
Early detection of emerging
SARS-CoV-2 variants of interest
for experimental evaluation

Zachary S. Wallace1,2, James Davis3,4,
Anna Maria Niewiadomska1, Robert D. Olson3,4,
Maulik Shukla3,4, Rick Stevens5,6, Yun Zhang1,
Christian M. Zmasek1 and Richard H. Scheuermann1,7,8,9*
1Department of Informatics, J. Craig Venter Institute, La Jolla, CA, United States, 2Department of
Computer Science and Engineering, University of California, San Diego, San Diego, CA, United States,
3Division of Data Science and Learning, Argonne National Laboratory, Lemont, IL, United States,
4University of Chicago Consortium for Advanced Science and Engineering, University of Chicago,
Chicago, IL, United States, 5Computing Environment and Life Sciences, Argonne National Laboratory,
Argonne, IL, United States, 6Department of Computer Science, University of Chicago, Chicago, IL,
United States, 7Department of Pathology, University of California, San Diego, San Diego, CA,
United States, 8Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA,
United States, 9Global Virus Network, Baltimore, MD, United States

Since the beginning of the COVID-19 pandemic, SARS-CoV-2 has

demonstrated its ability to rapidly and continuously evolve, leading to the

emergence of thousands of different sequence variants, many with distinctive

phenotypic properties. Fortunately, the broad application of next generation

sequencing (NGS) across the globe has produced a wealth of SARS-CoV-

2 genome sequences, offering a comprehensive picture of how this virus is

evolving so that accurate diagnostics, reliable therapeutics, and prophylactic

vaccines against COVID-19 can be developed and maintained. The millions of

SARS-CoV-2 sequences deposited into genomic sequencing databases,

including GenBank, BV-BRC, and GISAID, are annotated with the dates and

geographic locations of sample collection, and can be aligned to and

compared with the Wuhan-Hu-1 reference genome to extract their

constellation of nucleotide and amino acid substitutions. By aggregating

these data into concise datasets, the spread of variants through space and

time can be assessed. Variant tracking efforts have initially focused on the

Spike protein due to its critical role in viral tropism and antibody neutralization.

To identify emerging variants of concern as early as possible, we developed a

computational pipeline to process the genomic data and assign risk scores

based on both epidemiological and functional parameters. Epidemiological

dynamics are used to identify variants exhibiting substantial growth over time

and spread across geographical regions. Experimental data that quantify Spike

protein regions targeted by adaptive immunity and critical for other virus

characteristics are used to predict variants with consequential immunogenic

and pathogenic impacts. The growth assessment and functional impact

scores are combined to produce a Composite Score for any set of Spike

substitutions detected. With this systematic method to routinely score and

rank emerging variants, we have established an approach to identify

threatening variants early and prioritize them for experimental evaluation.
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Introduction

The ongoing evolution of SARS-CoV-2 has remained a

persistent public heath challenge throughout the entire course

of the COVID pandemic. Since the first strain of the virus was

isolated and fully sequenced (Wu et al., 2020), SARS-CoV-2 has

evolved into thousands of lineages and sub-lineages containing

unique combinations of mutations, also known as variant

constellations, with many of these mutations leading to

altered virus phenotypes, in terms of antigenicity,

transmissibility, and viral fitness (Harvey et al., 2021; Derek

et al., 2022). In order to characterize and label the rapidly

growing collection of variants, the scientific community has

relied on the PANGO Lineage (Rambaut et al., 2020)

nomenclature and WHO classifications as naming schemes for

these variants. The continual emergence of SARS-CoV-2 variants

has caused public health agencies to categorize selected lineages

depending on their predicted importance. In the United States,

the CDC has defined four categories of variants: Variants Being

Monitored (VBM), Variants of Interest (VOI), Variants of

Concern (VOC), and Variants of High Consequence (VOHC).

Classification is dependent on viral growth dynamics and the

level of threat to preexisting immunity or therapeutic efficacy.

Notable Variants of Concern include B.1.1.7 (WHO class Alpha),

B.1.617.2 (Delta), and the most recent B.1.1.529/BA.1-BA.5

(Omicron). (Centers for Disease Control and Prevention, 2019).

It has been a consistent pattern throughout the course of the

pandemic for SARS-CoV-2 to acquire genetic changes of

functional and epidemiological importance, beginning with

the observation as early as spring 2020 that the Spike protein

mutation, D614G, was associated with higher viral loads and was

under positive selection (Korber et al., 2020). Since then, with the

emergence of Alpha and Delta, Spike mutations such as N439R,

N501Y, E484K, and P681H, have been linked to increased

ACE2 binding affinity, antibody binding escape, and enhanced

viral replication (Starr et al., 2020; Greaney et al., 2021a; Liu et al.,

2021). The most recently emerged Variant of Concern, Omicron,

has been reported to contain constellations of mutations across

the n-terminal domain (NTD) and receptor binding domain

(RBD). This has resulted in high levels of viral antigenic escape,

and partial or complete resistance to the majority of available

therapeutic monoclonal antibodies and, to a large extent,

infection or vaccine-elicited polyclonal antibody binding and

neutralization (Planas et al., 2022; Sievers et al., 2022). The

astonishing ability of SARS-CoV-2 to rapidly evolve into

variants with expanded cellular tropism, enhanced replication,

increased transmissibility, and evasion of preexisting immunity

has triggered the scientific community to band together and

critically monitor the evolution of this virus through efforts like

the US National Institute of Allergy and Infectious Diseases

(NIAID)’s SARS-CoV-2 Assessment of Viral Evolution

(SAVE) program (DeGrace et al., 2022) and COVID-19

Genomics UK Consortium (COG UK) (COVID-19 Genomics

UK Consortium, 2019), which seek to iteratively provide a risk-

assessment of emerging variants of interest and offer

recommendations towards an optimal public health response.

