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Antibodies make up an important and growing class of compounds used for the

diagnosis or treatment of disease. While traditional antibody discovery utilized

immunization of animals to generate lead compounds, technological

innovations have made it possible to search for antibodies targeting a given

antigen within the repertoires of B cells in humans. Here we group these

innovations into four broad categories: cell sorting allows the collection of

cells enriched in specificity to one or more antigens; BCR sequencing can be

performed on bulk mRNA, genomic DNA or on paired (heavy-light) mRNA; BCR

repertoire analysis generally involves clustering BCRs into specificity groups or

more in-depth modeling of antibody-antigen interactions, such as antibody-

specific epitope predictions; validation of antibody-antigen interactions

requires expression of antibodies, followed by antigen binding assays or

epitope mapping. Together with innovations in Deep learning these

technologies will contribute to the future discovery of diagnostic and

therapeutic antibodies directly from humans.
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1 Introduction

Antibodies, which are the extracellular portion of B cell receptors (BCRs), play a

critical role in adaptive immune responses. An antibody consists of two chains, heavy and

light, each of which is composed of a constant and a variable region (Figure 1). The six

complementarity determining regions (CDR) of the variable region are responsible for

binding a specific antigen with high affinity (Pons et al., 2002; Davila et al., 2022).

Antibodies are widely used for both disease diagnosis and treatment.

Traditional therapeutic antibody discovery approaches utilized animals, usually mice,

to generate polyclonal antibodies against a target antigen. In this approach, candidate

monoclonal antibodies (mAbs) are selected and engineered to minimize immunogenicity

in humans, while maintaining target specificity and desired pharmacokinetics. The first

blockbuster therapeutic antibody (anti-CD3 OKT3), which was engineered in this

manner, was approved by the FDA in 1986. Animal-based antibody discovery had a

huge impact on the pharmaceutical industry through the 1990’s and motivated the
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development of new antibody discovery platforms. By the mid-

2000’s, approximately one-half of therapeutic antibodies were

fully human through the use of transgenic mice or phage display

platforms utilizing human BCR genes (Nelson et al., 2010; Ju

et al., 2020).

In the past decade, a number of technological breakthroughs

have enabled the discovery of antigen-specific mAbs directly

from human donors (Pedrioli and Oxenius, 2021). Up to the

mid-2000s, mining human B cell receptor (BCR) repertoires for

mAbs specific to an antigen of interest was primarily done in

academic research labs (Truck et al., 2015; Wang et al., 2015;

Goldstein et al., 2019). However, the COVID-19 pandemic

brought with it an urgent need for creative ways of targeting

the SARS-CoV-2 virus quickly. Remarkably, within months of

the pandemic, multiple research groups reported the discovery of

neutralizing antibodies from the BCR repertoires of COVID-19

patients (Cao et al., 2020; Hansen et al., 2020; Ju et al., 2020; Pinto

et al., 2020; Robbiani et al., 2020; Seydoux et al., 2020;Wang et al.,

2020; Zost et al., 2020; Baum et al., 2021). Due to the

overwhelming need for a response to the pandemic, along

with the rapid availability of resources for COVID-19 related

research, many of the mAbs were quickly tested for safety and

efficacy in the clinic. The Antibody Society currently lists 35 anti-

SARS-CoV-2 mAbs or mAb cocktails undergoing clinical trials

(https://www.antibodysociety.org/covid-19-biologics-tracker).

Although it is important not to over-generalize the

development of anti-SARS-CoV-2 antibodies to other disease

areas, the intensity of research on COVID-19 has refocused

attention on the technological innovations that enabled the

discovery of antigen-specific antibodies from human BCR

repertoires so quickly. Here we review four main areas of

innovation: B Cell sorting, BCR sequencing, BCR repertoire

analysis, and experimental validation of antigen binding.

Although each of these areas are active research topics on

their own, the greatest impact on the pharmaceutical industry

will come through synthesis into integrated experimental and

computational pipelines. Given the recent breakthroughs in

computational biology, including antibody-specific machine-

learning methods (Akbar et al., 2022), we can expect rapid

growth in this area as data generation merges with data

analysis in the context of antibody discovery.

2 B cell sorting

A repertoire of BCRs refers to a snapshot of all the B cells

produced in a given donor at a given time. When studying

repertoires, separating cells of interest by cell sorting is

commonly used for isolating natural B cells with a specific

phenotype or antigen specificity. This is one of the first steps

in discovering antibodies from human donors. Common

methods used for cell sorting include FACS (Fluorescence-

activated cell sorting), MACS (Magnetic-activated cell sorting),

or combinations of both. In FACS, fluorescently-labeled antigens

are used as probes to isolate antigen-binding B cells, collect them

into tubes or plates, and continue further processes such as bulk

or single cell BCR gene amplification and sequencing

(Gieselmann et al., 2021). Fluorescent-labeling of an antigen is

a critical step and can be done via covalent chemical conjugation,

expression of a recombinant antigen-fluorescent fusion protein,

FIGURE 1
BCR structure. (A) Schematic representation of BCR structure. A BCR is composed of an immunoglobulin (antibody) molecule and a
heterodimer (Igα/Igβ) that contain transmembrane and signal transduction regions. (B) The immunoglobulin variable region is composed of heavy
(blue) and light (orange) chains (PDB entry: 7jmpHL). The six CDRs are represented by darker shades.
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or by biotinylating the antigen and adding fluorochrome-

conjugated streptavidin to make an antigen tetramer, which

increases avidity to the antibody. It must be kept in mind that

such labeling may occlude some part of the epitope and

potentially disturb the B cell antigen recognition process

(Boonyaratanakornkit and Taylor, 2019). Despite this

potential complication, utilization of fluorescent-labeled

antigens is a promising approach to the collection of antigen-

specific B cells.

A relatively new technology, MACS, utilizes direct (primary

antibody-conjugated microbeads) or indirect magnetic labeling

(primary antibody plus a secondary antibody-conjugated

microbead) of cells prior to separation through a magnetic

field. Although it lacks sensitivity and is not compatible with

multiple-marker profiles, the cell throughput, viability, and time

requirements for MACS are comparable to FACS (Sutermaster

and Darling, 2019). Some researchers combine these two

methods to do enrichment of antigen-specific B cells (Galson

et al., 2015a; Banach et al., 2022).

Isolating antigen-specific human B cells is nevertheless quite

challenging. Memory B cells express large amounts of antigen

receptors on their surfaces but are present in very low numbers in

peripheral blood, the most accessible repertoire compartment of

the human body (Waltari et al., 2019). The other most

commonly-studied subset of antigen-specific B cells consists of

antibody-secreting cells (ASCs). ASCs can be found in higher

numbers in peripheral blood, especially after vaccination or

infection; however, ASCs, especially those of the IgG isotype,

are thought to have limited immunoglobulin surface expression.

