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There is a growing interest in the study of human endogenous retroviruses

(HERVs) given the substantial body of evidence that implicates them in many

human diseases. Although their genomic characterization presents numerous

technical challenges, next-generation sequencing (NGS) has shown potential to

detect HERV insertions and their polymorphisms in humans. Currently, a

number of computational tools to detect them in short-read NGS data exist.

In order to design optimal analysis pipelines, an independent evaluation of the

available tools is required. We evaluated the performance of a set of such tools

using a variety of experimental designs and datasets. These included 50 human

short-read whole-genome sequencing samples, matching long and short-read

sequencing data, and simulated short-read NGS data. Our results highlight a

great performance variability of the tools across the datasets and suggest that

different tools might be suitable for different study designs. However,

specialized tools designed to detect exclusively human endogenous

retroviruses consistently outperformed generalist tools that detect a wider

range of transposable elements. We suggest that, if sufficient computing

resources are available, using multiple HERV detection tools to obtain a

consensus set of insertion loci may be ideal. Furthermore, given that the

false positive discovery rate of the tools varied between 8% and 55% across

tools and datasets, we recommend thewet lab validation of predicted insertions

if DNA samples are available.
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1 Introduction

Endogenous retroviruses (ERVs) integrated into the genome

of vertebrates as a result of ancient exogenous infections. They

invaded the germ cell lines of all vertebrates including humans,

becoming an integral part of the germline transmission and

therefore replicate in a Mendelian fashion (Gifford and

Tristem, 2003). Human endogenous retroviruses (HERVs)

comprise ~8% of the genome, whereas protein coding genes

comprise only 1%–2% (Pisano et al., 2019). Although they make

up a striking portion of the human genome, most of them are

inactive as a consequence of the accumulation of mutations and

DNA methylation (Belshaw et al., 2005). The HML-2 HERV-K

subgroup includes some of the most recent HERV integrations,

which are found as full length (or near full length) sequences in

over 80 different loci (Subramanian et al., 2011). Though there

are several full-length copies of HERV-K in the genome, none are

likely to produce an infectious virus (Boller et al., 2008). HERV-K

sequences can be full length proviruses, solo long terminal

repeats or 2-LTR sequences and are polymorphic in the

human population (Garcia-Montojo et al., 2018). A full length

ERV provirus consists of long terminal repeats (LTRs) flanking

the viral genes (gag, pro, pol and env). In the majority of elements

defined as HERV loci, only the LTRs are present and these

contain the promoter and enhancer regions (Klaver and

Berkhout, 1994) (Figure 1).

HERVs are classified as transposable elements (TEs) but

there are notable differences between HERVs and other TEs.

HERVs are less common than Alus and LINEs (long interspersed

nuclear elements) and a full length HERV-K provirus is

approximately 10 kb in length, compared to full length LINEs

which are 6 kb in length, while Alu insertions are approximately

300 bp (Payer and Burns, 2019). LINEs are highly capable of

transposition and Alus can hijack LINE mechanisms to the same

end, in fact Alus are the most abundant transposable element in

the human genome. In contrast to this, HERVs generally lack

transposon function, though they can transcribe RNA (Dolei

et al., 2019). A further difference is that HERVs are flanked by

LTR sequences, containing promoter and enhancer regions,

which are not found in LINEs or Alus (Larsen et al., 2018).

The SVA (Sine VNTR Alu) is another TE reliant on LINE1 for

transposon function and is a composite TE containing ALU and

HERV LTR sequence. In contrast to HERVs, most SVA elements

are full length while the majority of HERVs contain only the

flanking LTRs (Hancks and Kazazian, 2010).

Characterizing the HERV genomic landscape is challenging.

HERVs are thousands of bases long and highly repetitive. This

means that short-read genome sequencing cannot characterize

the sequence of HERVs that are not present in the reference

genome, beyond a limited number of bases (Ewing, 2015).

Furthermore, reads from repetitive regions can introduce

ambiguities in the mapping step of genome alignment where

there are multiple putative matches (Teissandier et al., 2019).

This issue extends to biological tests of transposable elements, as

short oligos designed to target a specific TE locus may sit down at

multiple locations on the genome (Bourque et al., 2018).