A key approach to successfully monitor viral evolution, and

thereby set the stage for risk assessment and mitigation, is

through genomic surveillance (Deng et al., 2020; Korber et al.,

2020). Thanks to the rapid deployment of next generation

sequencing (NGS) laboratories, SARS-CoV-2 genome

sequences from millions of infected individuals across the

globe have been determined and deposited into public

databases (Chiara et al., 2021) such as the National Center

for Biotechnology Innovation (NCBI) GenBank (Sayers et al.,

2022), the Global Initiative on Sharing Avian Influenza Data

(GISAID) (Khare et al., 2021), and the Bacterial and Viral

Bioinformatics Resource Center (BV-BRC) (BV-BRC, 2022).

These data have been dynamically growing at a rapid pace since

the early stages of the pandemic and have allowed researchers to

pinpoint mutations under positive or negative selection

through the evaluation of occurrence rates of synonymous

versus non-synonymous nucleotide substitutions and the

identification of the mutational drivers of evolution by

modeling growth as linear combinations of the effects of

individual mutations (Martin et al., 2021; Obermeyer et al.,

2022). Overall, the amount of SARS-CoV-2 genomic

sequencing being carried out on a global scale and the

bioinformatics capabilities to understand these data has

opened opportunities for diverse research into strategies for

the early detection of emerging variants of concern based on

epidemiological dynamics and predicted functional

characteristics in near real time (DeGrace et al., 2022; Maher

et al., 2022; Obermeyer et al., 2022). The concept of early

detection is a key aspect of the NIAID SAVE program - to

assess risk of novel emerging variants and select and prioritize

variants for in vitro and in vivo experimentation (see DeGrace

et al., 2022 for a complete description of the NIAID SAVE

program for more details of the integrated workflow).

Here we present a computational heuristic developed for

early detection of SARS-CoV-2 emerging variants of interest,

which combines spatiotemporal sequence prevalence dynamics

and geographic spread with functional impact prediction, that

can be used to rank variants composed of constellations of

substitutions. The methods described have been used to rank

emerging variants of interest for the NIAID SAVE consortium

Early Detection group every month since March 2021 to inform

wet-lab experimentation.
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Methodology and results

Algorithms for early detection

Sequence prevalence dynamics
The BV-BRC team has developed the SARS-CoV-2 Early

Detection and Analysis Pipeline to offer informatics support for

analyzing emerging SARS-CoV-2 variants from genomic

sequencing data and associated epidemiological metadata

processed from public databases on a recurring basis. The

data used as input for this pipeline can be downloaded from

either the NCBI GenBank (Sayers et al., 2022), Virus Pathogen

Resource (ViPR) (Pickett et al., 2012), BV-BRC (BV-BRC, 2022)

databases, or EpiCov portal of GISAID (Khare et al., 2021). A

primary aspect of this pipeline is the ability to capture four

measures of sequence prevalence dynamics for each unique

constellation of SARS-CoV-2 genome sequence substitutions

segregated by month and geographic location with a focus on

substitutions that result in amino acid changes in the encoded

proteins. The sequence prevalence dynamics include 1) the total

genome sequence counts, 2) the genome sequence counts for

specific lineages and variants, 3) the sequence prevalence of these

lineages and variants, and 4) the growth rates of these lineages

and variants from month to month (see Supplementary Material

for more details). These sequence prevalence dynamics are

calculated for individual PANGO lineages, single amino acid

substitutions found in any SARS-CoV-2 protein, and unique

combinations of protein substitutions denoted as “covariants”,

which we refer to collectively as “variants”. (Note that each

covariant also belongs to one or more specific PANGO

lineages based on the nomenclature status of the original

sequence; multiple covariants of a single protein can belong to

the same PANGO lineage.) In this work, we focus on the analysis

of Spike covariants since this has been the initial focus of the

NIAID SAVE program, however the algorithm is also able to

quantify the dynamics of covariants in non-spike proteins as well.

Capturing the dynamics of emerging variants
A customized pipeline is used to compute sequence

prevalence dynamics upon capturing SARS-CoV-2 variants,

either single amino acid substitutions, covariant combinations

or PANGO lineage designations, and isolation metadata

(geographic location and date of sample collection) from

the genomic sequence databases. Strict quality control

criteria are used to filter out genomes with high numbers

of ambiguous or indeterminate base, low sequence length

coverage, missing viral names, or improper metadata such

as incorrect representation of dates or location names.