This might be a reason why many previous studies of ASCs did

not utilize antigen-based sorting, but rather collected all ASCs

and screened for antigen-specificity downstream after culturing

the cells in vitro and stimulating antibody secretion before

sequencing (Lavinder et al., 2014; Galson et al., 2015a;

Acquaye-Seedah et al., 2018; Pedrioli and Oxenius, 2021).

However, IgA and IgM isotype ASCs retain expression of

surface immunoglobulin (Pinto et al., 2013; Blanc et al., 2016),

making it relatively straightforward to sort these subsets in an

antigen-specific manner.

Another challenge in antigen-based cell sorting is related to

the specificity that is, whether or not the selected cells are truly

positive binders or just appear through nonspecific binding to the

fluorochrome, streptavidin, or any added linkers (Doucett et al.,

2005; Boonyaratanakornkit and Taylor, 2019). During the

sorting process, it is necessary to reduce these background

signals as much as possible. Due to the limitation of sample

quantity and a low number of antigen-specific cells in the sample,

we often lack ideal positive control cells from which a positive

threshold for fluorescence (gate) can be used to define antigen-

binding cells. Thus, in general, one must rely on a negative

FIGURE 2
Antigen-specific B cell sorting with or without LIBRA-seq. (A) Utilization of double negative control population to determine gating line for
selecting antigen-binding cells. The population inside the red box is considered “antigen-binding.” (B)Workflow of antigen-specific cell sorting with
and without the utilization of LIBRA-seq. Samples can be obtained from vaccinated donors or patients with a certain disease. LIBRA-seq uses
barcoded antigen along with the fluorescent label, that can be read by the NGS machine.
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control population (which can be cells or decoys that are stained

by unlabeled antigen or fluorochrome without the antigen) to set

the gate for antigen binders (Figure 2A). Additionally, to increase

specificity, a double fluorescent staining strategy can be used to

label the antigen probe. Here, an antigen is labeled with two

different fluorescent labels and the double positive cells are

deemed positive (Amanna and Slifka, 2006). However, this

approach still leaves some opportunity for non-binders to be

recruited, as seen in a previous report that only 80% of sorted

cells were positively bound to the antigen after being

recombinantly produced and tested by ELISA (Attaf et al.,

2020). This observation suggests that experimental validation

(discussed in Section 5) is a requirement for any antibody

discovery workflow based on antigen-based B cell sorting.

This can be a potential bottleneck, since the production of

recombinant antibodies following the acquisition of antibody

sequences by conventional cloning and expression in

mammalian cells can be labor intensive (Pedrioli and Oxenius,

2021).

To overcome these challenges, and to increase the

throughput of antigen-based sorting, the Linking B-cell

Receptor to Antigen Specificity through Sequencing (LIBRA-

seq) method was introduced in recent years (Setliff et al., 2019).

LIBRA-seq is a modification of antigen-based cell sorting that

makes use of next-generation sequencing (NGS) technology. In

LIBRA-seq, in addition to the fluorescent label, the antigen probe

is coupled to a unique DNA barcode that is readable in the

sequencing stage. The B cells are thus enriched for antigen-

binding cells by FACS; then, the specific antigen is mapped to the

B cell by the expression level of the barcode (Figure 2B). This

allows simultaneous capture of several antigen probes, tagged by

the same fluorescent color but different barcodes. Each cell will

have scores for each antigen in the screening library. These scores

are a function of the unique molecular identifiers (UMIs) for the

respective antigen barcodes (Setliff et al., 2019). Several studies

utilized this method to efficiently discover SARS-CoV-2 specific

antibodies (He et al., 2021; Kramer et al., 2021; Shiakolas et al.,

2021; Kramer et al., 2022; Shiakolas et al., 2022; Suryadevara

et al., 2022). The latest version of LIBRA-seq allows epitope

mapping by barcoding several variants of the antigen, each with

known epitopes mutated (Walker et al., 2022).

3 B cell receptor sequencing

Due to the unique phenomenon of gene rearrangement in the

generation of BCR coding sequences, BCR diversity at the amino

acid sequence level is believed to be in the range of 1016–1018

(Briney et al., 2019). With the development of NGS, High-

throughput sequencing-based (HTS) sequencing has been used

to analyze both T cell receptor (TCR) and BCR repertoires (Yaari

and Kleinstein, 2015). The first use of HTS technology for

immune repertoire analysis was made by Campbell (Campbell

et al., 2008) in 2008 using the Roche454 platform to explore IGH

hypermutation variants carried in patients with chronic

B-lymphocytic leukemia at the DNA level. Since this time, a

number of new technologies have emerged. These can be divided

roughly into two groups: bulk and single-cell sequencing. In bulk

sequencing the pairing between heavy and light chains is lost; in

single-cell sequencing, this pairing is maintained.

3.1 Bulk B cell receptor sequencing

Bulk sequencing provides in-depth information on the

frequency of single chains, which gives a high-resolution view

of diversity (a measure of the range and distribution of certain

features within a given population (Xu et al., 2020)) and clonal

expansion (the proliferation of lymphocytes activated by clonal

selection in order to produce a clone of identical cells (Polonsky

et al., 2016)), as entire cell populations can be sequenced in a

single pipeline (Kovaltsuk et al., 2017). Two starting materials

can be used as initial templates for repertoire sequence: genomic

DNA (gDNA) and messenger RNA (mRNA). gDNA has the

advantage of stability and a constant initial gene copy number

between cells (Chaudhary and Wesemann, 2018). mRNA as a

template requires reverse transcription, during which UMIs can

be added, a step that helps in identifying duplicate or/and cloned

sequences generated by PCR, which circumvents PCR bias or

sequencing errors (Turchaninova et al., 2016; Rosati et al., 2017).

In addition, synthetic repertoires utilize long (~500 bp)

oligonucleotide synthesis and high-throughput sequencing to

generate a template for every possible V/J combination for

minimization of PCR amplification bias, and additional

computational normalization to remove residual bias. (Carlson

et al., 2013). Multiplex-PCR (m-PCR) and 5′RACE approaches

are the two main methods used for amplification. m-PCR has the

advantage that only one-step PCR is required, regardless of

whether adaptors are included in the primers or not; when

the material selected is gDNA, the downstream primers are

restricted to several J gene segments, due to the existence of

introns (Bashford-Rogers et al., 2014). 5′RACE requires only one

set of oligonucleotides, and designing primers from the C gene

increases specificity and greatly reduces PCR bias (Yeku and

Frohman, 2011), but has a relatively complex workflow for the

library building. In addition to BCR information, it is often

desirable to obtain the phenotypes or specific subsets of the

B cells. Information on immune receptor libraries can be

extracted from RNA-seq data, as BCRs are part of bulk RNA-

seq data. However, the sensitivity of such an approach is low

because of the under-expression of genes at the transcriptional

level and also because large-scale RNA-seq usually results in a

mixture of cellular gene expression profiles in the sample.