HERV-Ks, and related transposable elements, have been

linked to a wide range of diseases including cancer and

neurodegenerative diseases, such as amyotrophic lateral

sclerosis (ALS), via multiple mechanisms. For example, their

insertion into the human genome may alter gene expression or

disrupt reading frames (Buzdin et al., 2003); they were reported

to be upregulated in biological samples from people affected by

neurodegenerative diseases and cancer (Garcia-Montojo et al.,

2020; Dervan et al., 2021; Jones et al., 2021); furthermore, their

expression may be toxic for certain cell types such as motor

neurons (Li et al., 2015). Given their proposed broad role in

human diseases, we focused our work on HERV-Ks.

Recent advances in next-generation sequencing (NGS) have

made sequencing large DNA molecules a common practice in

genetic research, allowing for the investigation of a wide range of

variants from single nucleotide variants to large structural

variants (Iacoangeli et al., 2019a). This technology has also

been used to study HERVs (Xue et al., 2020a). It is

established that HERVs can express RNA which can be

captured in NGS experiments. For example, RNA sequencing

experiments have quantified HERV RNA in healthy and tumor

cell lines (Rezaei et al., 2021) and have highlighted HERVRNA as

a biomarker for cell pluripotency (Santoni et al., 2012). Chip-seq

experiments have highlighted a role for HERV-H loci in

FIGURE 1
This schematic representation shows the general structure of
a full length HERV-K with approximate base pair lengths for each
section. The LTR length is the LTR5_Hs length given in the DFAM
database (accession =DF0000558), the internal gene lengths
come from HERVK11 internal regions (DFAM accession =
DF0000189) (Storer et al., 2021). The gag gene encodes a
polyprotein that is cleaved to produce the structural proteins that
make up a viral particle. The pro gene encodes the viral protease
while pol codes for the viral enzymes required for reverse
transcription and integrase. The env gene codes for the viral
envelope protein that mediates viral entry into a target cell. The
gene products require post translational cleavage, for example,
pro cleaves the gag polyprotein into “matrix”, “capsid” and
“nucleocapsid” subunits. The majority of HERV-K loci only contain
the LTR regions which contain the enhancer and promoter
sequences that regulate transcription.
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chromatin restructuring during cell differentiation (Zhang et al.,

2019). Genome wide methylation studies may prove to be very

useful in understanding HERV regulation as hypomethylation of

HERVs correlates with increased expression (Chiappinelli et al.,

2015).

Currently, a number of bioinformatic tools for the

identification of HERV insertion loci in short-read whole-

genome sequencing (SR-WGS) data exist, mostly based on the

exploitation of split and discordant reads to reveal the

presence of potential HERV insertions (Figure 2). Some of

these tools have been developed to detect a range of TEs,

including HERVs, Alus and LINEs, while others are

specifically targeted to HERV detection. Given the lack of a

comprehensive and independent assessment of their

performance, an evaluation of the current tools for HERV

detection is greatly needed for the design of optimal analysis

pipelines and to promote the discussion necessary for the

scientific community to establish best practice protocols. On

this basis, we designed a set of experiments to benchmark

widely used computational tools and protocols for the

detection of HERVs in SR-WGS data (short reads =

50–200 bp). We hypothesize that specialist HERV tools

might perform better than general TE detectors and we aim

to quantify the benefits and limitations of using generalist or

specialized tools to study HERVs in NGS. Considering their

proposed role in human disease, we focused our experiment

on the identification of HERV-K insertions that are not

present in the human reference genome (non-reference

HERV-Ks). We tested six widely used tools on three short-

read sequencing datasets: a large short-read whole-genome

sequencing (SR-WGS) dataset (50 human samples), a

simulated SR-WGS dataset, and six SR-WGS samples for

which matching long-read sequencing data was available.

2 Methods

2.1 Overview of the tested tools

MELT: MELT scansWGS data for clusters of discordant read

pairs and split reads. Split and discordant reads can be mapped to

an insertional element reference sequence provided by the user,

to allow the detection of specific insertion types. It can also

genotype reference mobile elements (Gardner et al., 2017). MELT

has previously been used to integrate TE insertion and TE

expression data in cancer lines (Clayton et al., 2016) and to

elucidate the evolutionary mechanisms underlying TE diversity

(Rishishwar et al., 2018). According to its documentation, MELT

was not tested for HERV detection in its original publication, and

the authors predicted that it may perform poorly on LTR

elements compared to non-LTR transposable elements (such

as Alus). Nevertheless, MELT has been used to detect HERVs

(Santander et al., 2017; Chen and Li., 2019; Feusier et al., 2019).