Genomes passing quality control are then pairwise aligned

to the Wuhan-Hu-1 reference genome (NC_045512.2), and

the constellation of variants extracted for the Spike protein, or

for the entire SARS-CoV-2 proteome (all 16 non-structural

proteins as well as E, M, N, S, ORF3a, ORF6, ORF7a, ORF7b,

ORF8, ORF9b, ORF10, and ORF14). Variant constellations

are then partitioned into temporal period (month by default)

and geographic region (country by default) groups. The total

number of genomes isolated for the spatiotemporal groups is

calculated and serves as the denominator for the sequence

prevalence ratio (formula 1). Variant constellation counts and

total isolate counts per region per time period are used to

compute epidemiological dynamics, namely the prevalence

and growth rates of variants between time periods as shown in

formulas (1) and (2).

Prevalence Ratio �
#Variant Sequences in Region R

during Period P
#Total Sequeces Isolated in Region

R duringPeriod P

(1)

Growth Rate �
Prevalence Ratio in Region

R during Period P
Prevalence Ratio in Region

R duringPeriod P − 1

(2)

Running this process to identify variant constellations and

acquire region-period counts directly from the raw sequence data

is computationally expensive for large batches of genomes and

requires high-performance computing resources. An alternative

approach is to use preprocessed data provided in GISAID

metadata files, which include the Spike variant constellations,

geographic location, date of collection, and basic quality control

data such as the sequence length and ambiguous nucleotide

content and can be downloaded with a registered GISAID

account.

Sequence prevalence score
To identify SARS-CoV-2 variations with concerning

epidemiological dynamics, a scoring heuristic based on

sequence prevalence ratio (Formula 1), growth in sequence

prevalence (Formula 2), and geographic spread was devised -

the Sequence Prevalence Score. The method first segregates

variants into geographic regions (e.g., country by default).

Next, only variants with a sequence count greater than 10 in

the most recent month are retained to control for large apparent

growth rates associated with small numbers. Any variants that

were filtered out are assigned a score of 0. To calculate the

Sequence Prevalence Score, the most recent time periods (e.g.,

three months by default) of data are used. A score of 1 is assigned

for every geographic region/time period combination in which

the sequence prevalence is >5% or the growth rate from the

previous month is > 5-fold by default. These numbers are then

summed to obtain the final Sequence Prevalence Score across all

geographic region/time period combinations. Table 1 shows a

ranking using the Sequence Prevalence Score to prioritize

variants from GISAID data processed in November 2021,

which is considered the initial month of emergence of the

Omicron variant. In this ranking, the Sequence Prevalence

Score for the Omicron variant is still relatively small but

detectable.
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Functional impact score
While the Sequence Prevalence Score quantifies prevalence

properties of variants, it requires some minimum time period to

observe concerning trends and may not rank concerning variants

high at early stages of emergence. A complementary approach for

analyzing emerging variants independent of epidemiological

dynamics is to predict the functional impact of amino acid

substitutions using prior knowledge from experimental data.

We have designated regions of the Spike protein that have

been experimentally shown to impact immune escape,

receptor binding affinity, or viral replication rates as

“Sequence Features of Concern” (SFoC). We detail our

procedure for selecting SFoCs in the following section, but

overall, these SFoCs include sites that could impact the

binding of one or more monoclonal antibody classes (Barnes

et al., 2020), neutralization with infection- or vaccine- (e.g.,

mrna-1273)-induced antisera, receptor binding affinity, or

other functionally important sites (e.g., NTD Supersite

(McCallum et al., 2021), furin cleavage site (Liu et al., 2021;

Escalera et al., 2022)).

Upon establishing our list of SFoCs, we assign each Spike

variant a Functional Impact Score based on positional overlap

with these important regions. For each mutated position in the

variant, if an overlap is found with one of the regions in the SFoC

list, a value of 1 is assigned, treating separately each of the

monoclonal antibody classes, convalescent serum, vaccine

serum, ACE2 binding affinity, NTD supersite, and furin

cleavage site. Summing all the values of each position mutated

in the variant produces the Functional Impact Score. Figure 1

provides a visual representation of this positional overlap with

SFoCs defined by deep mutational scanning monoclonal

antibody escape data using the genome browser of the BV-

BRC SARS-CoV-2 Variant Tracker (BV-BRC, 2022).

Sequence features of concern
Most of the data used to define the SFoCs were derived from

the deep mutational scanning experiments conducted by the

Bloom Lab, which quantified the mutation impact towards

monoclonal antibody escape, convalescent serum antibody

escape, vaccine (mrna-1273)-elicited antibody escape, and

ACE2 binding affinity for nearly every position in the

Receptor Binding Domain (RBD) (Starr et al., 2020; Greaney

et al., 2021a; Starr et al., 2021a; Greaney et al., 2021b; Starr et al.,

2021b; Greaney et al., 2021c; Starr et al., 2021c; Dong et al., 2021;

Tortorici et al., 2021). To achieve these quantifications, the

Bloom Lab constructed an RBD mutant library such that each

amino acid site on the RBD was mutated with the 19 possible

amino acid substitutions in the genetic background of the

Wuhan-Hu-1 reference strain. Rigorous statistical processing

was used to calculate an “escape fraction” for antibody escape

(between 0 and 1) and “binding average” for ACE2 affinity

(between -5 and 1) for every mutation at every position of the

RBD. Each monoclonal antibody belonging to one of the four

Barnes et al. structural epitope classes (Barnes et al., 2020),

subject specific convalescent sera, and subject specific vaccine

sera had their own escape fraction scores per mutation per site.

