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Molecular “cartoons,” such as pathway diagrams, provide a visual summary of

biomedical research results and hypotheses. Their ubiquitous appearance

within the literature indicates their universal application in mechanistic

communication. A recent survey of pathway diagrams identified

64,643 pathway figures published between 1995 and 2019 with

1,112,551 mentions of 13,464 unique human genes participating in a wide

variety of biological processes. Researchers generally create these diagrams

using generic diagram editing software that does not itself embody any

biomedical knowledge. Biomedical knowledge graphs (KGs) integrate and

represent knowledge in a semantically consistent way, systematically

capturing biomedical knowledge similar to that in molecular cartoons. KGs

have the potential to provide context and precise details useful in drawing such

figures. However, KGs cannot generally be translated directly into figures. They

include substantial material irrelevant to the scientific point of a given figure and

are oftenmore detailed than is appropriate. How could KGs be used to facilitate

the creation of molecular diagrams? Here we present a new approach towards

cartoon image creation that utilizes the semantic structure of knowledge

graphs to aid the production of molecular diagrams. We introduce a set of

“semantic graphical actions” that select and transform the relational information

between heterogeneous entities (e.g., genes, proteins, pathways, diseases) in a

KG to produce diagram schematics that meet the scientific communication

needs of the user. These semantic actions search, select, filter, transform,

group, arrange, connect and extract relevant subgraphs from KGs based on

meaning in biological terms, e.g., a protein upstream of a target in a pathway. To

demonstrate the utility of this approach, we show how semantic graphical

actions on KGs could have been used to produce three existing pathway

diagrams in diverse biomedical domains: Down Syndrome, COVID-19, and

neuroinflammation. Our focus is on recapitulating the semantic content of the

figures, not the layout, glyphs, or other aesthetic aspects. Our results suggest

that the use of KGs and semantic graphical actions to produce biomedical

diagrams will reduce the effort required and improve the quality of this visual

form of scientific communication.
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Introduction

Pathway diagrams and other molecular “cartoons” are widely

used to summarize and communicate biomedical research results

and hypotheses. Their nearly universal appearance in molecular

biomedical publications clearly indicates the critical role they

play in contemporary science. A recent survey of pathway

diagrams (a subset of molecular cartoons) identified

64,643 pathway figures published between 1995 and 2019 with

1,112,551 mentions (denotations) of 13,464 unique human genes

participating in a wide variety of biological processes (Hanspers

et al., 2020).While most of these diagrams are consumed digitally

(as PDFs, web pages, etc.), their structure and the tools used to

create them remain firmly rooted in the print era. Most such

diagrams are produced with non-specialized drawing software

such as PowerPoint, and remain closely tied to the model of

drawing on paper. Existing software for producing such drawings

operate primarily on generic structures (e.g., node/arc diagrams),

and some provide domain-specific glyphs or templates (such as

those in the Systems Biology Markup Language (SBML) (Hucka

et al., 2018) or in commercial tools such as BioRender

(BioRender, 2022). Drawing operations are also generic, such

as grouping or aligning drawing objects, without specific

relevance for biological location or function. The resulting

diagrams lack a consistent level of detail and terminology

which can make them difficult to interpret across biological

topics.

Knowledge graphs (KGs) are structured data models that

computationally represent knowledge in the form of interlinked

entities—objects, events, situations or abstract concepts, and the

relationships between them. All entities and relationships in a

knowledge graph are grounded to a formal meaning

representation, generally a computational ontology such as the

Gene Ontology (Ashburner et al., 2000). The Google knowledge

graph (Singhal, 2012) is perhaps the best known and most widely

used example. Recently, substantial resources have gone into

creating rich, well-structured, and ontologically grounded

biomedical knowledge graphs (Callahan et al., 2019). Such

KGs include detailed representation of molecular pathways

similar to those found in REACTOME (Jassal et al., 2020),

disease-specific knowledge integrations such as KG-COVID-19

(Reese et al., 2021), linkages betweenmodel organisms, genes and

phenotypes including the Monarch Initiative (Shefchek et al.,

2020), and broadly crosscutting integration of medically relevant

molecular mechanisms such as SPOKE (Nelson et al., 2019), and

PheKnowLator (Callahan et al., 2020). These KGs provide broad,

detailed, and carefully curated information about molecular

biology.