Mobster: This tool also uses discordant reads alongside split

reads and an insertional reference sequence to predict specific

insertion sites. Mobster has also been used to highlight the role of

TEs in cancer (Clayton et al., 2016) and has been used to show an

association between TEs and autism (Borges-Monroy et al.,

2021). When Mobster was released, the authors reported that

it was not able to identify HERV insertions. However, they tested

it using just two WGS paired-end samples and since its first

publication in 2014, Mobster has been extensively upgraded and

gained a considerable popularity. We included it in our

experiment, tested its updated version on a larger sample and

used a different HERV-K template sequence to that used in the

authors’ benchmarking work (Thung et al., 2014).

Retroseq: Retroseq uses discordant read pairs to identify

putative insertion sites and filters for read pairs which align to

FIGURE 2
In standard Illumina paired-end SR-WGS, the DNA sample is first sheared into small fragments. Then, both ends of the fragment are sequenced,
giving paired reads. Read mapping is achieved by aligning the reads to a reference genome. HERVs that are present in the sample but not the
reference, cannot be aligned fully and remain largely unmapped, which means they are often overlooked in genome analysis. Specialised
bioinformatics tools use unmapped, split and discordant reads to predict non-reference HERVs.
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a reference of interest (Keane et al., 2013). Retroseq has been used

for mapping transposable elements in evolutionary studies

(Dennenmoser et al., 2019) and extensively adopted as the

starting point of more advanced pipelines (Chen and Li, 2019).

Steak: Steak annotates both reference and non-reference

mobile elements. Unlike the other tools, it first identifies reads

that partially map to the target HERV reference sequence. These

reads are assumed to map to the edge of the insertion. The

mapped fragments of the reads are removed, and a library of host

reference flank reads and their mates is created. These reads are

mapped onto the human reference genome to identify the

presence of both reference and non-reference HERV loci

(Santander et al., 2017). Steak has been less widely used than

MELT, Mobster and Retroseq, though it has been used in

combination with PCR amplification to map HERV-K loci in

the genome (Xue et al., 2020b) and is regularly used as a

benchmarking comparison for new tool publications.

ERVcaller: The tool extracts incorrectly mapped read pairs

and split reads to identify likely insertions sites, that are then

aligned to a reference sequence to allow for the detection of

specific insertion types (Chen and Li, 2019). ERVcaller has been

used in combination with chip-seq and RNAseq analysis to

quantify the contribution of TEs to epigenetic regulation

(Groza et al., 2022).

Retroseq+: This pipeline is our in-house implementation of a

protocol described byWildschutte et al. It uses Retroseq as a base

for predicting HERV-K insertion loci. It then refines the results

through insertion junction reconstruction and secondary

scanning of the junction for HERV-K sequence by

RepeatMasker. Because this protocol is not available as an

automatic bioinformatics pipeline, we have implemented it

ourselves, following the authors’ description (Wildschutte

et al., 2016; Kabiljo et al., 2022).

These chosen tools include widely used, established TE

detectors (Mobster, MELT and Retroseq) as well as newer

tools specifically developed for HERV detection (ERVcaller,

Steak, Retroseq+). We did not include tools designed for the

analysis of tumor cell lines, or tools designed to analyze data

other than short-read NGS, or evolutionary aspects of HERVs as

they fell outside our scope to test tools for the detection of

germline non-reference HERV-K insertions in short-read NGS

data. Scripts for these tools are available as supplementary

materials as are flow diagrams explaining each tool in more

detail.

2.2 Benchmarking experiments overview

In order to assess the performance of these tools, we set up

four experiments: i) we estimated the performance of the tools

using simulated NGS data; ii) using the HERV-K calls from the

50 SR-WGS samples, we attempted to validate the tools by

quantifying the proportion of predicted HERV-K insertions

that were previously reported in literature; iii) using the tools

on 50 SR-WGS samples, we measured the agreement between

tools; iv) finally, we assessed the specificity of each tool by using

long-read data for the validation of HERV-K calls frommatching

short-read data.