Therefore, RNA-seq usually requires pre-targeted protein

labeling of cells with fluorescently labeled antibodies to purify

the cell types in the sample (Picot et al., 2012).
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3.2 Single-cell B cell receptor sequencing

To obtain paired heavy-light chain sequences, single B cell

resolution is required, since the mRNAs of each chain are

physically separate. When coupled with single-cell RNA-seq,

BCR sequencing can also provide important phenotype

information on the cells (Haque et al., 2017). Goldstein and

co-workers showed that single B cell sequencing can recover a

higher number of antibody lineages compared to hybridoma

technology (Goldstein et al., 2019). Single-cell sequencing has

also been used to identify SARS-CoV-2 specific Abs (Woodruff

et al., 2020; He et al., 2021), tumor-specific Abs (Buus et al.,

2021), and autoimmune disease-specific Abs (Sulen et al., 2020;

Jin et al., 2021). Single-cell sequencing is now readily available

from several companies, including 10x Genomics and

Takara Bio.

Single-cell sequencing combines multiple levels of

information, not limited to intracellular gene expression and

BCR pairing information; by adding specific oligonucleotide

barcode-associated antibodies, thereby allowing surface

proteins to be characterized, similar to flow cytometry. Single

cells can be isolated in microtiter plates or droplets and then

physically linked by overlapping extension RT-PCR in the

variable regions of heavy and light chains. Although the

potential to obtain BCR pairing information at high

throughput has been demonstrated, this technique requires

custom equipment and does not yield full-length variable

region sequence information (Goldstein et al., 2019). Although

full-length sequences can be inferred by the assembly, there is

uncertainty in this process (DeKosky et al., 2013; DeKosky et al.,

2015; McDaniel et al., 2016). RAGE-seq (repertoire and gene

expression by sequencing) combines the genomic technologies of

Oxford Nanopore Technologies’ long reads, 10x Genomics,

Illumina’s short reads, and CaptureSeq4 major platforms to

enrich RNA from single B cell, and then assembles full-length

sequences computationally (Singh et al., 2019).

The main limitation to current single-cell sequencing is the

tradeoff between sequencing depth and cost. Sequencing depth is

the number of transcripts detected from each cell which should

be controlled together with the number of cells to get enough

coverage (average number of reads that align to specific locus in a

reference genome to “cover” reference bases) for confident

sequence assignment. The minimum sequencing depth for

single cell VDJ analysis is around 5,000 paired reads per cell,

while gene expression analysis requires a minimum 20,000 reads

per cell, which can be increased depending on needs to analyze a

greater number of genes. In comparison with bulk sequencing,

which usually obtains 1 million reads per sample, singe-cell

sequencing depth depends on the desired number of cells in

one sample. For example, we recently obtained approximately

20 million reads from one thousand cells with 20,000 reads per

cell (unpublished results). The cost of single-cell sequencing

mainly comes from the library preparation step which can be

10–20 times higher than for traditional bulk sequencing. Current

developments are focused on how to reduce the cost and increase

the sequencing depth of single-cell sequencing (Haque et al.,

2017; Upadhyay et al., 2018; Wu et al., 2018).

3.3 Annotation of raw sequence data

Annotation includes defining the V, D, and J genes for a given

BCR, inferring the accurate amino acid sequence, and assigning

the CDR boundaries. These are nontrivial tasks. Several

numbering schemes to define CDRs have been proposed

including Kabat, Chothia, Martin, Gelfand, IMGT, and AHo

(Dondelinger et al., 2018). Meanwhile, several tools have been

developed to streamline the process of annotation to use these

numbering schemes. For the assignment of CDRs ANARCI is a

reliable and user-friendly tool (Dunbar and Deane, 2016). For

gene and amino acid assignment, the strengths of the various

tools have been systematically discussed in several previous

publications (Heather et al., 2018; Lopez-Santibanez-Jacome

et al., 2019; Smakaj et al., 2020). Here, we will describe several

of tools for the analysis of bulk- and single-cell sequence data.

IMGT is one of the most widely used annotation platforms today.

High-quality germline sequence information for most species is

assembled in IMGT, and therefore reference libraries for the vast

majority of sequence annotation tools are derived from IMGT

(Lefranc et al., 2005; Manso et al., 2022). In 2011, IMGT

developed a platform for HTS T/B repertoire data, supporting

raw sequence uploads in FASTA and FASTQ formats (Alamyar

et al., 2012; Li et al., 2013). IgBLAST was originally developed as a

tool for analyzing immunoglobulin sequences using BLAST, a

local alignment method (Ye et al., 2013). Although data can be

uploaded directly through the webpage, it does not show many

advantages in the analysis of HTS data or presentation of results.

MiXCR is another widely used stand-alone package for BCR

repertoire annotation, as there is no restriction on the number of

sequences. It uses an improved k-mer chaining algorithm for

sequence alignment, and an error correction procedure can be

performed based on the quality of the sequences (Bolotin et al.,

2015).

For scRNA-seq data generated through the 10x Genomics

platform, pre-processing similar to bulk sequencing is required

before downstream analysis. The company offers Cell Ranger

(Zheng et al., 2017), which is recommended for its ability to

process both gene expression and paired TCR/BCR data. The

development of tools to reconstruct immune repertoire

information from single-cell or bulk RNA-seq is an active

area, including tools such as BASIC, BRACER, and BALDR

(Haque et al., 2017; Upadhyay et al., 2018; Wu et al., 2018).
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4 B cell receptor repertoire analysis

BCR repertoire sequence data is growing rapidly. In this

section, we will first describe methods to analyze diversity, clonal

composition, or the specificity of BCRs from different cohorts.

Next, we introduce databases and platforms to store repertoire

data. Lastly, we will briefly discuss antibody structural modeling

and epitope/paratope prediction.

4.1 B cell receptor repertoire sequence
analysis

Sequence analysis of BCR repertoire data is a rapidly evolving

field that can be roughly divided into three main components:

diversity, clonal composition (the relative abundance of specific

clones (ImmunoMind, 2019)), and antigen/disease binding

specificity. There are a large number of tools and packages

that can be used to analyze BCR diversity, clonal frequency,

and networks of BCRs. Some well-used tools like Immcantation

(Vander Heiden et al., 2014; Gupta et al., 2015), and Immunarch

(ImmunoMind, 2019) allows visualization of results after direct

import of data from Cell Ranger or MiXCR. Some representative

visualizations of results are shown in Figure 3. Many metrics in

repertoire analysis are general methods used beyond BCRs or

TCRs, such as Shannon and Simpson diversity (Leinster and

Cobbold, 2012; Greiff et al., 2015a). Shannon diversity correlates

with increasing sequence uniformity, whereas Simpson diversity

assigns greater weight to dominant sequences. Clonal abundance

is another measurement to quantify sequence distribution that

can be used to determine the difference in the ratio of high-

frequency to low-frequency sequences between healthy and

FIGURE 3
BCR repertoire sequence analysis. (A) Sample collection using PBMCs from blood, followed by NGS. (B) The Shannon, Simpson, D50, Gini, and
chao1 indices are designed to assess the overall diversity of each cohort. (C) Clone proportion can show the change of high-frequency (clone
expansion) as well as low-frequency sequences in each sample. (D) The bias of V and J gene usage and their combination can reflect immune
responses of different repertoires. (E) The length distribution of the CDR3 region can be used to characterize repertoire. (F) Venn plot can be
utilized for visualizing the degree of convergence among samples and exploring the potentially disease-specific public clone. (G)Networks of BCRs.
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diseased patients (Yaari and Kleinstein, 2015). High expression

or low expression of V, D, and J BCR genes can indicate immune

responses (Lee et al., 2021; Kotagiri et al., 2022). Meanwhile, the

length and amino acid usage of CDR3 regions is often used to

characterize repertoires in terms of a few dependent parameters.