TABLE 1 Global Spike Covariant Rankings by the Sequence Prevalence Score. Ranking of covariants based on Sequence Prevalence Scores calculated
from GISAID metadata up to November 2021 is shown. The initial emergence of the Omicron variant is being captured in this ranking, but at a
relatively low rank.

WHO
label

Covariant Sequence prevalence
score

Rank

Delta T19R, G142D, E156G, F157-, R158-, L452R, T478K, D614G, P681R, D950N 123 1

Delta T19R, T95I, G142D, E156G, F157-, R158-, L452R, T478K, D614G, P681R, D950N 92 2

Delta T19R, E156G, F157-, R158-, L452R, T478K, D614G, P681R, D950N 64 3

Delta T19R, T95I, E156G, F157-, R158-, L452R, T478K, D614G, P681R, D950N 31 4

Delta T19R, T95I, G142D, Y145H, E156G, F157-, R158-, A222V, L452R, T478K, D614G, P681R, D950N 16 5

Delta T19R, G142D, E156G, F157-, R158-, A222V, L452R, T478K, D614G, P681R, D950N 14 6

Delta T19R, L452R, T478K, D614G, P681R, D950N 9 7

Delta T19R, G142D, L452R, T478K, D614G, P681R, D950N 8 8

Delta T19R, G142D, E156G, F157-, R158-, G181V, L452R, T478K, D614G, P681R, D950N 8 8

Delta T19R, T95I, G142D, E156G, F157-, R158-, L452R, T478K, D614G, P681R, D950N, D1259Y 6 10

Delta T19R, G142D, E156G, F157-, R158-, L452R, T478K, D614G, P681R, D950B 6 10

Delta T19R, E156G, F157-, R158-, L452R, T478K, D614G, P681R 6 10

Delta L5F, T19R, E156G, F157-, R158-, L452R, T478K, D614G, P681R, D950N 6 10

. . . . . . . . . . . .

Omicron A67V, H69-, V70-, T95I, G142D, V143-, Y144-, Y145-, N211-, L212I, G339D, S371L, S373P, S375F, K417N,
N440K, G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, Y505H, T547K, D614G, H655Y,
N679K, P681H, N764K, D796Y, N856K, Q954H, N969K, L981F

2 35
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The data from all these deep mutational scanning studies can be

downloaded and explored at https://jbloomlab.github.io/SARS2_

RBD_Ab_escape_maps/.

The distribution of scores for each antibody escape datasets

and the ACE2 binding dataset were examined to identify

positions of the RBD showing significant increases in antibody

escape or ACE2 binding affinity upon mutation. The analysis of

antibody escape data showed that most of the escape fraction

values were close to the 0 baseline and less than 0.2

(Supplementary Figure S1A). Therefore, to capture positions

on the RBD that led to strong antibody escape when mutated,

an escape fraction threshold of >0.25 was applied.

Consequentially, the antibody escape SFoCs were defined as

RBD sites with one or more mutations that lead to an escape

fraction exceeding this threshold for some monoclonal antibody,

convalescent subject sera, or vaccine subject sera. The

monoclonal antibodies corresponding to a mutation exceeding

this escape fraction threshold were categorized into their

structural epitope class to generalize the scoring for functional

impact. As a result, 75 sites on the RBDwere designated as having

a significant predicted impact on the binding of one or more of

four antibody classes and 36 sites as having a significant impact

on the binding of antibodies from convalescent or vaccine sera.

Similarly, we evaluated the distribution of scores for the

ACE2 binding affinity dataset. This analysis showed that most

scores were close to the 0 baseline or negative, where a negative

score implied a decrease in binding affinity (Supplementary

Figure S1B). To identify mutations that led to increased

ACE2 binding affinity, a binding average threshold

of >0.1 was selected, thus designating 12 sites that could

significantly increase the binding to ACE2 upon mutation,

including site 501, which leads to high degree of

conformational alterations of the Spike RBD when bound to

ACE2 when mutated (Gupta, 2022).

The remaining Sequence Features of Concern were those

deemed critical for adaptive immunity or viral tropism, such as

the NTD supersites (McCallum et al., 2021) (Spike positions

14–20, 140–158, 245–264), position 614 (Korber et al., 2020), and

the region flanking the furin cleavage site (Liu et al., 2021;

Escalera et al., 2022) (sites 671–692), determined through

literature curation.

Composite score
The Composite Score is computed by summing the Sequence

Prevalence Score and the Functional Impact Score. The

Composite Score simultaneously identifies variants with

alarming sequence prevalence dynamics AND variants that

would be predicted to impact important functional

characteristics of the virus. For example, although the initial

analysis of the Omicron variant using sequence data from

November 2021 did not show a high Sequence Prevalence

Score (Table 1), the original Omicron sequence did show a

FIGURE 1
Sequence Features of Concern from Deep Mutational Scanning Monoclonal Antibody Escape Data. An image from the BV-BRC SARS-CoV-
2 Variant Tracker (BV-BRC, 2022) genome browser shows a heatmap that quantifies the median escape fraction for eachmonoclonal antibody class
(Class 1—4 tracks), with the darker blue indicating greater escape fraction, implying greater loss of antibody binding due to mutations at that site. We
use these quantifications of potential antibody escape per mutated site per antibody class to define one type of Sequence Feature of Concern.
By identifying overlap between variants (bottom tracks) and these monoclonal antibody escape Sequence Features of Concern, the Functional
Impact Score of a covariant is computed.
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very high Functional Impact Score and therefore produced a high

Composite Score (Table 2). These results highlight the

importance of both the Sequence Prevalence Score and

Functional Impact Score for the early identification of

Variants of Interest for further evaluation.