2.3 Simulated short-read WGS analysis

The purpose of this test was to assess the sensitivity and

specificity of each tool using simulated data with a known set of

insertions. For the simulation test, short-read paired-end

Illumina WGS data were simulated from the hg19 reference

sequence using DWGSIM (parameters in Table 1) (Homer,

2010). Hg19 is reported to have 66 HERV-K (HML-6) full

length, proviral loci (2) from which we randomly selected

15 of type LTR3A to use as target LTRs (Supplementary File

S4). Furthermore, in order to test whether the tools are able to

distinguish between LTR types, we also randomly selected four

LTR3B type HML-6 proviral loci (Supplementary File S5). Both

LTR3A and LTR3B are HML6 insertions but have been shown to

cluster separately in phylogenetic analyses (Pisano et al., 2019).

We expect that including both subtypes in our test may provide a

higher degree of resolution into the evaluation of the tools’

accuracy.

To simulate these HERV-K sites as novel insertions, after

generating the WGS data, we removed these proviruses from the

hg19 reference using Bedtools masking followed by deletion of

the mask (Quinlan and Hall, 2010). The simulated FASTQ files

were then aligned to the edited hg19 using BWA-MEM. Thus,

the simulated data contained 19 known HERV-K insertions that

were not present in our edited reference genome, and these

insertions were the only non-reference HERV elements in the

simulated samples. Each tool was then applied to the simulated

WGS. Only the LTR3A sequence was used as target reference

sequence template, meaning each tool should have only detected

the 15 LTR3A loci, not the 4 LTR3B loci. This allowed us to see

how well each tool can distinguish specific insertion types as well

as assess general sensitivity. We defined sensitivity as the

proportion of the known, non-reference insertions which were

successfully detected: True positives/(True positives + False

negatives). We defined precision as the proportion of positive

results that are true: True positives/(True positives + False

positives).

2.4 Overlap analysis and comparison with
previously reported HERVs

Each tool was applied to WGS data of 50 ALS patients from

the British Project Mine dataset (Project MinE ALS Sequencing

Consortium, 2018; Iacoangeli et al., 2019b). This WGS was

generated from blood samples, using the Illumina Hiseq
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2000 platform. The resultingWGS samples had read length equal

to 100 bp with an average coverage depth of 40X (paired-end

reads). We aligned them to the hg19 reference genome using

Burrows-Wheeler alignment, BWA-MEM (Li, 2013). The

predicted insertion sites across all genomes were compared to

a list of 40 well characterized polymorphic HERV-K insertions

previously described in the literature (Supplementary File S1)

(Kahyo et al., 2017). They were also compared to all reference

HERV loci (both HERV-Ks and other HERV/LTR subgroups)

obtained through the UCSC table browser using the

RepeatMasker (RMSK) track for the hg19 genome build. The

following identifiers were used to retrieve HERV-K reference

loci: LTR5_Hs, LTR5A, LTR5B, HERV-K and HERV-K-int

(Supplementary File S2); while the set of all reference HERVs

was obtained by taking the entire UCSC RMSK hg19 track and

extracting those which had the identifiers “ERV” or “LTR”

(Supplementary File S3). HML-2 type HERV-Ks, which are

targeted in this analysis can be subclassified based on their

LTR sequence. LTR5B is the phylogenetically oldest HML-2

LTR, LTR5_Hs is younger and human specific.

An overlap was defined as a predicted insertion being within

500 base pairs of a known ERV locus. The number of reference

HERV-Ks and HERVs per million bases across the human

chromosomes is shown in Figures 3A–C.

This test allowed us to quantify the proportion of predicted

insertions of each tool that matched known and validated HERV-

Ks under the assumption that such calls are more likely to be true

positives and therefore tools which show a higher proportion are

more reliable.

The results of each tool were also compared to one another,

giving for each one of them, the proportion of its results that were

also predicted by each of the other tools. For Steak and Melt

reference results were filtered out from the total results using the

UCSC RMSK table of hg19 reference HERV-K loci

(Supplementary Table S2). This allowed us to quantify the

agreement across tools.