For example, one study reported that the average CDRH3 lengths

of IGHG1, IGHA1, and IGHA2 were significantly greater in

COVID-19 patients than healthy cohorts (Galson et al., 2020).

Moreover, the same authors identified CDRH3 amino acid

sequence signatures within COVID-19 patients with different

symptoms (Galson et al., 2020). Also, diversity caused by high-

frequency mutations in somatic cells is another important feature

of BCR sequences. In general, mutation analysis shows the extent

of differentiation compared to germline sequences and indicates

antigen-driven affinity maturation. One group utilized the

frequency of somatic hypermutation (SHM) of the heavy

chain as a feature to identify HIV patients possessing broadly

neutralizing antibodies (Roskin et al., 2020).

Identification patterns relating to specific antigens or

disease cohorts is a major challenge in BCR repertoire

analysis. Previous studies have observed BCR sharing

among HIV patients, HBV vaccination donors, Influenza

vaccination donors, and COVID-19 patients (Jackson et al.,

2014; Galson et al., 2015a; Setliff et al., 2018; Kim et al., 2021;

Voss et al., 2021). In order to quantify the convergence (the

existence of similar or identical BCR sequences among donors

in a common cohort) of BCRs, clonotypes (same V, J gene and

identical amino acids in CDR3 region) analysis is widely used

in both bulk and single-cell analyses (Soto et al., 2019;

Raybould et al., 2021b). Furthermore, clustering such

clonotypes (e.g. with 80% or greater sequence identity in

their CDR3) is often used (Galson et al., 2020; Nielsen

et al., 2020). Similar CDR3 sequences that dominate the

immune response in different individuals following antigen

stimulation are often referred to as a “convergent” or “public”

(Truck et al., 2015). Experimental validation of clustering will

be described in detail in section 5.2.

4.2 Repertoire databases and data mining

Due to continuous advances in sequencing technology,

BCR repertoire sequence data, especially bulk data, has grown

rapidly in recent years. Most data associated with published

repertoire research is stored in public databases such as the

Sequence Read Archive (SRA) or European Nucleotide

Archive (ENA), in the form of raw NGS reads. Since SRA

and ENA do not allow sequence-level searches, such analysis

must be performed on specialized repertoire web servers or by

using command-line tools. In this section, we describe a

number of databases for antibody sequences, structures or

both, that can help in the mining of antigen-specific BCR

sequences.

• Observed Antibody Space (OAS) is a comprehensive and

frequently updated website and database (Kovaltsuk et al.,

2018; Olsen et al., 2022) Although OAS also contains

paired data, to our knowledge, it is the first organized

collection of bulk BCR sequences. Metadata such as study,

species, disease, vaccine, B cell source, and subset can be

searched (Figure 4).

• The iReceptor (Corrie et al., 2018) platform allows sharing

and comparing adaptive immune receptor repertoire

(AIRR)-seq data. It has two key components: a data

repository that focuses on AIRR data, and a web-based

Scientific Gateway that allows researchers to discover,

federate, explore, and analyze AIRR-seq data (Figure 4).

• SAbDab (Dunbar et al., 2014) is a frequently updated

resource containing all publicly available antibody

structures and, similar to OAS, is convenient to search

using metadata, including species, experimental method,

resolution, or amino acid at a given position using

canonical numbering.

• IMGT/3Dstructure-DB (Ehrenmann et al., 2010) is a

three-dimensional structure database of IMGT entries

that stores the structures of immunoglobulins, TCRs,

and major histocompatibility complex proteins of

humans and other vertebrate species. A related database,

IMGT/2Dstructure-DB, stores the amino acid sequences

from INN/WHO and Kabat databases (Ehrenmann and

Lefranc, 2011). IMGT/3Dstructure-DB contains

8,437 entries as of 3 June 2022.

• huARdb (Wu et al., 2022) is a versatile and user-friendly

web interface consisting of data from 444,794 high

confidence T or B cells with full-length TCR/BCR

sequences and transcriptomes from 215 datasets, which

have been subjected to a uniform workflow.

• PIRD (Zhang et al., 2020) is a multi-species BCR dataset

that contains 5 main information modules, including

project information, sample information, raw

sequencing data, annotated TCR or BCR repertoires,

and a database of TCRs and BCRs targeting known

antigens (TBAbd). PIRD can also carry out analyses,

including biased gene usage, the length distribution of

CDR3, and the diversity index for each dataset directly.

• ImmPort (Bhattacharya et al., 2018) is one of the largest

repositories of open immunology data. It hosts data from

more than 300 clinical and mechanistic studies in humans

and immunological studies on model organisms,

categorized as Private Data, Shared Data, Data Analysis,

and Resources, with a focus on allergy, autoimmune

disease, infection response, transplantation, and vaccine

response.

• cAb-Rep (Guo et al., 2019) contains 306 immunoglobulin

repertoires from a database consisting of 121 healthy,

vaccinated, or autoimmune disease donors. The database

contains 267.9 million IGH and 72.9 IGL full- or nearly
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full-length transcripts that have been annotated according

to isotype, somatic hypermutation (SHM), and other

biological characteristics.

• ImmuneDB (Rosenfeld et al., 2017; Monasterio et al., 2018)

is a high-throughput immune receptor sequencing data

system that integrates data storage and analysis. The

developers demonstrated that ImmuneDB and MiXCR

have comparable performance in annotating raw data.

Output includes selection pressure, lineage mapping,

novel allele detection, etc. ImmuneDB states that their

method can quickly identify more potential sequences

compared with IMGT/High-Vquest and that IT

performs similar to MiXCR on the same input data.

• VDJServer (Christley et al., 2018) integrates large data

storage and analysis. The advantage of VDJServer is that

sequence annotations can be performed after quality

control screening of raw data.

• Our lab has recently launched InterClone (Wilamowski

et al., 2022), a resource that contains both BCR and TCR

repertoire data, along with tools to store, search or

cluster the data. Distinguishing features of InterClone

include: the ability of users to control the visibility of

their data; efficient encoding of CDR regions to allow

flexible searches or clustering using user-specified

similarity thresholds for CDRs; a large amount of

BCR data, particularly for COVID-19, influenza, HIV,

and healthy donors.