In principle, the rich information available in biomedical

KGs could be used to support the creation of molecular cartoons.

However, the communicative intent of a molecular cartoon

differs significantly from the more detailed and exhaustive

design required for computationally effective KGs. Direct

visualization of the contents of such knowledge-bases is of

modest utility; the information contained is both too detailed

and too generic for the communication needs that molecular

diagrams serve. Here, we characterize the differences between

molecular cartoons and KGs, and present several novel

computational approaches for using knowledge graphs to both

identify appropriate information within a KG, and transform it

into depictions that are effective visualizations. We demonstrate

the utility of these techniques through a set of case studies reverse

engineering multiple, diverse, peer-reviewed molecular cartoons

using KGs. The techniques we describe form the basis of a new

paradigm for producing molecular diagrams, making scientific

communication faster and easier to produce, and potentially of

higher quality.

Our methodology introduces the idea of semantic graphical

actions, that allow for the complex and abundant representation

of information in a knowledge graph to be transformed into a

useful diagram over a given domain. These semantic graphical

actions search, select, filter, transform, group, arrange, connect,

extract, and augment relevant subgraphs from KGs. Our focus is

on the semantic content of the figures, not the layout, glyphs, or

aesthetic aspects. Our case studies are rooted in three molecular

cartoons from published pathway figures pertaining to Down

Syndrome, COVID-19, and microbiome-mediated gut-brain

connections (Figure 1).

Methods

We developed a pipeline to systematically index, search with

semantic constraints, and visualize a given molecular pathway

using both the PheKnowLator and the KG-COVID19 knowledge

graphs (Figure 1). The purpose of this pipeline is to demonstrate

the potential of KGs to support molecular cartoon generation by

recapitulating the production of several published cartoons. This

proof-of-concept pipeline allows for the user to manually select

concepts of interest from the original figure, and manually

perform the indexing step to map these concepts to KG

nodes, such that any cartoon example can be evaluated with

this method. Given a manually curated cartoon diagram,

represented as a subset of connected concepts as the “source”

node and “target” node of interest, the pipeline will allow a user to

generate a network visualization using Cytoscape that represents

the original concepts and any intermediate nodes connecting

these concepts (Shannon et al., 2003). The pipeline, described in

Figure 2, begins with an input file that describes the entities to be

included (from the original diagram) and some of their

connections. Those nodes and target edges are used to index

into and explore a KG to demonstrate a process that could have

produced the cartoon. The input concepts are mapped to nodes

that exist in the KG using fuzzy substring matching. However,

many nodes in a KG might match such a string (e.g., genes,

variants, gene products and biological processes often share
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closely related names) so further processing must choose the

specific desired KG entity (a semantic action which we term

indexing into the graph). Next, shortest paths are found between

each source and target node pair using a breadth-first search

algorithm with unweighted edges; note that there are generally

many paths with the same length between a pair of nodes. These

paths are then filtered or prioritized by various potential

semantic graphical actions to produce a schematic of a final

figure.

We describe four semantic graphical actions which can be

used to prioritize among paths between a given pair of nodes. The

first is maximization of cosine similarity between intermediate

nodes and the target (referred to as CS). The score for each path is

calculated by summing the cosine similarities between the target

node vector embedding and the vector of each other node along

the path. The higher this score, the closer all nodes on the path

are to the target. Vector embeddings are generated using

Node2Vec (Grover and Leskovec, 2016) (with parameters:

walk length 10, number of walks 20, window 10, number of

dimensions 128). This semantic action biases the search towards

paths whose intermediate nodes are all semantically close to the

target. Such paths can be thought of as getting semantically close

to the target as early in the path as possible, which might

prioritize scientifically meaningful results.

The next graphical action is maximization of path-degree

product (PDP) (Himmelstein and Baranzini, 2015) (Eq. 1), which

prioritizes paths that consist of lower degree intermediate nodes.