Single mutation and PANGO lineage scoring
In addition to the Composite Score and its counterparts, we

devised methods that rely solely on epidemiological dynamics for

scoring single amino acidmutations and PANGOLineages, denoted

as theMutation Prevalence Score (Supplementary Table S1A,B) and

the Emerging Lineage Score (Supplementary Table S2A,B),

respectively. The details of these two methods are provided in

the Supplementary Material. They rely on a similar algorithm

used for the Sequence Prevalence Score. The Emerging Lineage

Score algorithm differs slightly from the Sequence Prevalence Score;

Supplementary Figure S2 provides context as to how the algorithm

was devised. Ranking PANGO lineages with the Emerging Lineage

Score can facilitate selection of lineages for conducting a specific

Composite Scoring analysis of covariants within the specific

PANGO lineage (Supplementary Table S3).

Signals of early detection and virus
evolution

This approach has been successful at catching signals of

concerning variants as they emerged. By January 2022, the most

dominant lineage of Omicron clade was BA.1, which included

several sub-lineages with varying Spike covariants, most

significantly the addition of the R346K mutation. When

scoring distinct Omicron covariants, differences between BA.1

+ R346K and the original BA.1 covariant could be observed

through an increase in Functional Impact Score (Table 3). BA.1 +

R346K was designated as PANGO Lineage BA.1.1 the following

month and noted as a Variant of Interest. In addition, a covariant

of the BA.2 lineage displayed a Sequence Prevalence Score of 1,

whereas many other covariants of the dominant BA.1 lineage

showed a Sequence Prevalence Score of 0, providing an early

signal that the BA.2 covariant should be monitored and

evaluated. Indeed, the early detection analysis conducted the

followingmonth (February 2022) showed that the BA.2 covariant

jumped from a score of 1–13 (Table 3). This BA.2 covariant

eventually went on to reach a remarkably high Sequence

TABLE 2 Global Spike Covariant Ranking with the Composite Score. The output of a ranking based on GISAID data up to November 2021. The analysis
returns a global ranking for all Spike variants based on theComposite Score. In this case, theOmicron variant jumped considerably in rank relative
to the ranking based on the Sequence Prevalence Score alone as shown in Table 1, thus showing the impact of quantifying the Functional Impact
Score in overall variant rankings.

WHO
label

Covariant Sequence
prevalence
score

Functional
impact
score

Composite
score

Rank

Delta T19R, G142D, E156G, F157-, R158-, L452R, T478K, D614G, P681R, D950N 123 10 133 1

Delta T19R, T95I, G142D, E156G, F157-, R158-, L452R, T478K, D614G, P681R,
D950N

92 10 102 2

Delta T19R, E156G, F157-, R158-, L452R, T478K, D614G, P681R, D950N 64 9 73 3

Delta T19R, T95I, E156G, F157-, R158-, L452R, T478K, D614G, P681R, D950N 31 9 40 4

Omicron A67V, H69-, V70-, T95I, G142D, V143-, Y144-, Y145-, N211-, L212I,
G339D, S371L, S373P, S375F, K417N, N440K, G446S, S477N, T478K,
E484A, Q493R, G496S, Q498R, N501Y, Y505H, T547K, D614G, H655Y,
N679K, P681H, N764K, D796Y, N856K, Q954H, N969K, L981F

2 36 38 5

Delta T19R, T95I, G142D, Y145H, E156G, F157-, R158-, A222V, L452R, T478K,
D614G, P681R, D950N

16 11 27 6

Delta T19R, G142D, E156G, F157-, R158-, A222V, L452R, T478K, D614G, P681R,
D950N

14 10 24 7

Delta T19R, G142D, E156G, F157-, R158-, G181V, L452R, T478K, D614G, P681R,
D950N

8 10 18 8

Delta T19R, T95I, G142D, E156G, F157-, R158-, L452R, T478K, D614G, P681R,
D950N, D1259Y

6 10 16 9

Delta T19R, G142D, E156G, F157-, R158-, L452R, T478K, D614G, P681R, D950B 6 10 16 9

Delta T19R, G142D, L452R, T478K, D614G, P681R, D950N 8 8 16 9

Delta T19R, L452R, T478K, D614G, P681R, D950N 9 7 16 9

Delta T19R, T95I, G142D, E156G, F157-, R158-, L452R, T478K, D614G, Q677H,
P681R, T859I, D950N

4 11 15 13

Delta T19R, G142D, E156G, F157-, R158-, L452R, T478K, D614G, P681R, D950N,
G1167V

5 10 15 13

Delta T19R, E156G, F157-, R158-, L452R, T478K, D614G, P681R 6 9 15 13
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Prevalence Score of 250 by the end of May. Among the more