• There are also databases created for specific diseases. CoV-

AbDab (Raybould et al., 2021a) currently contains

10,005 antibodies and nanobodies from published

papers/patents that bind to at least one

betacoronaviruses (last updated: 26th July 2022). This

database is the first known integration of antibodies that

bind SARS-Cov2 and other betacoronaviruses, including

SARS-CoV1 and MERS-CoV. It contains evidence of

cross-neutralization, the origin of antibody nanobodies,

full-length variable structural domain sequences, germline

assignments, epitope regions, PDB codes (if relevant),

homology models, and literature references.

• CATNAP (Yoon et al., 2015) is a web server for HIV

data, including antibody sequences from the authors’

own and published studies. As input, users can select

specific antibodies or viruses, a panel from published

studies, or search using local data. The output overlays

neutralization panel data, viral epidemiology data, and

viral protein sequence comparison on a single page with

further information and analysis. Users can highlight

alignment positions, or select antibody contact residues

and view position-specific information from the HIV

database.

FIGURE 4
Metadata available in OAS and iReceptor. The bar chart shows the cumulative growth of BCR sequence data. OAS provides about 1,650 million
and iReceptor provides about 955million BCR sequences (data updated on 1 September 2022). The donut graph shows the ratio of chain type in each
database. Most BCR sequences are heavy chains in both OAS (93%) and iReceptor (90%). Only 0.00011% sequences in OAS are paired BCRs, which
are not visible in the donut graph.
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4.3 Antibody structure prediction

Protein structure prediction is one of the areas of

computational biology that has progressed most rapidly in

recent years, owing to breakthroughs in Deep learning (Baek

et al., 2021; Jumper et al., 2021). Before these breakthroughs, a

plethora of antibody modeling tools existed that performed

similarly well for all regions except CDRH3 loops (Almagro

et al., 2014). However, it is likely that going forward, all state-of-

the-art methods for antibody modeling will utilize some aspects

of current Deep learning-based protein structural modeling

methods. An important first step in this direction is DeepAb,

which convincingly out-performed traditional template-based

methods, including our own Repertoire Builder, in terms of

antibody structural accuracy (Ruffolo et al., 2022). In a recent

assessment, we found that the average CDRH3 root-mean-square

deviation (RMSD) dropped from 4.38 to 3.44 Å for AlphaFold

compared with our own, previously state-of-the-art, Repertoire

Builder in a large and diverse set of 620 antibodies (Xu et al.,

2022). Therefore, for antibodies without bound antigens, the

current Deep learning approach appears to be a significant

improvement.

Unfortunately, it is becoming accepted that the multi-chain

extension of AlphaFold, AlphaFold multimer, does not work well

for antibody-antigen complexes (Evans et al., 2022). This

problem probably arises in part from the fact that AlphaFold

uses overall sequence similarity to construct multiple sequence

alignments, which are, in turn, used as feature vectors. Many

antibodies that target different antigens will be aligned in this

process, resulting in a noisy signal. Indeed, when we assessed the

complex modeling performance of AlphaFold multimer using a

small benchmark of 25 antibody-antigen complexes, we found

that the vast majority were docked to the wrong epitope (Standley

et al., 2022). Therefore, it will be interesting to see if a more

careful selection of sequences and structural templates within the

Deep learning workflow will lead to more coherent antibody-

antigen complex modeling. CDR-based clustering is one of the

functions repertoire databases (see Section 4.2) can provide.

Another interesting direction is to couple antibody-antigen

complex modeling with epitope prediction.

4.4 Epitope prediction

As of 19 July 2022, there were only 9,811 recorded antibody-

antigen structures available in the Protein Data Bank (Berman

et al., 2008; Raybould et al., 2020). Due to the time-consuming

and labor-intensive process of experimental methods to

investigate antibody-antigen interactions experimentally (see

Section 5), there is a need for computational approaches that

can quickly predict the epitope and paratope from sequence or

structure information. Compared to the difficulty of epitope

prediction (where almost any surface patch of antigen could

be an epitope for some antibody), the paratope prediction

problem is relatively easy. Most paratopes are located within

the six CDRs in the variable fragment of heavy and light chains.

Many published tools like Parapred (Liberis et al., 2018) and

proABC-2 (Ambrosetti et al., 2020) can achieve satisfactory

performance in paratope prediction. Thus, in this section, we

will focus on epitope prediction.

In recent decades, many tools have been developed in

order to predict continuous/linear B-cell epitopes using

antigen sequence information or discontinuous/

conformational B-cell epitope using antigen structure

information. These methods generally adopt machine

learning approaches (support vector machines, random

forests, linear regression, and neural networks) to learn

epitope features from known complex structures (Table 1).

One problem with many epitope prediction tools is that they

only use features of the antigen, whereas we are generally

interested in antibody-specific epitopes (Sela-Culang et al.,

2015). The direction to solve this problem is to introduce

antibody features into the process of epitope prediction. Some

tools, including PECAN (Pittala and Bailey-Kellogg, 2020)

and Pinet (Dai and Bailey-Kellogg, 2021) used Deep learning

to extract antibody and antigen features for use in epitope

prediction. Other tools, like EpiPred (Krawczyk et al., 2014),

MAbTope (Bourquard et al., 2018), and AbAdapt (Davila

et al., 2022), incorporate antibody-antigen docking-based

features; these studies have demonstrated that the inclusion

of the antibody features improves epitope prediction. As

expected, antibody-antigen docking is sensitive to antibody

model quality (Davila et al., 2022). We recently incorporated

the more accurate antibody models produced by AlphaFold

(Jumper et al., 2021) into the AbAdapt pipeline (Xu et al.,

2022). We observed significant improvement in docking,

paratope prediction, and antibody-specific epitope

prediction compared with the default AbAdapt pipeline. In

a realistic case, using an anti-SARS-CoV-2 RBD antibody

complex benchmark, the use of AlphaFold resulted in

higher epitope prediction accuracy than all other tested tools.

It is also worth noting that the combination of different deep

or machine learning models is becoming a general trend. A Deep

learning framework was developed to extract local features

around target residues and global features of the full antigen

sequence using Graph Convolutional Networks (GCNs) and

Attention-Based Bidirectional Long Short-Term Memory (Att-

BLSTM) networks separately (Lu et al., 2022). The local and

global features from two networks were combined to predict the

epitope and demonstrate that global features play a critical role in

structure-based epitope prediction (Lu et al., 2022). Moreover,

recent work introduced general protein language models that not

only focus on the reported antigen-antibody complex to capture

binding patterns, but also used the deep transformer based

protein language model, ESM-1b (Rives et al., 2021), to

achieve more accurate epitope prediction only using the
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antigen sequence information in BepiPred-3.0 (Clifford et al.,

2022). Recently, Robert and co-workers used simulated

antibody-antigen data in order to circumvent the lack of

experimentally-determined antibody-antigen structure

complexes and focused on the challenging problem of

learning antigen and epitope specificity features from antibody

sequences (Robert et al., 2022). The potential advantage of these

later methods is that they circumvent the time-consuming

docking step.

