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Protein Structure Networks (PSNs) are a well-known mathematical model for

estimation and analysis of the three-dimensional protein structure.

Investigating the topological architecture of PSNs may help identify the

crucial amino acid residues for protein stability and protein-protein

interactions, as well as deduce any possible mutational effects. But because

proteins go through conformational changes to give rise to essential biological

functions, this has to be done dynamically over time. Themost effectivemethod

to describe protein dynamics is molecular dynamics simulation, with the most

popular software programs for manipulating simulations to infer interaction

networks being RING, MD-TASK, and NAPS. Here, we compare the

computational approaches used by these three tools—all of which are

accessible as web servers—to understand the pathogenicity of missense

mutations and talk about their potential applications as well as their

advantages and disadvantages.
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Introduction

Molecular dynamics (MD) simulation is one of the most effective methods for

assessing how a system changes over time and is regarded as the most effective computing

tool for this purpose, particularly in physics and chemistry (Karplus and McCammon

2002). It has also had great success in biology over the past 10 years, where it has

frequently been employed to test hypotheses and, as a result, aid in providing specific

answers to questions about the structural characteristics and dynamical mechanisms of

biological systems (Biagini et al., 2017), like the impact of disease mutations on the protein

functionality. Nowadays, we are dealing with a dramatically increased quantity and

quality of simulation data due to improvements in hardware (Biagini et al., 2019) and

software, as well as more frequent use of enhanced sampling techniques. This comes along
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with the need for new and powerful analysis tools, capable of not

only extracting information but also capturing key-properties

fundamental to large-scale conformational changes (Melo et al.,

2020).

One of these tools is the Protein Structure Network (PSN)

(Greene 2012), which can model the spatial organization of

proteins and record long-distance structural communications.

In this model, nodes stand in for amino acids and are connected

by edges, which can either represent the physical interactions

between two residues or their spatial separation (Residue

Interaction Network, RIN, or Protein Contact Network, PCN).

The benefit of employing such a “nodes-edges” representation is

that it makes it possible to resort to Graph Theory to analyze MD

simulation results (del Sol et al., 2006), with the exploitation of a

broad range of local (Borgatti 2005; Borgatti and Everett 2006;

Mazza et al., 2012) (i.e., regarding nodes or edges) and global

(Lozares et al., 2015; Mazza et al., 2010; Menniti et al., 2013)

(i.e., regarding the entire network) network metrics to identify

topologically important hubs, e.g., nodes fundamental for graph

connectivity (betweenness) or identify residues located in

functional regions (closeness). This aspect is brilliantly

presented in (Liang et al., 2020), where the authors provided a

thorough overview of protein network approaches and a

description of the tools that are currently available for

converting protein structures into graphs, with the aim of

providing a new level of insight into seemingly unpredictable

systems (Barabasi and Albert 1999). It has a history of successful

applications: from the graph spectral methods used by (Kannan

and Vishveshwara 1999) to identify side-chain clusters to the

characterization of more complex molecular mechanisms

(Karamzadeh et al., 2017), with important acknowledgements

in drug design (Brown and Bishop 2017) and in the evaluation

and prediction of disease mutations (Cheng et al., 2008; Doshi

et al., 2016).

How to turn a molecular dynamics
trajectory into a network

The ability to build a network from conformational

ensembles, such as snapshots taken from MD simulations, is

crucial for accounting for those links that form or break as time

progresses. Starting from a trajectory file, which is a collection of

3D coordinates of a protein structure in each of the various

conformations investigated during the simulation time, we can

either analyze the network properties of individual protein

structures corresponding to each trajectory frame or work on

the average structure derived over the course of the MD

simulation to account for these atomic fluctuations.

Recent years have witnessed the development of several tools

that integrate MD simulation data. The majority of these tools

build simple unweighted PCNs using a geometry-based

methodology, which consists of defining the contacts between

alpha/beta carbon pairs (Cα, Cβ) or between centroids of the

amino acids of a protein. Contacts are established if such

elements are within a predefined cut-off distance. This

distance threshold, which typically ranges between 4.5 and

8.5 Å (Viloria et al., 2017), was carefully selected to map

connections only for non-covalent intramolecular interactions,

avoiding networks that are either poorly or excessively

connected. When these networks are obtained from MD data,

they are referred to as Dynamical Network Models (DNMs) or

Dynamic Residue Interaction Networks (DRINs), and two nodes

are connected only if their distance is less than a cut-off value in

the range reported above for at least 65% of the simulation time.