recent BA.4/BA.5 lineages, an early warning for a BA.4 covariant

with a Spike V3G substitution was detected as soon as April,

when a Sequence Prevalence Score of 1 was computed. By May,

the BA.4 + V3G covariant had jumped from a score of 1–15. A

BA.5 covariant with the Spike T76I substitution was also detected

in May with an initial Sequence Prevalence Score of 1. By the end

of June, BA.4 + V3G jumped from 15 to 24 and BA.5 + T76I

jumped from 1 to 8. The BA.4 + V3G covariant eventually

surpassed all BA.2 covariants in Sequence Prevalence Score in

July, and other BA.5 covariants, such as BA.5 with K440N

reversion and BA.5 with S408R reversion, were showing

increased signals with Sequence Prevalence Scores of 32 and

22, respectively. Finally, by end of August, BA.5 covariants had

TABLE 3 Global Spike Variant Ranking for a Selected Annotated Lists with the Composite Score. The output ranking from the Composite Score of
selected covariants, annotated with names based on the addition or reversion of mutations relative to a PANGO lineage consensus variant
constellation. (A) Using GISAID data up to January 2022, the scoring in the last three columns quantitatively capture how these covariants differ,
including the increase in functional impact for BA.1 + R346K relative to the ancestral BA.1 and also captures an early signal for the BA.2 founder
lineage. (B) Using GISAID data up to February 2022, these scorings capture the 13-fold increase in Sequence Prevalence Score relative to the
January results for the same BA.2 founder lineage, strongly flagging an emerging Variant of Concern.

(A) Sequence prevalence score Functional impact score Composite score

Covarianta

B.1.617.2 + T95I 78 10 88

BA.1 (Omicron) 22 36 58

BA.1 + R346K 12 38 50

BA.1 + A701V 2 36 38

BA.1 + K417_ + N440_ + G446_ 7 29 36

BA.1 + I1081V 0 36 36

BA.3 0 35 35

BA.2 1 34 35

BA.1 + R346K + K417_ + N440_ + G446_ 3 31 34

BA.1 + K417_ + N440_ + G446_ + L452R + A701V 0 32 32

BA.1 + K417_ + N440_ + G446_ + L452R 0 32 32

BA.2 + K417_ + N440_ 0 30 30

BA.1 + K417_ + N440_ + G446_+ I1081V 0 29 29

BA.3 + K417_ + N440_ + G446_ 0 28 28

(B) Sequence prevalence
score

Functional impact
score

Composite
score

Covarianta

BA.1 74 36 110

BA.1 + R346K 57 38 95

BA.1 + A701V 12 36 48

BA.2 13 34 47

BA.1 + K417_ + N440_ + G446_ 15 29 44

BA.1 + F643L + A701V 6 36 42

BA.1 + K417_ 8 33 41

BA.1 + N211_ + L212_ + 214_ 3 36 39

BA.1 + I1081V 2 36 38

BA.2 + L24_ + P25_ + P26_ + A27_ 2 34 36

BA.3 0 35 35

BA.1 + K417_ + N440_ + G446_ + L452R 0 32 32

BA.1 + N211_ + L212_ + 214_ + G339_ + S371_ + S373_ + S375_ + K417_ +
N440_ + G446_ + L452R

0 30 30

B.1.617.2 + T95I 20 10 30

aUnderscore (_) = Ancestral reversion (no mutation at the site).
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FIGURE 2
Visualizing the Emergence of the B.1.617.2 (Delta) Variant. (A) A plot of global trends over time based onGISAID data up to June 2021 to visualize
the early growth dynamics of B.1.617.2 (Delta). The graph displays the 10 PANGO lineages with themost substantial global prevalence dynamics over
a six-month time frame, with the early emergence of B.1.671.2 and the sudden sharp decline of B.1.1.7 (Alpha) clearly evident. (B) A plot of growth
trends for Delta in the United Kingdom based onGISAID data up to June 2021. The graph displays the PANGO lineageswith themost substantial
global prevalence dynamics over a six-month time frame solely within the United Kingdom and shows the local growth of B.1.617.2 and decline of
B.1.1.7.
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the most dominant Sequence Prevalence Scores. These examples

show how signals of sequence prevalence and functional impact

provided early evidence of emerging variant dynamics that were

used by the SAVE consortium in vitro and in vivo groups for

experimental prioritization.

Visualizing early detection

To complement the early detection analysis scoring

algorithms, it has also been useful to visualize variant growth

both globally and regionally to further understand the dynamics

of these variants and facilitate early detection.

Visualizing relative growth of PANGO lineages
When a new variant displays alarming epidemiological

dynamics or predicted functional changes, like Delta and

Omicron, researchers may want to visualize the growth

dynamics of the new variant in the context of how the

prevalence of other variants are changing. During viral

evolution, when a new variant/strain becomes dominant, it

triggers a phenomenon where the prevalence of the currently

circulating variants suddenly begin to sharply decline, perhaps

because the new variant has a fitness advantage and is able to

outcompete the older variants (Korber et al., 2020; Martin et al.,

2021; McCrone et al., 2021; Zhou et al., 2021). If the prevalence of

a novel variant with alarming characteristics is increasing with a

corresponding sudden decline in growth of other circulating

variants, this would further indicate the early detection of a

potential Variant of Concern. As an example, prior to the

emergence of Delta, B.1.1.7-derived Alpha variants were the

most dominantly circulating variants around the world.