5 Experimental validation

5.1 Epitope discovery

A prerequisite to therapeutic antibody discovery is to identify

the epitope for a given antibody-antigen pair. There are several

well-established experimental approaches to elucidate the

epitope information including X-ray crystallography, nuclear

magnetic resonance (NMR), peptide-based microarrays,

TABLE 1 Summary of the epitope prediction tool.

Catalog Names Availability Method References

linear B-cell epitope ABCPred https://webs.iiitd.edu.in/raghava/abcpred/
index.html

Recurrent neural network Saha and Raghava (2006)

linear B-cell epitope AAPred https://www.bioinf.ru/aappred/ Support vector machine Davydov and Tonevitsky
(2009)

linear B-cell epitope FBCPred/
BCPREDS

https://ailab.cs.iastate.edu/bcpreds/ Two machine learning approaches El-Manzalawy et al.
(2008)

linear B-cell epitope COBEpro https://scratch.proteomics.ics.uci.edu Support vector machine Sweredoski and Baldi
(2009)

linear B-cell epitope BepiPred-2.0 https://services.healthtech.dtu.dk/service.
php?BepiPred-2.0

Random forest Jespersen et al. (2017)

linear B-cell epitope Lbtope http://crdd.osdd.net/raghava/lbtope/ Support vector machine and k-nearest neighbor Singh et al. (2013)

linear B-cell epitope DRREP https://github.com/CorticalComputer/
DRREP

Deep neural network Sher et al. (2017)

linear B-cell epitope SVMTriP http://sysbio.unl.edu/SVMTriP Support vector machine Yao et al. (2012)

linear B-cell epitope LBEEP https://github.com/brsaran/LBEEP Support vector machine and AdaBoost-random
forest

Saravanan and Gautham
(2015)

linear B-cell epitope EPMLR http://www.bioinfo.tsinghua.edu.cn/
epitope/EPMLR/

Multiple linear regression Lian et al. (2014)

linear B-cell epitope iBCE-EL http://thegleelab.org/iBCE-EL Randomized tree and gradient boosting classifiers Manavalan et al. (2018)

linear B-cell epitope iLBE http://kurata14.bio.kyutech.ac.jp/iLBE/ Random forest Hasan et al. (2020)

linear B-cell epitope EpiDope http://github.com/mcollatz/EpiDope Deep neural network Collatz et al. (2021)

Conformational B-Cell
epitope

EliPro http://tools.iedb.org/ellipro/ Clustering of neighboring residues based on
protrusion index

Ponomarenko et al.
(2008)

Conformational B-Cell
epitope

PEPITO http://pepito.proteomics.ics.uci.edu/ Linear combination Sweredoski and Baldi
(2008)

Conformational B-Cell
epitope

CBTOPE http://www.imtech.res.in/raghava/cbtope/ Support vector machine Ansari and Raghava
(2010)

Conformational B-Cell
epitope

DiscoTope 2.0 https://services.healthtech.dtu.dk/service.
php?DiscoTope-2.0

Epitope propensity scores Kringelum et al. (2012)

Conformational B-Cell
epitope

SEPPA 3.0 http://www.badd-cao.net/seppa3/index.
html

Logistic regression and clustering coefficient Zhou et al. (2019)

Conformational B-Cell
epitope

CluSMOTE https://github.com/BSolihah/
conformational-epitope-predictor

Support vector machine and decision tree Solihah et al. (2020)

Combining antibody
feature

EpiPred http://opig.stats.ox.ac.uk/webapps/
newsabdab/sabpred/epipred/

Combing the conformational matching of
structures and a specific score

Krawczyk et al. (2014)

Combining antibody
feature

MAbTope Lead corresponding contact Integration of docking-based prediction method
and experimental steps

Bourquard et al. (2018)

Combining antibody
feature

PECAN https://github.com/vamships/PECAN Paratope and epitope prediction with graph
convolution attention network

Pittala and
Bailey-Kellogg (2020)

Combining antibody
feature

Pinet https://github.com/FTD007/Pinet Geometric deep neural network Dai and Bailey-Kellogg
(2021)

Combining antibody
feature

AbAdapt https://sysimm.org/abadapt/ Combining docking-based features to predict
antibody-specific epitope

Davila et al. (2022)
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mutagenesis, and cryo-electron microscopy (Cryo-EM). X-ray

crystallography is the gold standard to determine the precise

binding between antibody and antigen (Holcomb et al., 2017).

However, X-ray crystallography has disadvantages in terms of

throughput and cost; moreover, flexible or membrane-bound

antigens are notoriously difficult to crystallize (Abbott et al.,

2014). Nuclear magnetic resonance can also be utilized to obtain

detailed epitope mapping information (Blech et al., 2013). But

this method has relatively low sensitivity, requires high purity

and solubility, and small size for the proteins (Wüthrich, 1990;

Pan et al., 2016). Although peptide-based microarrays are high-

throughput, and can sometimes identify epitopes with high

sensitivity, peptide-based microarray performance is limited

by various factors: affinity of the peptides, immobilization

methods, and conformational constraints induced by the

immobilization. Furthermore, the limitation of linear epitopes

is a major concern (Qi et al., 2019). Mutagenesis allows the

investigation of epitopes without the need for structure

determination. For example, using the alanine shotgun

approach, epitopes for difficult proteins such as membrane

proteins can be quickly identified. One disadvantage of this

approach is that it is hard to clarify whether the mutation has

disrupted the folding (Peng et al., 2011).

Due to the combined requirement to quickly and precisely

identify epitopes, many studies combine traditional epitope

discovery strategies with cutting-edge technologies. Antibody

binding epitope Mapping (AbMap), a combination of phage-

displayed peptide libraries with next-generation sequencing, was

developed to determine 200 antibody-specific epitopes in a single

run (Qi et al., 2021). Additionally, microarrays consisting of

648 overlapping peptides that cover the four major structural

proteins of the SARS-CoV-2 virus have been constructed: Spike,

Nucleocapsid, Membrane, and Envelope (Hotop et al., 2022).

This microarray fingerprint of positive serum samples was

learned by a machine learning model and the epitopes were

used to diagnose COVID-19 positive and negative donors

(Hotop et al., 2022).

Among the wide range of experimental epitope mapping

methods, we will focus on two promising approaches: Hydrogen-

Deuterium Exchange Mass Spectrometry (HDX-MS) and Deep

Mutational Scanning (DMS), which have the potential to

perform medium-throughput epitope discovery.