The advantage of creating these dynamic networks is that their

properties, like dynamic residue-residue cross-correlations or

their interaction frequencies, could be assigned as weights to

the edges, providing a more accurate description of the system

(Sethi et al., 2009).

Here, we evaluate and contrast a few tools made to

summarize MD trajectories in a network, providing our

general opinion on the benefits and drawbacks of each

strategy. Many of these tools are standalone software packages

(Felline et al., 2022), usually easy to use but requiring some

technical knowledge to install and configure. In order to test their

adaptability and usability (Table 1) for the specific task of

assisting in the interpretation of the role of missense

mutations in conformational changes, we only kept those that

are available as web servers, i.e., NAPS, MD-TASK, and RING.

This was done because one of the goals of this mini-review was to

support widespread usage of this class of tools.

Network based analysis of protein
structures

Network based Analysis of Protein Structures (NAPS) is an

online tool available at https://bioinf.iiit.ac.in/NAPS/. It was

originally built for the analysis and interactive visualization of

PCN or RIN derived from static single proteins or protein

complexes (Chakrabarty and Parekh 2016). Its key

characteristic is the creation of various network types, both

unweighted and weighted, from a single PDB, using Cα, Cβ,

geometric center, or center of mass distances to draw edges

between residues. These features were greatly expanded in NAPS

2.0 (Chakrabarty et al., 2019) with the possibility to analyze MD

trajectories, exported as . dcd files, and represent them as average

networks of the ensemble of trajectories, dynamic cross-

correlations (DCC), and bipartite networks. The web tool

offers the analysis of various centrality measures (with

distance-based weights or unweighted) computed using igraph

(Csardi and Nepusz 2006) and NetworkX (Hagberg et al., 2008):

degree, average shortest path, closeness and betweenness,

clustering coefficient, eigenvector centrality, eccentricity, average

nearest neighbor degree (ANN degree), and edge betweenness, in
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addition to standard global properties, i.e. number of nodes and

edges, diameter, clustering coefficient, average degree, and average

path length. These can be computed for the network representing

a specific simulation frame or for an “average network”, i.e., an

individual network wiring nodes with edges only if the

interactions they represent last more than 60% (default value)

of the entire simulation time. This latter option is available by

choosing “Ensemble Analysis” on the submission form, whereas

“Timestep Analysis” allows users to compute and compare the

centrality values pertaining to a particular time step to either

those of other time steps or to those of the average network.

Similarly, the shortest path can be obtained and compared for

any pair of residues.

While we considered NAPS to be one of the most

comprehensive web tools currently available in terms of

options for network construction and analysis, we also ran

into a number of usability issues, mostly pertaining to the

MD section. In particular, the user is forced to limit the

trajectory to 50 frames even though the web tool is intended

to handle large MD trajectory files. Additionally, there are a few

minor bugs in the web server that restrict user experience. We

observe, in fact, numerous glitches when structures with more

than 1000 residues are submitted, along with errors when ligands

or heteroatoms are present in the input topology. The

introduction of a standalone version and a more potent web-

server would both be highly advantageous.

MD-TASK

MD-TASK is a Python-based suite that can generate residue

interaction networks from MD simulations and uses NetworkX

functions to compute average residue network centrality metrics.

It is available as a downloadable program as well as a web server

(https://mdmtaskweb.rubi.ru.ac.za/), where it is integrated with

the MODE-TASK suite, a normal mode and essential dynamics

analysis toolkit (Brown et al., 2017; Amamuddy et al., 2021).

Remarkably, MD-TASK supports many different MD file

formats, including the most commonly used by AMBER

(.netcdf), NAMD (.dcd) and Gromacs (.xtc) simulation

frameworks. DRINs can be constructed using these trajectory

files, with single residues as nodes and edges drawn when the

distance between Cβ atoms (Cα for Glycine) of two residues meets

a user-defined cut-off (usually 6.5–7.5 Å).