Although calculated based on the structure of the network rather

than its semantics, this heuristic also tends to produce

meaningful paths by avoiding hubs (high degree nodes).

path degree product � ∏
dϵDpath

d�−w (1)

For example, noting that a node has relation “only_in_taxon”

to “Homo sapiens” is unlikely to be interesting, “Homo sapien” is

a very higher degree node (connected to many other nodes). This

action can therefore draw upon paths that describe molecular

interactions as opposed to simple, known facts.

FIGURE 1
Figures selected from the literature. (A) From Figure 2 “Schematic representation of insulin signaling with highlighted in red pathways found to
promote brain insulin resistance in AD and DS.” in (Dierssen et al., 2020). (B) From Figure 2 “Mechanism of action of various drugs used in COVID-19
and how they inhibit the NF-κB pathway” in (Hariharan et al., 2021). (C) From Figure 3 “Gut–brain axis exacerbates neurological disorders through
gut-microbiota-derived molecular patterns.” in (Suganya and Koo, 2020).
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Another semantic action, used in combination with the

first two, are explicit requirements or prohibitions of edge

classes on a path. As required or excluded edges may eliminate

all paths between a pair of nodes in some cases, it can also be

implemented as a soft constraint that is ignored when no paths

satisfying it can be found. This action is paired with either the

CS or PDP ranking algorithm for subgraph construction

(referred to as EE).

The final semantic action is to augment this KG with a

semantically constrained nearest neighbor search. This search

identifies immediate neighbors of extracted nodes and filters

to only include those of specified ontological category (e.g.,

process or drug). The result introduces information contained

in the KG beyond the subgraph originally indexed, adding

other relevant concepts and relationships. For example, the

identification of drugs that affect proteins in a molecular

pathway.

The inputs to the pipeline are a file describing the desired

nodes and some target connections for the cartoon and the KG

(here, two files of node labels and triples using the PheKnowLator

or KG-COVID19 format). An interactive indexing interaction

helps a user index to the specific intended nodes in the KG

(Figure 2, Indexing). Then a subgraph of the KG is generated that

includes each node from the input file, and all edges and

additional nodes required to connect the inputs based on the

selected semantic graphical actions (Figure 2, Subgraph

Construction). This subgraph is a semantic schematic of a

recapitulated diagram and can be visualized, e.g., in Cytoscape.

To demonstrate the potential of generating cartoon

schematics using KGs, we ran the above pipeline on concepts

selected from each of the 3 figures depicted in Figure 1, and then

compared the resulting subgraphs generated by the various

semantic graphical actions used to connect them to the

original cartoon. To demonstrate that this tool was agnostic to

the KG used, we applied the pipeline to examples using either

PheKnowLator or KG-COVID-19 (latest versions as of 9/1/2022)

depending on the example content (PheKnowLator for Figure 1A

[Insulin Resistance in Down syndrome] and 1c

[Neuroinflammation], KG-COVID-19 for 1b [COVID-19

Drugs]). This build of PheKnowLator consisted of

FIGURE 2
Workflow used to extract nodes from an original example cartoon, where steps requiring user input are indicated with a person icon. During
Indexing, (A) specific concepts, in this case mTOR and autophagy, are selected from the original cartoon as user input, (B) the input concepts are
mapped to a sets of nodes in the given KG using partial string matching (C) then the user selects 1 node to represent each concept. During Subgraph
Construction, (D) all shortest paths are identified between the given pair of nodes, and (E) the user selects a semantic action which (F) ranks the
paths and selects the highest ranked path. (G) This pipeline is repeated for all example node pairs to produce the resulting subgraph for visualization.
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780,753 nodes linked by 5,072,030 edges, with an average degree

of 12.99. KG-COVID-19 was more dense with 544,600 nodes

linked by 24,145,561 edges and an average degree of 88.67. The

goal is a general demonstration of the potential to use KGs to

facilitate the production of detailed and accurate molecular

cartoons from a simple and incomplete description of desired

contents of such a cartoon.