2.5 Long-read sequencing data

We used a set of six samples fromWang et al., for which both

short and long-read genome sequencing data were available

(Wang et al., 2019) (GIAB data, IDs: HG002, HG003, HG004,

HG005, HG006, HG007). Briefly, the short-read data (derived

from blood) were sequenced using Illumina Hiseq 2500 giving

mean 105 bp paired end reads with coverage depth ranging

between 15.6X and 18.8X. The long reads were sequenced

using PacificBio Sequel system version 2. For these samples

the read lengths were between 10 KB and 18 KB and the

mean coverage depth of samples ranged between 28.5X and 69X.

Long-read sequencing (read length >10,000 base-pairs) can

capture a large overhang, if not the whole, of the HERV-K

allowing for their accurate identification (Chu et al., 2021;

Chu et al., 2021; Troskie et al., 2021). We applied each tool to

the short-read WGS data to predict LTR5_Hs HERV-K

insertions and used the long-read data for validation as

follows. For each predicted insertion, we extracted long reads

mapped at the corresponding locus from the matching long-read

WGS sample. These long reads were then assembled into contigs

using wtdbg2 (Ruan and Li, 2020). RepeatMasker (Tempel, 2012)

can detect and classify repetitive elements in genomic sequences.

It was applied to the long-read assembled contigs to confirm the

presence of the HERV-K LTR5_Hs sequence at each predicted

locus.

If the contig, at a given locus where a short-read based

prediction was made, tested positive for HERV-K when

analysed with RepeatMasker, the predicted HERV-K insertion

was considered true. The proportion of each tool’s predictions

which are successfully validated is an indicator of the tool

accuracy.

2.6 Computational efficiency report

The computational efficiency of each tool is an important

factor, especially if the users have limited resources and large

datasets. The purpose of this test was to quantify the

computational resources required by each tool.

We tested the memory usage and time taken for each tool to

run on a single WGS sample from the Project MinE dataset.

Slurm was the scheduling system on the Linux HPC platform

used for this project. Slurm has its own command (sacct) for

timing scripts and assessing memory usage. Each tool was

applied to a single WGS sample from Project MinE and sacct

was used to report the tools memory and cpu usage. To

determine the sizes of intermediate files produced by each

TABLE 1 Custom parameters used to generate the simulated data. All parameters not included in this table were kept as default.

Read length No. reads Coverage Outer distance -e (error) -s (std-dev outer dist)

Genome 1 150 bp 333,333,333 32X 400 0.020 5

Genome 2 100 bp 500,000,000 32X 400 0.020 5

Genome 3 150 bp 105,000,000 10.5X 400 0.020 5

Genome 4 100 bp 105,000,000 7X 400 0.020 5
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FIGURE 3
Overview of the density of HERV loci in the human genome. (A)Number of HERV-Ks permillion bases in each human chromosome (as given by
the UCSC RMSK table). The high HERV density in chr19 has been previously reported (Katzourakis et al., 2007) and other transposable elements are
also enriched on this chromosome (Gianfrancesco et al., 2019). (B) Number of HERVs and LTR sequences per million bases in each human
chromosome–Data is from the UCSC RMSK table. (C) This panel shows the distribution of HERV-K on each chromosome, with a red line
indicating the presence of the HERV-K LTR. These results are obtained from the LTR5/HERV-K UCSC RMSK table.
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tool, the “du” command was run on a loop, executing every

second, over the directory in which each tool was running. The

difference between the starting directory size and largest

directory size reported by “du” is reported.