It is noteworthy that the metrics are not computed on average

networks, but rather the software returns changes in eight

different centrality metrics to residues over a trajectory, which

are obtained by aggregating the mean, median, and standard

deviation of each frame’s residue metrics. The values that are

obtained can either be displayed in the 3D structure with a color

gradient or included in a downloadable csv file. MD-TASK also

enables the construction of a weighted residue contact map from

a trajectory, which is a weighted network graph with edges

between a residue of interest and the other residues that are

weighted in accordance with how frequently the interactions

occur. The output is another network centered on the residue of

interest and surrounded by the residues it interacts with. Finally,

besides DRIN, the MD-TASK tool suite also deals with DCC and

perturbation response scanning (PRS) techniques (Atilgan and

Atilgan 2009).

When it comes to usability, we found MD-TASK to be fairly

simple, with an easy-to-use submission form, a straightforward

but sharp output visualization, and the option of direct

comparison with previously submitted jobs. The developers

TABLE 1 Web-tools for analyzing MD trajectories as networks. For each tool, we summarize the required input formats, different topologies that can
be used to build a network, and which network centrality indices are computed. Finally, the main strengths of each tool are highlighted.

Tools Url Standalone Trajectory requirements Main strength

Network topology Output - network centralities

NAPS https://bioinf.iiit.ac.in/NAPS/ No DCD format max 50 frames Multiple network types

Cα, Cβ, geometric center and center of mass distances*,
energy

Weighted/unweighted degree, shortest path, closeness, betweenness, clustering coefficient,
eigenvector centrality, eccentricity, average nearest neighbor degree and edge betweenness

MD_TASK https://mdmtaskweb.rubi.ru.ac.za/ Yes Multiple MD formats max 250 Mb Great MD format support

Cβ (Cα for Glycine) distances* Betweenness, degree, eccentricity, averaged shortest paths, closeness, Katz, PageRank and
eigencentrality

RING3.0 https://ring.biocomputingup.it/ Yes PDB and mmCIF format max 200 Mb Probabilistic residue interaction networks

Closest atoms, lollipop (Center of mass), Cα or Cβ of
residues connected by multiple interaction type

Cytoscape-compatible (.json) output format

*distances ≤ user defined threshold (authors usually suggest 6.5–7.5 Å to avoid disconnected/highly connected graph)
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have provided a simple tool (https://github.com/oliserand/MD-

TASK-prep) that makes it possible to reduce the trajectory size by

keeping only heavy atoms, greatly increasing the number of

frames that can be submitted. The 250 Mb limit for the

trajectory size is undoubtedly a limitation, but it is partially

overcome by this tool. The MD-TASK results page, on the other

hand, is accompanied by a color legend, which helps identify

significant regions or domains. However, the data interpretation

remains difficult without prior knowledge of the altered

molecular mechanisms.

Residue interaction network
generator

Residue Interaction Network Generator (RING) offers a

simple way to build a network starting from an MD

trajectory. The edges connecting the nodes are atom-specific

physico-chemical interactions, such as disulfides, salt bridges,

hydrogen bonds, aromatic interactions, or more general van-der-

Waals contacts between residues. These interactions also rely on

the concept of “distance”, computed using only geometrical

criteria and after an exhaustive analysis of the entire PDB

content (116568 X-ray and NMR structures as of April 2016).

To represent strict and permissive parameters, two different

distance thresholds were selected; the pair [2.84, 2.87] Å, for

example, corresponds to interactions that stabilize the packing of

different secondary structure elements, i.e., bridges between

alpha-helices or turns; similar values for the main chain

hydrogen bonds at [2.94, 2.98] correspond to interactions

between adjacent strands in β-sheets, whereas [5.01, 5.04] Å

identifies bonds in α-helices separated by a turn. Beyond 5.6 Å,

only spurious interactions are identified (Piovesan et al., 2016).

The most recent RING 3.0 version (Damiano et al., 2022) is

available as a standalone package or in a completely redesigned

web-portal at https://ring.biocomputingup.it/. It can process

molecular dynamics simulations as multi-state files (in PDB

and mmCIF format, up to 200 MB in size). Users can choose

between four alternative types of network, and interactions

involving the same residue but different atoms are sorted by

energy and distance. In this case, the user may choose to retrieve

only the most energetic interaction, a multigraph with all the

interactions, or only one interaction for each type. For each node,

a number of structural attributes are reported, including

secondary structure, vertex degree (the number of directly

connected nodes), experimental uncertainty for X-ray

structures, conformational energy preferences, conservation

(Shannon entropy), and cumulative mutual information (MI).