Results

Indexing information from knowledge
graphs

A semantic system to create cartoons should be able to take

simple inputs of key concepts and provide tools to identify

relevant concepts in a KG and productively augment those

inputs as desired. To demonstrate this potential, we selected

as inputs just a few key concepts from each of the target examples

shown in Figure 1. Identifying relevant nodes in a KG

(“indexing”) requires approximate matching, since the labels

in the original figures do not align precisely with the node

labels in the KG. The same would likely be true from

unconstrained user inputs. The indexing task can be

complicated by having many potential matches (e.g., isoforms

or variants with similar names and other textual ambiguities), or

even by finding no good matches. The result of these figure

transformations is portrayed in Figure 3.

For Figure 1A, we selected as inputs only a subset of the

nodes in the graph: IRS1, AKT, mTOR, GSK3-beta, autophagy,

glucose metabolism, oxidative stress, APP, amyloid beta

oligomers, and TNF-alpha. Indexing challenges arise

immediately: Searching for TNF-alpha using the string “TNF”

in the PheKnowLator KG returns 625 possible matches,

including the gene of interest, many known mutations, the

transcribed proteins, and several GO terms. Similarly, a search

for the string “IRS1” returned 16 possible inputs including the

gene and mutations. Sometimes matching is unique, but not

string identical. For example, the GO biological process term

most closely related to oxidative stress is actually “response to

oxidative stress”. In addition to having multiple matches, it is

also possible that input labels fail to match any nodes in the

graph. For example, there is no generic “AKT” node in

PheKnowLator, only the three particular isoforms, AKT1,

AKT2, and AKT3.

For Figure 1C, the original figure showed how NF-kB

signaling results in the production of pro-inflammatory

cytokines such as IL-6. Rather than selecting NF-kB as a

concept to search in the KG, NF-kappaB p50/-65 complex

was selected, as it is the activated form of this signaling

process. Indexing variability in identifying a node also can

have a significant effect on the paths identified in semantic

search. Automatic identification of the best among many

related nodes for cartooning is an open question; we used

manual selection, and some experimentation to find the best

results. One issue is constraining the number of tied paths

found in search. The number of paths found via shortest path

search varied from 1 up to 197 (between “carbohydrate

metabolic process” and “response to oxidative stress” in

example Figure 1A). Figure 4 illustrates the kinds of paths

(and their ambiguities) found between the target nodes in the

Figure 1A example, and a visualization of the extracted KG

subgraph that forms a figure schematic.

Figure 4 illustrates the meaningful differences among the

various semantic actions for prioritizing paths. The path-degree

product prioritization effectively selected intermediate nodes that

tended to have a more insightful connection between the source

and target nodes. In the Figure 1A example, the intermediate

node changes from “gene”, a general high degree node, to “PI3K/

AKT activation” which is more aligned to the concepts being

portrayed in the original cartoon (Figure 5A). In another

example, the cosine similarity ranking selected the more

FIGURE 3
Visualization of the process of generating a subgraph for the Figure 1C example. (A) Selection of concepts from the original cartoon to index
according to the chosen KG, (B) resulting subgraph after semantic actions and path search through the graph to recapitulate the edges between the
original nodes, (C) the same information from (B) though shown with the same artistic portrayal as the original cartoon, with intermediate nodes
highlighted.
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FIGURE 4
Visualization of the subgraph generated for the Figure 1A example. (A) The number of shortest paths found for each pair identified in the original
cartoon. (B) The result of the Path-Degree Product based ranking algorithm that prioritized one path for each original pair of nodes.

FIGURE 5
Changes in intermediate nodes between given source and target concepts when the Cosine Similarity (A) and Path-Degree Product path
ranking algorithm (B) were applied, when Edge Exclusion (C) was applied and when nearest neighbor augmentation (D) of drugs was applied, with
those relationships that aligned with the original example Figure 1B circled.
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relevant node “triggering receptor expressed on myeloid cells 2

(human)” over “macrophage activation” selected by path-degree

product (Figure 5B). The cosine similarity and path-degree

product ranking algorithms generally rank paths in

uncorrelated order of one another, supporting the idea that

each algorithm may serve different use cases (Figure 6).