3 Results

3.1 Simulated data results

Each tool was applied to a set of four simulated WGS

samples, with known HERV insertions of different types

(LTR3A and LTR3B). Each tool was given LTR3A as target

element. This allowed us to estimate the sensitivity and precision

of each tool. Precision and sensitivity highly varied across tools,

ranging between 0.56–0.92, and 0.20–0.80 respectively on the

higher quality samples (32X and 150 bp reads). Although the best

performing tool was ERVcaller, HERV specialist tools did not

perform consistently better than generalist tools, and Steak

showed the lowest precision and sensitivity across all

simulated genomes. All tools performed worse on samples

with lower read depth (Table 2). For example, Retroseq

detected 11/15 LTR3A insertions in a 32X sample but only 7/

15 LTR3A insertions in the 10.5X and 7X samples. However, the

degree to which read depth affects each tool varied. ERVcaller

performed equally well on 32X and 10.5X samples finding 12 of

the 15 LTR3A insertions and, in the 7X sample, it still identified

10 insertions. The only tool to mistakenly detect an LTR3B

insertion was Retroseq. Sensitivity and precision greatly varied

across tools. E.g. Steak and ERVcaller had the highest average

precision (0.9) while Retroseq+ had the lowest average precision

(0.63). However, Steak had the lowest average sensitivity (0.13)

while ERVcaller had the highest (0.77). Mobster did not detect

any insertions in this experiment.

3.2 Analysis of the 50 short-read WGS
samples

Each tool was applied to 50 SR-WGS samples and the results

were merged. Table 3 shows the proportion of predicted HERV-

K insertions that map to a known HERV locus. Tools with a

higher rate of predicted insertions matching to documented

previously reported loci are expected to have a higher

accuracy as such insertions are more likely to be true

positives. It is also important to consider the number of loci

given by each tool as they may sacrifice sensitivity to increase the

true positive rate. Total number of predictions and overlap with

previously reported loci greatly varied across tools (Table 3 and

Figure 4) but two of the HERV specific tools (Retroseq+ and

ERVcaller) appear to have the highest proportion of predicted

insertions that overlapped with previously reported ones.

Notably, Steak gave the highest number of predictions andTA
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84% of these results matched to previously documented HERV

locations. 39% of Retroseq’s predictions and 52% of Melt’s

predictions were previously reported. ERVcaller and

Retroseq+ generated sets of predicted loci that greatly

matched to previously reported ones (81% and 97.6%

respectively) (Kahyo et al., 2017). Mobster was not able to

detect any HERV-Ks in this sample. The proportion of

HERV-Ks being present in introns, exons and intergenic

regions was broadly consistent across tools and in line with

results from previous studies (Supplementary Table S1). We also

report the frequencies of HERV-K integrations for each tool

(Supplementary Table S2).

The agreement between tools (Figure 5) greatly varied,

ranging between 2.8% (proportion of Steak calls that were also

called by Melt) and 63% (proportion of Retroseq+ calls that were

also called by Steak). The number of insertions predicted ranged

between 296 (Retroseq+) and 13,770 (Steak).

3.3 Analysis of matching short and long-
read sequencing samples

We ran each tool on six SR-WGS samples and used the

matching long-read sequencing data for validation (Table 4).

Consistently with the other tests, the tools’ performance varied.

Generally, the HERV specific tools outperformed the generalist

tools in this test, though Retroseq had slightly higher proportions

of confirmed calls than ERVcaller. Retroseq+ gave the smallest

number of predictions, however, 78% of predicted loci were

positive for an LTR5_Hs of length >850 bp in the corresponding

long-read sample. We are particularly interested in the larger

insertions as they would suggest a complete LTR (968 bases) that

will most likely contain regions of biological importance such as

the LTR promoters and enhancers. The great majority of the loci

predicted by the tools were confirmed to contain ERV sequences

in the long-read data. However, considering only the predicted

insertions that correctly contained LTR5_Hs (the target HERV-K

element), the performance of the tools varied greatly. For

example, 78% of insertions called by Retroseq+ were LTR5_

Hs, while only 13% of the Melt calls were LTR5_Hs. Most

Retroseq+ calls (94%) were >850 bases while a substantial

proportion of the loci identified by the other tools were

smaller. Moreover, the number of predicted insertions also

varied, ranging between 18 (Retroseq+) and 481 (ERVcaller).

Notably, Steak identified a large number of long LTR5_Hs

insertions but over two-thirds were reference loci and Steak

showed a substantially higher precision for reference loci

(>77%) than for non-reference loci (41%). Supplementary

table 4 shows the proportion of predicted loci for which

RepeatMasker reports either HERV-K internal gene sequence

or an SVA of at least 50 bps in length. ERVcaller has the highest

number of SVA positive loci (61%) while Retroseq+ and Steak

have the highest proportion of HERV-K internal gene positive

loci (11% and 12% respectively).