HDX-MS measures changes in the mass of a protein by

isotope exchange between amide hydrogens of the protein

backbone and its surrounding solvent. The folded state of the

protein and its dynamics will affect the rate of this exchange

(Masson et al., 2019). In recent years, HDX-MS has been

increasingly used for epitope and paratope mapping of

antibody-antigen complexes due to its speed and small sample

size requirements, and insensitivity to protein size. A semi-

automated HDX-MS workflow was used to perform epitope

mapping of Fab-CR6261 with diverse influenza Hemagglutinin

subtypes (Puchades et al., 2019). Similarly, an in-house HDX-MS

system was constructed to explore the binding of birch Bet

v1 protein, a native pollen allergen, in the presence of four

antibodies that target non-redundant epitopes (Zhang et al.,

2018). Two uncontentious epitope loops of TL1A with anti-

TL1A monoclonal antibody 1 were identified by HDX-MS

(Huang et al., 2018).

The routine workflow of HDX-MS epitope mapping is

performed by using antigen alone as a reference and in the

presence of antibodies. The antigen and antibody are labeled in

D2O buffer under equilibrium conditions at several time points.

Compared with antigen alone, the contact of antibody lowers the

solvent exposure of antigen residues in the epitope region and

leads to the reduction of deuterium incorporation. After protease

digestion, proteolytic peptides are desalted and separated on a

mass spectrum (MS) system. The fingerprint of antigen alone and

antigen-antibody complex will be captured and analyzed by

downstream bioinformatics analysis (Figure 5A) (Tran et al.,

2022). However, HDX-MS also has some limitations. The major

limitation is that HDX-MS can only capture peptide-level

information and the individual residue contribution among

peptides remains uncertain. Another limitation is the

insufficient sequence coverage of peptides spanning the whole

protein sequence (Masson et al., 2019). HDX-MS also can’t

capture the information of prolines which do not have an

amide hydrogen group for deuterium exchange (Huang et al.,

2018). Recent studies have incorporated peptide-level

information from HDX-MS with antibody-antigen docking to

overcome the drawbacks of either method alone (Bennett et al.,

2019; Fields et al., 2021).

DMS makes use of massive (typically 1 million) mutant

versions of a protein in a single experiment to reveal their

intrinsic properties by analyzing large-scale phenotype

readouts (Fowler and Fields, 2014). By incorporating NGS, the

DMS method can observe the effect of individual mutants in a

large population. A typical DMS workflow for epitope mapping

includes library construction and mutation design of the antigen;

library expression and incubation with antibody; sorting cells of

interest by FACS or measuring the binding affinity; sequencing

the selected mutations and constructing the data of deep

mutation heatmap through bioinformatics analysis. (Figure 5B).

DMS has been used to investigate various disease-related

antigens. In one study, DMS was utilized to precisely map the

epitopes of a panel of cross-neutralizing nanobodies against

H1N1 and H5N1 (Gaiotto and Hufton, 2016). In another study,

functional constraints and comprehensive mutations of the

Zika virus envelope (E) protein were constructed and the

effects of viral growth as well as viral neutralization by two

monoclonal antibodies were measured (Sourisseau et al., 2019).

Additionally, a platform that combines immunoprecipitation of

phage peptide libraries and DMS (Phage-DMS) was

constructed. Through Phage-DMS, the authors designed all

possible amino acid variants of the HIV Envelope and

performed fine mapping of epitopes using four well-
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characterized HIV antibodies (Garrett et al., 2020). In a recent

report, all mutations to the SARS-CoV-2 RBD were first

measured by DMS and the effect of expression and affinity

for ACE2 were also evaluated (Starr et al., 2020). Meanwhile,

DMS was also used to systematically mutate Wuhan-Hu-1,

Alpha, Beta, Delta, and Eta variant RBDs and identified some

substitutions that cause epistatic shifts during viral evolution

(Starr et al., 2022). Also, many studies have reported the

utilization of DMS to investigate hotspots of SARS-CoV-

2 RBD that enable escape from neutralizing antibodies

(Greaney et al., 2021a; Greaney et al., 2021b; Starr et al.,

2021; Tsai et al., 2021). These applications convincingly

demonstrate that DMS can facilitate the understanding of

antigen function and systematically evaluate antibody escape.

In addition to epitope analysis, DMS can be applied to

antibodies themselves to identify paratopes or for optimizing

other phenotypes. In one case, DMS was used to identify many

affinity-enhancing mutations at the variable light-heavy chain

interface of an anti-lysozyme antibody; a variant with tenfold

higher affinity as well as substantially improved stability were

identified (Warszawski et al., 2019). Furthermore, a fully

automated design protocol, AbLIFT, was established for

improving molecular interactions across the variable light-

heavy interface and applied to anti-VEGF/QSOX1 antibodies

to improve affinity, stability, and expression (Warszawski et al.,

2019). In another application, DMS was combined with Deep

learning to optimize the affinity, viscosity, clearance, solubility,

and immunogenicity of trastuzumab (Mason et al., 2021).

FIGURE 5
Workflow of Hydrogen-Deuterium Exchange Mass Spectrometry (HDX-MS) and Deepmutational scanning (DMS) for epitope mapping. (A) The
HDX-MS workflow consists of high-quality protein sample preparation; antigen HDX experiment with or without the presence antibody; antigen
peptides are processed by MS; levels of deuteration are quantified by intensity-weighted centroid m/z value; epitope mapping. (B) The DMS
workflow consists of library construction of antigen mutants; expression; coincubation with antibody; cell sorting; sequencing; visualization of
results as a heatmap.
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Recently, by leveraging DMS technology, researchers engineered

a nanobody initially specific for SARS-CoV-1 RBD in order to

bind SARS-CoV-2 RBD (Laroche et al., 2022). Our group

contributed to the DMS-based engineering of an ACE2 decoy

that could neutralize the SARS-Cov-2 Omicron variant and

proved the decoy prevented escape for each single-residue

mutation in the RBD of SARS-Cov-2 (Ikemura et al., 2022).

We also constructed a database, SpikeDB, that provides changes

in infectivity, antigenic escape, ACE2 affinity, and protein

expression caused by point mutations in the spike protein of

SARS-CoV-2 using DMS (Ikemura et al., 2022).

5.2 Validation of repertoire data mining

Repertoire sequencing is generating large amounts of human

BCR data. However, most published BCR sequences lack

information about targeted antigen or epitope. The

development of antigen-specific B cell sorting technologies

such as LIBRA-seq could solve the problem of assigning

antibodies to their antigens (see section 2) (Setliff et al., 2019).

Although antigen-specific B cell sorting is quite a powerful

approach, it requires recombinant antigens and specialized cell

sorting techniques that are difficult to scale to large numbers of

antigens. Computational approaches to identifying antigen-

specific antibodies are one way of simplifying very large

repertoire sequence data sets.

Various methods are being developed to cluster antibodies

that target the same antigen and epitope. Some approaches use

information from antibody sequence only, while others use

structure information, if available. (Galson et al., 2015b; Xu

et al., 2019; Ripoll et al., 2021; Wong et al., 2021). Here, we

will focus on sequence-based approaches to search for antibodies

with similar target antigens and epitopes.

Clustering of clonotypes was the first method used to group

antibodies that possibly target the same antigen (Reddy et al.,

2010; Zhu et al., 2013; Galson et al., 2015b; Greiff et al., 2015b).