Semantic criteria to include or prohibit specific nodes and

edges had a major effect, sometimes eliminating mundane,

uninspiring paths in favor of potentially more mechanistically

interesting ones. In the Figure 1C example, the path between

“myeloid differentiation primary response protein MyD88

(human)” and “interleukin-6 (human)” avoided

“only_in_taxon” by instead going through NF-kappaB

transcription factor activity, which is a known precursor to

IL-6 production (Figure 5C). The specification of particular

semantic types required or prohibited along a path clearly

enabled selection of a more relevant and interesting path in

this case.

Nearest neighbor augmentation was applied to the

Figure 1B example. The goal was to identify drugs

interacting with molecules in subgraph, as included in the

original figure. Therefore, the neighbors were constrained to

only include nodes associated with the ontological category

‘drug’ (taken from the DrugCentral (Avram et al., 2021) and

Pharmacogenomics Knowledgebase (Thorn et al., 2013). This

added 113 drug nodes and 148 edges to the subgraph. The

added drug nodes include 4 of the treatments highlighted in

Figure 1B. Specifically, infliximab and adalimumab were

identified as interacting with TNF, prednisolone with IL-6

(Figure 5D), and dexamethasone with the intermediate node

PTGS2.

Discussion

This set of case studies shows that KGs can be used to take

simple and incomplete descriptions of the desired contents of

a molecular cartoon, and transform them into accurate,

consistent and detailed schematics. Here, we define

accuracy as the recapitulation of input nodes. That is, the

input and output contain the same nodes, found via the

indexing step, and we identify at least one path between

them (Figure 4). Consistency refers to the reproducibility of

semantic relations between concepts. Using our method of

automated graph extraction ensures that researchers are using

a standardized system for node and edge semantics

(i.e., provided they start from the same KG). A researcher

may then collapse or expand nodes and pathways to reach

the desired level of abstraction for communicating their

claims.

In terms of detail, we started with the information

summarized in the cartoon and expanded the subgraph based

on relations in the knowledge graph. In each case, our approach

included intermediate nodes beyond those in the initial search

FIGURE 6
Comparison of path prioritization algorithms. For the Figure 1A example, the rank of all paths between IRS1 and AKT3 is shown (as depicted in
Figure 4A). For the Figure 1C example, the rank of all paths between Toll-like receptor 4 (human) andmicroglial cell activation is shown (as depicted in
Figure 4B). Annotated points identify the highest ranked path for Cosine Similarity (circles) and Path-Degree Product (triangles) to highlight the
differences in ranking. The Figure 1B example is not included as all pairs had only between 1 and 2 shortest paths.
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(Figure 3 and Figure 4). For example, Figure 1A was recapitulated

with the intermediate node mitochondrial serine/threonine-

protein kinase PINK1 between autophagy and oxidative stress.

PINK1 is a protein that contributes to autophagy (Chu 2010;

Bordi et al., 2019). Additional detail was also added to Figure 1C.

The output subgraph included the specificity of monocyte

FIGURE 7
Network properties of subgraphs generated by each path ranking algorithm. (A) Path length for all pairs existing in each example figure (B) and
total number of nodes that exist in the subgraph for each example figure.

FIGURE 8
Semantic properties of subgraphs generated by each path ranking algorithm. (A) The number of unique edge types within each subgraph
generated (B) the number of unique ontologies that make up each subgraph generated.
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differentiation antigen CD14 in humans as the receptor for LPS,

as opposed to the overarching CD14 molecule class. This

subgraph also provides more context for the proinflammatory

process by including the intermediate triggering receptor

expressed on myeloid cells 2 (TREM-2), a neuroprotective

protein involved in the activation of microglia that results

from TLR4 activation (Rosciszewski et al., 2018; Hu et al.,

2021). Thus, the extracted subgraphs for each figure included

more detailed explanations of the mechanistic interaction

between the input nodes.