3.4 CPU usage and time

Finally, the tools were run on a single short-read whole-

genome sequencing sample from Project MinE to quantify their

memory, CPU and storage usage efficiency. Time, memory and

space used were recorded (Table 5). This was achieved using the

in-built Slurm HPC scheduling system. All of the tools had a

relatively similar CPU time (mean = 3:59 CPU hours) and hard

disk usage (mean = 2 GB) with the exception of ERVcaller which

had a much higher CPU time (14:17 CPU hours) and used a lot

TABLE 3 The “Known Polymorphic” column shows the proportion of predicted HERV-K insertion loci that matched to HERV-Ks from the literature reported to
be polymorphic (Supplementary Table S1). “UCSC HERV-K” and “UCSC HERV” columns show the proportion which matched to hg19 reference HERV-Ks and
HERVs given by the UCSC table browser (Supplementary File S2, Supplementary File S3). Total percent previously reported shows the proportion of
predictions that are present in the polymorphic set or in the UCSC sets. “Total No. predictions” is the total number of predictions given across all 50 genomes.
*There is an overlap between the Non-reference polymorphic HERV-Ks and the “UCSC HERV/LTR” set, this explains why the “Total % previously reported”
column is less than a sum of these two columns for most tools. Top performing and lowest performing tools are highlighted in blue and red respectively.

Known polymorphic HERV-
Ks (S1)

UCSC HERV-
K (S2)

UCSC HERV/
LTR (S3)

Total % previously
reported*

Total no.
predictions

Reference
(%)

Non-
reference (%)

Reference (%) Reference (%)

Retroseq 0 11 2 31 39% 2,286

Retroseq+ 0 64 7 38 97.6% 296

Melt 0.6 26 0 34 52% 638

Steak 0.8 1.7 56 65 84% 13,770

ERVcaller 0 61 6 33 81% 439

Mobster 0 0 0 0 0% 0
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more storage space (87 GB). This contrasts with the results of the

original ERVcaller paper which showed that ERVcaller was faster

than Retroseq and Melt. A key difference is that, in our test,

ERVcaller was run on two CPUs but in the original paper it was

run on 12. If the user has a large number of samples, or limited

computational resources, ERVcaller may not be appropriate.

4 Discussion

This study compared the performance of six computational

tools for detecting HERV loci in whole-genome sequencing data.

Three of the tools we tested, ERVcaller, Steak and Retroseq+,

were developed to identify exclusively HERVs, while the other

three, Retroseq, Mobster and MELT, were designed to identify a

broader range of TEs. Our results provided evidence of their

highly variable performance across SR-NGS datasets, however, in

all experiments HERV specialist tools generally performed better

than generalist TE callers in calling HERVs.

The first test involved applying each tool to simulated WGS. In

order to simulate potentially realistic (proviral) insertions, we first

generatedWGS samples using hg19 varying read length and coverage

depth. Then we used a copy of hg19 in which we removed a set of

known reference HERV loci, for read mapping of the simulated

samples and HERV detection. Therefore, this experiment allowed us

to assess how read length and coverage depth affect the tools’

performance and to quantify the tools’ precision and sensitivity

(Table 3). As expected, the tools performed better on high quality

WGS data (32X and 150 bp reads). Steak’s sensitivity was lower than

the other tools for detecting insertions in all simulated genomes

FIGURE 4
Overview of novel insertions predicted by the tools on the 50 genomes in a circular chromosomal plot. The order of concentric circles from the
outside of the plot: circle 1 (blue dots)—known non-reference insertions; circle 2 (red dots)—known reference insertions; circle 3 (yellow): Retroseq
predictions; circle 4 (orange): Retroseq plus predictions; circle 5 (green): Steak predictions; circle 5 (purple) ERVcaller predictions, circle 6 (red): Melt
predictions. The intensity of the color and the height of each dot in its band is proportional to the number of subjects in whom the insertion is
predicted with darker colors and higher position corresponding to a larger number.
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FIGURE 5
Heatmap reporting the proportion of insertions found by tools on the rows that were also found by the tools on the columns. E.g. the proportion
in (Steak, ERVcaller) represents the proportion of Steak calls that were also called by ERVcaller. Therefore, please note that (Steak, ERVcaller) is not
equal to (ERVcaller, Steak). Reference HERV-Ks have been filtered out.