However, between May and June of 2021, it was becoming

clear that the newly emerging Delta variant was displaying

noteworthy properties (McCrone et al., 2021) and very

quickly replaced the other circulating variants, including

B.1.1.7 (Alpha), both globally (Figure 2A) and regionally,

especially in the UK (Figure 2B). By visualizing these

dynamics in stacked line plots, the relative magnitude by

which a novel lineage is growing with respect to other

lineages offers further evidence of the early detection of a

potential Variant of Concern.

Visualizing growth of covariants
In addition to tracking the emergence and growth of new

PANGO lineages, it is also useful to visualize the evolution and

growth of variants within these lineages. As discussed earlier, the

B.1.1.529 (Omicron) started to show rapid growth in December

2021 and then quickly accumulated additional substitutions,

ultimately generating the BA.1 and BA.2 lineages and sub-

lineages. By providing a list of covariants of interest, like the

one used in Table 3, a graph showing the prevalence of the

selected covariant list was produced (Figure 3). Comparing the

Composite Score results from Table 3 with the visualization in

Figure 3, some interesting insights about BA.1 + R346K emerged.

BA.1 + R346K had a high functional impact score, and while the

Sequence Prevalence Score was also high, it was not quite as high

as BA.1 for the month of January 2022. However, Figure 3 shows

that BA.1 + R346K was exhibiting a sharper change in its global

prevalence relative to BA.1, suggesting that this variant would

warrant further monitoring. Additional important insights for a

BA.2 covariant also emerged from these data, showing that

although the Sequence Prevalence Score was only one, it was

coinciding with sharp relative growth globally in just a single

month. Indeed, these plots provide a complementary

representation to the Composite Score ranking to facilitate

early detection analysis and more confidently identify variants

that warrant experimental evaluation.

Visualizing growth of individual amino acid
substitutions

In addition to the analysis of lineages and covariants, analysis

of individual amino acid mutations that contribute to multiple

covariants/lineages, perhaps due to convergent evolution or

recombination, are also worth exploring. For example,

through March 2022, the L24-, R346K, N440K, G446S, L452R,

A701V mutations were appearing sporadically throughout our

ranked covariants. Plotting the dynamics of these individual

amino acid mutations over subsequent time periods shows

that the R346K and G446S mutations started to decrease in

prevalence at the same time as the prevalence of L24-was rapidly

increasing, suggesting that viruses carrying this mutation may

possess a fitness advantage (Figure 4). Indeed, this L24-is part of

an extended deletion that distinguishes BA.2, which subsequently

replaced BA.1 in global dominance.

Challenges

Defining SARS-CoV-2 variants that warrant functional

experimental evaluation presents significant challenges. Early

genomic sequencing data is often subject to data imbalances

and ascertainment biases with respect to specific geographic

regions. Wealthier countries with higher sequencing capacity,

such as the US and UK, are responsible for most publicly

deposited SARS-CoV-2 genome sequences. A survey of the

4.5 million SARS-CoV-2 genomes available in GenBank and

BV-BRC through April 2022 showed that roughly 47%were from

the US and 38% from the UK. Thus, the evaluation of variant

dynamics is biased to the changes occurring in these geographic

regions. Sequence ambiguity that can occur as a new variant

emerges, before the sequencing assays can be optimized, presents

an additional challenge. Since the SARS-CoV-2 genomes

submitted to the public databases have already been

assembled and a consensus sequence called, the quality of the

read level data cannot be easily evaluated independently. For
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example, in the processing of variant data through the GISAID

metadata file downloads, many sequences appeared to have

reverted to ancestral residues in comparison to the original

Omicron outbreak sequences. However, in many cases this

was due to low sequence coverage in certain genomic regions

that is not apparent in the metadata file. Indeed, processing

assembled GenBank sequence data from BV-BRC, only about

25% of sequences had little to no ambiguities, and the amount of

ambiguity in the sequencing data fluctuated during the initial

emergence of certain important variants, like Delta and Omicron,

making it challenging to compute true sequence prevalence of

authentic covariants. Another challenge is choosing the amount

of data that ought to be regularly downloaded for computing the

early detection scoring heuristics. While focusing on the most

recent data could potentially be used to identify concerning

variants more swiftly, a potential drawback would be sequence

biases resulting in minimal representation. On the other hand,

longer temporal data is more comprehensive and accurate, but

could delay identification of newly emerging variants of concern.

In our pipeline, we allow the option to choose anywhere from the

past 2—6 months of global sequencing data to evaluate, with a

default of 3 as our best attempt to set a balance between early

detection and unbiased, accurate results. Finally, the most

enduring challenge is the fact that these data are very large

and continuously growing, as new SARS-CoV-2 sequence data

are being deposited by the thousands every day. Designing

pipelines to carry out real-time genomics analysis for this

amount of data is technically challenging, and our techniques

on how best to manage, analyze, and scale will need to

continuously adapt.

Discussion

Since the initial declaration of the COVID-19 pandemic, it

has been clear that SARS-CoV-2 will persist in our community

and remain a public health issue for the indefinite future.