From these, RING now creates probabilistic networks that take

into account the frequency of connectivity between states (or

snapshots): the edges have an associated weight (range: [0–1])

that represents the frequency at which the interaction was

present in the conformational ensemble. Finally, RING

returns an interactive graph and a network that can be

downloaded in a format, that is, optimized for Cytoscape.

This dynamic layout makes it possible to quickly and

effectively identify functional residues.

We consider RING to be by far the most interesting

approach, encompassing different levels of granularity in the

network construction. The output page, on the other hand,

focuses primarily on the identification and description of

significant interactions and does not include any analysis

strategy based on network topological metrics that could aid

the user in the localization of hotspots. Finally, the PDB format,

which was probably chosen to speed up computation, poses a

significant limitation due to its large size, thereby forcing the user

to rely on the standalone version even for small trajectories.

How to use molecular dynamics-
networks to understand the role of
missense mutations?

In the last decade, molecular dynamics has become one of the

most widely used computational approaches for the generation of

hypotheses regarding the impact of missense mutations. From a

network point of view, when these perturbations affect the most

central nodes, we may observe a disruption in the transmission of

information, with consequences for protein stability and the

alteration of fundamental protein functions. There are several

methods that can be used to investigate this aspect, such as PRS

(Atilgan and Atilgan 2009) or comparing centrality metrics

gleaned from various trajectory comparisons.

All of the tools mentioned above have been successfully used

to achieve this goal. However, a performance-based evaluation

poses conceptual difficulties because each approach might take

into account different altered mechanisms (such as local impact

and long-range effects) and, as a result, a direct comparison is

unreliable or even impossible. Moreover, given the fact that

fluctuation correlation is very hard to converge in molecular

dynamics simulations (Hospital et al., 2015), it is often the case

that the dynamical network is trajectory dependent or simulation

time dependent, leading to inconclusive statements. (Li et al.,

2019).

Here, to overcome these issues, we focused on the description

of the ability of each strategy to identify key nodes and capture

the impact caused by pathogenic mutations using already

extensively described MD trajectories. We specifically used the

wild-type and mutant trajectories of the catalytic Jumonji (JmjC)

domain of KDM6A, a known cancer driver gene and the gene

responsible for type 2 Kabuki Syndrome, to show how a

particular set of missense mutations can be connected to the

impairment of the interaction between the protein and the

interacting protein (Petrizzelli et al., 2020; Biagini et al., 2022).

In Supplementary Table S1,we report all the centrality values

computed by each tool for the wild-type (WT) and one of the
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most detrimental mutations, Arg1255Trp (R1255W). Default

options were selected: NAPS “Ensemble Analysis” on Cα
distances was executed on 50 frames extracted from each

trajectory; on the contrary, MD-TASK mean centralities were

computed on Cβ distances of 1000 frames obtained by taking

advantage of the “trajectory-cutting” MD-TASK-prep tool.

Finally, since RING does not offer metric analysis, we

extracted the dynamic interaction network computed on

300 frames and used RINalyzer (Doncheva et al., 2011) of

Cytoscape to compute the shortest path betweenness,

closeness, and degree centralities using frequency as edge

weight. Then, we examined the top 15% nodes for each

metric, using a metric-specific color scale, with a special

emphasis on the betweenness centrality (BC), the most widely

used measure of centrality. In fact, betweenness measures how

many shortest paths between any two nodes of a network pass

through a given node given the total number of shortest paths in

the network and, then, furnishes a measure of the overall

importance of the given node.

Comparing the BC values of themissense variants located within

the Jumonji domain (Supplementary Table S1 - DiseaseMutation),

we found thatNAPS andMD-TASK identify as central some of these

well-known pathogenic hotspots, which is consistent with the

enrichment of central residues in the protein’s core shown in

Figure 1A,B, while none of these amino acidic positions but

1049 can be considered central in the interaction network

obtained using RING. However, the poor correlation observed

between pathogenic sites and central nodes could be mainly

ascribed to the fact that their central role in structural

rearrangements is not enough to determine the impact of a

mutation on that site and supports the need for further attributes

that account for the functional role of each residue, like evolutionary

information (Liang et al., 2020).

