vectors subjected to straightforward

PCA (Wold et al., 1987). Surprisingly, this already revealed a

connection between the micro molecular level of per-residue

CheZOD score predictions and the macro level of the evolution

of species (Figure 6). Minimally, this finding suggests that

adjusting—increasing or reducing - the composition of

disordered residues in proteins is a tracer of or proxy for

evolutionary events. Possibly, these changes might play a

role in speciation. However, at this point, the latter remains

speculation. Clearly, the analysis revealed another interesting

simple feature relating the micro and macro level,

i.e., connecting the machinery of the proteins that shape life

to the carriers of these molecular machines, namely the

organisms.

Conclusion

We introduced four relatively simple novel methods

exclusively using embeddings from the protein language

model ProtT5 (Elnaggar et al., 2021) to predict per-residue

protein disorder/order as proxied by NMR derived chemical

shift Z-scores (CheZOD scores (Nielsen and Mulder, 2020)).

The best approach, dubbed SETH, captured fine-grained

nuances of disorder on a continuous scale and, in our hands,

appeared to outperform all compared state-of-the-art methods

[(Nielsen and Mulder, 2019; Dass et al., 2020; Redl et al., 2022);

Figure 3]. Our solutions were so successful because the

unoptimized embeddings carried important information about

disorder (Figure 2), to the extent that mostly one of the

1,024 dimensions mattered (Supplementary Figure S6E). Since

SETH exclusively uses embeddings of single protein sequences, it

easily scales to the analysis of entire proteomes, e.g (dis-) order of

all human proteins can be predicted in about 1 hour on a

consumer-grade PC with one NVIDIA GeForce RTX 3060.

Therefore, it enables large-scale analyses of disorder, which

allowed us to show that CheZOD score distributions capture

evolutionary information (Figure 6). Although the break-

through AlphaFold2 (Jumper et al., 2021) 3D predictions are

now available for most proteins, and although we could show

that disorder measures of AlphaFold2 predictions correlate with

CheZOD scores, the correlation was significantly inferior to the

predictions of SETH, suggesting the investment of fewer than

3 min per 1,000 proteins.
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Data availability statement

SETH is available to download at https://github.com/

Rostlab/SETH and available for online execution (no setup on

your machine required) at https://colab.research.google.com/

drive/1vDWh5YI_BPxQg0ku6CxKtSXEJ25u2wSq?usp=sharing.

The predictions of SETH for Swiss-Prot (The UniProt

Consortium et al., 2021) and the human proteome are

available at https://doi.org/10.5281/zenodo.6673817. The

datasets presented in this study (training set: CheZOD1174

and test set: CheZOD117) can be found in online repositories:

https://github.com/Rostlab/SETH.
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