However, if we, as a biomedical community, come together

and maximize our resources to combat this virus, we can

continuously minimize the threat it brings to our world and

transition to a phase in which SARS-CoV-2 becomes an endemic

infection with only modest effects on public health. A major

FIGURE 3
Visualizing the Emergence of Omicron Variant Constellations. A plot displaying the prevalence dynamics over six months of selected Spike
covariants based on GISAID data up to January 2022. This visualization captures the sharp growth and relatively large global prevalence of BA.1 +
R346K as well as the early growth of a BA.2 covariant. The names presented in the legend use the ancestral PANGO lineage designation plus orminus
certain amino acid mutations to represent different covariants. Underscores indicate that certain mutations were reverted to ancestral relative
to the parent PANGO lineage.
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factor that contributes to minimizing the threat brought by

SARS-CoV-2, or any other emerging pathogen, is through

genomic surveillance. The best approach for monitoring viral

evolution to ensure that we maintain reliable therapeutics and

accurate diagnostics is by routinely collecting and sequencing

samples from infected individuals to acquire complete virus

genome sequences. With the COVID-19 outbreak, the

research and public health communities have truly excelled at

this task, as we have now reached a point where millions of

SARS-CoV-2 genome sequences have been deposited in public

databases. That being said, all of these data are only as powerful

as the computational resources used to manage and analyze

them. Thus, the explosion in publicly available viral genomes also

calls for the development of appropriate computational

frameworks that can scale as the data grows to enable the

timely identification and prioritization of emerging variants

for experimental evaluation.

In this work, we present approaches to process SARS-CoV-

2 genomic sequencing data and epidemiological metadata on a

regular basis and apply scoring heuristics to prioritize variants

based on their epidemiological dynamics and predicted functional

characteristics by computing Sequence Prevalence, Functional

Impact, and Composite Scores. The output of these approaches

provides concise lists of ranked variant constellations (covariants),

offering a straightforward approach for wet-lab scientists to

immediately determine which combinations of mutations ought

to be evaluated.

These methods were validated through the early detection of the

original Omicron variant (B.1.1.529/BA.1) and its subsequent sub-

lineages (BA.2, BA.4, BA.5). Indeed, a high-ranking Functional

Impact Score highlighted the initial emergence of Omicron in

November 2021 and early Sequence Prevalence Score signals

tagged the BA.2, BA.4, and BA.5 lineages in which their early

scores jumped considerably in the subsequent month. These

observations demonstrate the importance of monitoring all

variants that achieve some initial score to determine if they will

show increases in subsequent months as an indicator of rapid

geographical spread. In addition to early prioritization of novel

variants like Omicron, this system makes it easy to evaluate the

subtle differences among the multitude of covariants arising from a

single parent lineage, like comparing the BA.1 + R346K covariant to

the original BA.1 covariant. Finally, the use of data visualizations for

variant growth either by PANGO lineage, covariant, or single amino

acid substitution demonstrates how coupling rankings with

visualizations can further ground our confidence in early

detection of variants that warrant experimental evaluation.

FIGURE 4
Visualizing Growth Patterns of Single Amino Acid Mutations in the Spike Protein. A plot based on GISAID data up to March 2022 demonstrating
the shift in dynamics for individual amino acid mutations. This plot is based on six selected amino acid mutations. Note that the L24-is a part of an
extended deletion that also includes P25 and P26 found in BA.2.
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While the initial focus of this work has been on Spike protein

variants, as that was NIAID SAVE’s interest for evaluation, the

framework also can score and rank proteome-wide SARS-CoV-

2 variant constellations and single amino acid substitutions,

which are provided in our publicly available pipeline. While

the primary focus was the Spike protein due to its critical role in

adaptive immunity and viral tropism, the community is

beginning to take serious interest in mutations arising in non-

structural proteins, particularly nsp3, nsp5, and RNA-dependent

RNA Polymerase (nsp12), due to their importance in the SARS-

CoV-2 replication cycle and antiviral drug targeting (Tchesnokov

et al., 2020; Martinot et al., 2021; Szemiel et al., 2021; Jochmans

et al., 2022; Zhou et al., 2022). We continue to pay close attention

to the literature to monitor the science behind non-Spike protein

regions that play key roles in replication or impact drug targeting,

and are continually updating the Sequence Features of Concern

to account for this new knowledge. Ultimately, this framework

can provide Composite Scores for variant constellations specific

to any SARS-CoV-2 protein.

The methods presented in this work could be extended for

evaluating variants of other viral species if sufficient data is available.

This approach requires enough genomic sequencing data, consistent

spatiotemporal isolation metadata, a methodology to compute

variants with respect to a reference or a consensus genome

(Zhang et al., 2017), and sufficient prior knowledge through

experimental data to define Sequence Features of Concern and

predict functional impacts. Moreover, these algorithms could be

extended to evaluate genomic surveillance data from zoonotic disease

reservoirs, such as influenza virus in avian or swine species. Indeed,

several projects already exist to collect viral genomic sequences from

such reservoirs and warehouse these data in public databases

(Anderson et al., 2021). Overall, the methodologies described here

can play an important role in a complete public health ecosystem by

utilizing genomic sequencing data to monitor viral evolution and

remain steps ahead of SARS-CoV-2, or any other virus, and

ultimately deter the next pandemic.
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