While our cartoon reverse engineering pipeline is not

intended as a widely used tool, we intend the proof-of-

concept to demonstrate the potential for KGs and graphical

semantic actions to underpin a new generation of semantically

aware molecular cartooning technology. For instance, a

researcher with a list of genes differentially expressed in a

disease area may wish to explain this in the context of

other biological entities. Future software related to this

pipeline could be used to add innovative functionality not

currently supported by existing enrichment and/or drawing

tools.

These case studies allowed for quantitative assessments of

two applied KGs that may be indicative of more general issues.

For example, the two different KGs had distinct topologies: the

average path length for the Figure 1B example extracted from

KG-COVID19 was longer (Figure 6A) than the average path

lengths in the examples that used PheKnowLator. While the

number of nodes per subgraph was not significantly different

between the cosine similarity and the path-degree product

prioritization algorithm (Figure 7B), it is clear that the

semantic content of each of the graphs varied, particularly

in the Figures 1A,C examples. The edge “has component” has

more instances in the subgraph generated with path-degree

product prioritization, while “interacts with” and

“only_in_taxon” has more instances in the subgraph ranked

by cosine similarity (Figure 8). This is likely due to higher

degree nodes being more prominent in the latter two edge

types. Additionally, intermediate nodes in the Human

Phenotype (HP) ontology were more abundant in the

cosine similarity subgraph, while nodes in the Protein

ontology (PR) were more abundant in the path-degree

product subgraph. As we studied only three cases, it would

be premature to draw conclusions about the engineering of

general tools, but it is clear that there are interesting

phenomena related to semantic visualization yet to be

explored. In the future, expert review of the resulting

subgraphs could serve as a qualitative evaluation of this

method for KG-based figure generation.

This work also illustrated some open challenges in

generating molecular cartoons from KGs. For example, how

to manage directionality in KGs and cartoons. Cartoons often

indicate directionality and positive or negative influences via

arrows and various arrowheads. Our searches were done

without considering direction, which increased the number

of potential pathways to be discriminated among, and includes

paths where the directionality does not connect the source and

target (e.g., both source and target are directionally linked to a

third node). Another challenge is integrating new findings into

the resulting cartoons. For example, identifying the nearest

neighbors of drug ontologies in the COVID-19 subgraphs

added 113 potential treatments of which only 4 were

included in the published figure. Those 4, along with the

others in the published figure, have shown efficacy in

clinical trials and this information has not yet been

included in KG-COVID19.

An open challenge in automated molecular cartoon

generation is the integration of existing resources and

databases. For example, one of the difficulties in indexing

was the differential mappings for multiprotein families like

AKT between the cartoon and KG. Using standardized entity

linking resources [e.g., FamPlex (Bachman et al., 2018) for

multi-protein families] as opposed to user selection will

improve consistency in extracted subgraphs. Moreover,

there are multiple existing pathway databases built from

decades of expert curation of molecular interactions that

serve as a gold standard for pathway representation [e.g.,

Reactome, WikiPathways (Martens et al., 2021) and

Pathway Commons (Cerami et al., 2011)]. In this work, we

suggest broadly applicable semantic actions that arrive at a

detailed molecular subgraph. A future direction of evaluating

KG-based results against existing pathway databases

would provide a useful benchmark for the proposed

methodology. For example, we could compare the output

graphs extracted using CS, PDP, or any future semantic

actions against a set of curated pathways containing the

input nodes.

Not all open challenges indicated by this work are

semantic. The performance of the algorithms may be

improved by filtering the neighbor list during the shortest

path search, rather than generating all shortest paths and later

prioritizing paths. The current visualization uses Cytoscape,

which is a software that creates graphical representations of a

network object consisting of nodes and edges. There is an

extensive ecosystem of plugins in Cytoscape to curate an

affordance for scientific communication. Our approach

builds upon and adds to this ecosystem through the

application of the semantic schema in KGs to the

creation of figures. Future versions of the method will

employ glyphs to facilitate the communication of biological

concepts.

These case studies demonstrate the potential of KGs and

semantic graphical actions to provide innovative new

functionality for molecular cartooning. Knowledge-based and

semantic tools for cartoon construction could reduce the

difficulty of creating high quality scientific communication,

and are ripe for future development.
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