This approach assumes that antibodies with the same V and J

genes as well as a given CDR3 amino acid sequence identity (e.g.

80%–100%) in the heavy chain are more likely than other BCRs

to target the same antigen and epitope (Galson et al., 2015b;

Truck et al., 2015; Soto et al., 2019). Clustering of clonotypes can

be applied to single-chain (usually heavy chain) or heavy and

light chain paired data (Raybould et al., 2021b). A recent study

assembled approximately 8,000 published COVID-19 antibodies

from more than 200 donors and demonstrated that antibodies

binding to SARS-CoV-2 spike RBD, NTD or S2 possessed

distinct convergent clonotype features (Wang et al., 2022).

Such clonotype clusters are generally restricted to BCRs with

the same CDR3 length (Satpathy et al., 2015); Since many

antibodies whose CDR3 length differs by 1-2 amino acids

have been found to target the same epitope (D’Angelo et al.,

2018; Wong et al., 2019), there is benefit in adding flexibility to

BCR clustering. Moreover, antibodies with different V and J

genes or with CDR3 sequence identities below 80% have been

found to target the same anti-SARS-CoV-2 RBD epitopes

(Barnes et al., 2020; Dejnirattisai et al., 2021) or NTD

epitopes (Liu et al., 2021). In the case of the human antibody

repertoires, overlap between donors as defined by clonotyping

antibody sequences is about 0.3% among three healthy adult

donors and 0.1% among three cord blood samples (Soto et al.,

2019). In order to increase sensitivity, our group constructed a

clustering tool on the InterClone web server that provides a more

flexible thresholds CDR similarity (Wilamowski et al., 2022).

This method assumes that antibodies within a CDR sequence

identity are more likely to target the same epitope. A detailed

explanation of this method and the process of a realistic

application are described below.

Recently, two groups discovered a set of 11 SARS-CoV-

2 infection enhancing antibodies (Li et al., 2021; Liu et al.,

2021). We sought to identify such infection-enhancing

antibodies in a large-scale antibody repertoire sequence data

from COVID-19 patients and healthy donors (Ismanto et al.,

2022). Because enhancing antibodies bind their antigen primarily

via their heavy chain, as captured in the Cryo-EM structure data

(PDB ID 7LAB, 7DZX, 7DZY), we focused on heavy chain CDRs.

Moreover, since we did not know in advance the safest sequence

identity threshold to use for each CDR, we used 80% for

CDRH1 and CDRH2 and 60% for CDRH3. Although we

could find antigen binders within these thresholds, the false

positive rate was quite high (more than 80%) (Ismanto et al.,

2022). A safer threshold seems to be 90% for CDRH1 and

CDRH2 and 70% for CDRH3. Donor antigen exposure was a

critical factor in the false positive rate. We found that the true

enhancing antibody rate was approximately 100 times higher in

COVID-19 patients than in healthy donors. Unlike other web

servers (e.g., Vidjil, AbYsis, OAS, etc.) (Duez et al., 2016;

Swindells et al., 2017; Olsen et al., 2022), InterClone hosts a

large database of BCR and TCR sequences and allows such

flexible search or clustering operations on the stored data.

InterClone also allows users to control data visibility.

6 Future perspectives

Human BCR repertoires are shaped by antigen exposure. A

wide range of diseases, from infection, cancer, and

autoimmunity, can shape our repertoires. Aging also has a

profound effect on BCR (and TCR) diversity. For these

reasons, BCR and TCR repertoires have attracted much

attention as potential biomarkers for health, disease,

vaccination, or other therapeutic activity. In recent months,

two groups have reported the ability to clearly separate

COVID-19 patients based on BCR repertoires (Ortega et al.,

2021; Chen et al., 2022), and our own, unpublished findings

support this ability. Therefore, it is reasonable to anticipate a new
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generation of biomarkers based on BCR repertoires that will

drive forward technology in the four main areas discussed here

(sorting, sequencing, analysis, and validation).

One of the distinguishing features of BCR-based biomarkers

from conventional biomarkers is that the antibodies encoded by

the BCR sequences are directly involved in the prevention or (as

in the case of autoimmunity) mediation of disease. This implies

that the downstream application of BCR-based biomarkers is a

new generation of therapeutics that closely resemble our body’s

own defence mechanisms. Computational methods, in particular

the ability to accurately predict antibody-antigen interactions

from repertoire data, will make a critical difference in these

efforts. Given the recent breakthroughs in Deep learning, there is

thus much cause for optimism in the coming years for repertoire-

based biomarkers and therapeutics.

One topic we have not covered is antibody delivery.

Antibodies are traditionally administered directly as proteins.

Moreover, mRNA vaccination has proved to be a robust and safe

way to induce neutralizing antibodies against COVID-19

(Chaudhary et al., 2021). mRNA vaccinations are now being

designed against various antigen targets including Zika, influenza

virus, CMV, Respiratory syncytial virus, Ebola, and HIV. At

present, most mRNA vaccines encode one or more antigens

(Barbier et al., 2022). Two studies have explored the feasibility of

expressing antibodies against Respiratory syncytial virus and

HIV via mRNA vaccination (Tiwari et al., 2018; Lindsay

et al., 2020). In one study, researchers expressed whole

palivizumab (neutralizing antibody of RSV) in the lung via

synthetic mRNA delivery by intratracheal aerosol (Tiwari

et al., 2018). Cells co-transfected with mRNAs encoding the

light and heavy chains at a 1:4 molar ratio could efficiently form

whole IgG antibodies and prevent detectable infection (Tiwari

et al., 2018). In another study, mRNA that encoded a HIV

neutralizing antibody (PGT121) as well as a membrane

anchor protein, was used to efficiently localize the antibody to

the cell surface and capture simian-HIV (Lindsay et al., 2020).

Thus, it will be interesting to see whether antibody delivery can

be routinely implemented as RNA.

Of the four technologies reviewed here (B cell sorting, BCR

sequencing, BCR repertoire analysis, and Experimental

validation), repertoire analysis is the one area that expected

to become radically transformed by advances in

computational science. While we can cluster antibodies into

specificity groups using CDR or gene usage similarity, the

sensitivity of such methods is severely limited. Such limitation,

in turn, is due to poor coverage of well-annotated BCR

sequences, as discussed in a research (Jespersen et al.,

2019). Only a few antigens have been well studied, so

machine learning models are currently unable to learn the

patterns associated with specific epitopes. Therefore, the

transformation from clustering based on similarity to the

ability to predict epitopes will require steady progress in

sorting, sequencing, and validation. Such progress will come

through investment in repertoire-based analysis of various

diseases, data sharing and basic infrastructure. The

establishment of data standards is one important step. It

remains uncertain whether data providers will merge

together under government-sponsored institutions (e.g.,

NIH, EBI, AMED) or remain independently operated. In

either scenario, it will be interesting to see how the

pharmaceutical industry responds to the growing

information contained in human BCR repertoires.
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