On the other hand, we found that many wild-type top

residues for all the generated networks had decreased

betweenness when comparing the 100 top nodes between

wild-type and R1255W trajectories. With a significant

reduction in this region’s betweenness across all the R1255W

metrics (Supplementary Table S1 - RING), RING, in particular,

was able to highlight the linker domain’s central function more

than the other tools (Figure 1C). This is consistent with our

earlier observations that the alteration of the wild-type

FIGURE 1
Networks produced on wild-type KDM6A trajectory data using three different methods. Tool-specific betweenness values were mapped onto
the corresponding protein representation using a color scale ranging from blue (low) to red (high). (A) NAPS Ensemble network with Cα distances as
edges: Cα-representation of the KDM6A protein with, in the box, an example of a network downloadable from the web-server. (B) “Spacefill”
representation of the KDM6A protein with contacts computed by MD-TASK using Cβ distances. (C) Left: dynamic residue interaction network
obtained using RING, with residue-number color scheme. Right: Cartoon representation of all-atom KDM6A protein.
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conformational transitions was correlated with the loss of

fundamental hydrogen bonds between the linker domain and

its surrounding region.

In conclusion, each tool retains its unique characteristics,

with networks produced by NAPS and MD-TASK able to

prioritize those residues essential for the functionality of the

protein as discernible from the enrichment of mutant hotspots in

their central residues, and networks produced by RING able to

identify the specific altered mechanism between wild-type and

mutant dynamics.

Final thoughts and future plans

“Different packages can have different niche strengths, and

their strengths are often complementary.” - M. Hucka.

Creating network-based methods to model molecular

systems is a rich area of study that capitalizes on several

research fields, mainly transcriptomics, proteomics, and

ecology, as well as in computer science applied to biological

sciences (Mazza et al., 2016; Piepoli et al., 2012; Mazzoccoli

et al., 2016; Palmieri et al., 2020; Mazza et al., 2017; Capocefalo

et al., 2018; Ballarini et al., 2009; Franco et al., 2006). However,

these methods become especially fascinating when they are

made to handle the massive amounts of data produced by

enhanced or long-timescale MD simulations where, thanks to

their vast potential, could help answer a variety of different

questions, e.g., putative allosteric mechanism or protein-

ligand interaction pathway, or also could be useful for

challenging tasks like the identification of epistatic mutant

sites (Castellana et al., 2015; Castellana et al., 2017;2021).

An ideal “MD to network” tool should be able to work with

a variety of input formats, build trustworthy networks, analyze

those networks’ topologies, and finally, provide simple

visualization and interpretation of the results (Guzzi et al.,

2022). Here, we provide a practical evaluation of the usability

and applicability of three of the most popular web tools,

NAPS, MD-TASK, and RING, to construct and analyze

MD-based graphs. First of all, we would like to

acknowledge the tremendous effort that has gone into

developing and maintaining these web servers. We found

them easy to use, even for beginners. But all of them have

minor flaws, primarily because of the restrictions on input

formats and size. When available, their standalone versions

perform significantly better, but they cannot be proficiently

used without the necessary programming skills and

computing power. In addition, each software package

exhibits a unique characteristic in the network

construction, with varying degrees of granularity and

specialization, and it offers the computation of the most

common centrality metrics. For the identification of

functionally significant residues, they all heavily rely on

network/protein visualization, with many centrality metrics

that can be either highlighted on the structure or downloaded

as a file in both MD-TASK and NAPS.

Finally, focusing on applicability, we discovered that each

software was able to identify “central” residues in functional

domains with varying sensitivity and that the DRINs obtained

by RING were the ones that best captured the disruption of

fundamental interactions during the mutant trajectory and

the impact on the dynamics of harmful mutations. However, it

can be challenging to determine which metric, or set of

metrics, might be the most sensitive in describing the

investigated functional mechanism, and we discovered a

general lack of statistical consistency, with little that has

been proposed to serve as a guide for selecting metrics or

as evidence for comparing them (Foutch et al., 2021). For

instance, application of comparative evaluation with synthetic

networks may aid in assessing the strength of the community

structure by determining the informational value of a metric

or when the combination of multiple metrics would be

advantageous (Oldham et al., 2019; Rajeh et al., 2021).

In conclusion, we believe that integrating various

approaches is essential to more effectively exploring the

information contained in the topology of an MD-based

network. Additionally, the integration of conservation and

evolutionary attributes could significantly enhance this

information, and the use of more sophisticated metrics,

such as key-player and group-centrality metrics, could

support the agnostic identification of central “hubs,” or

structured/regulatory regions (Dassi et al., 2012) necessary

for the functionality of the protein, that could previously only

be identified thanks to prior knowledge obtained from

experimental or literature studies (Parca et al., 2020).
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