TABLE 4 This table shows the proportion of results predicted by each tool in the short-read samples, that are positive for a HERV sequence in the associated
long-read data. Each column shows the proportion of results that were positive for HERV-K (LTR5_Hs, the targeted HERV subgroup) or a general HERV
sequence in the long-read contig data. The results are stratified by the length of the HERV sequence found in the long-read contig data. The Steak results are
reported both including and discarding reference HERV loci. Reference HERV loci were removed for all other tools. Top performing and lowest performing
tools are highlighted in blue and red respectively.

LTR5_Hs >
850 bp

LTR5_Hs >
400 bp

LTR5_Hs
all

ERV
>850 bp

ERV
>400 bp

ERV
all

Total no.
predictions

Retroseq 17% 21% 23% 52% 86% 96% 247

Retroseq+ 78% 78% 78% 94% 100% 100% 18

Melt 10% 11% 13% 42% 79% 95% 412

Steak Non-
reference

33% 37% 41% 57% 73% 92% 51

Steak ref +
non-ref

74% 76% 77% 86% 92% 98% 172

ERVCaller 14% 15% 16% 34% 75% 92% 481

Mobster NA NA NA NA NA NA NA

TABLE 5 This table shows howmemory is used by each tool. The CPU time is equal to the number of CPUs * time. MAX VM size is the maximum virtual memory
used at any one time by any part of the job. The input file size column reports the size of input sequencing data in the format required by each tool. The Max
Temporary Files Size shows the maximum temporary storage required by each tool while running. For tools where there is an option to remove (clean up)
temporary files, this option was not used. Lowest performing tool is highlighted in red.

CPU time Max vm size (GB) Input file format/Size (GB) Max temporary files size (GB)

Retroseq 03:43:01 1.15 BAM/77 2

Retroseq+ 04:01:15 1.15 BAM/77 2

Melt 03:23:05 5.10 BAM/77 3

Steak 04:48:35 1.17 SAM/287 <1

ERVcaller 14:17:22 22.39 BAM/77 87
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(≤20%). Although apparently surprising, this result is consistent with
another independent evaluation of Steak (Chen and Li, 2019).

Following this, each tool was applied to 50 WGS samples of

real individuals from an ALS cohort. This allowed us to quantify

the agreement between tools and the proportion of results that

matched to known HERV-K loci (Table 2). In this experiment

Mobster could not identify any HERV insertions confirming its

inability to detect this type of elements as was suggested by the

authors in their original benchmarking analysis. The agreement

between tools ranged between 3% and 63%, and the number of

insertions predicted ranged between 296 (Retroseq+) and 13,770

(Steak). A part of this variability can be explained by the fact that

Steak was designed to detect the presence of both reference and

non-reference HERV insertions, however, the tools’ accuracy

might also contribute substantially. Indeed, although 65% of

Steak’s predictions matched reference HERV loci, only 1.7%

overlapped with the highly characterized, non-reference,

polymorphic loci. Looking at the proportion of insertions that

matched the non-reference HERV-Ks previously reported in the

literature can inform us about the quality of the predictions made

by the tools. We have greater confidence that these known

HERV-Ks are true compared to novel HERV-Ks which have

not been previously reported or validated.

The tools were also tested on six publicly available genomes that

had undergone both long and short-read sequencing (Table 4).

Given the length of the long reads (>10 kbs), this dataset allowed us
to confirm the insertions called in the short-read data using the long-

reads. In this experiment the great majority (>92%) of all insertions
predicted by the tools were confirmed HERVs in the long-read data.

However, only Retroseq+ insertions were largely (78%) confirmed to

be LTR5_Hs (the target HERV-K element), while the other tools

showed a lower ability to distinguish between different HERV LTRs

(13%–41%).

Finally, the tools were tested on a singleWGS sample, and the

time, memory and space used for temporary files were recorded.

All of the tools had a relatively similar CPU time and hard disk

usage with the exception of ERVcaller which had a much higher

CPU time (14:17 CPU hours) and used a lot more storage space

for temporary files (87 GB). This contrasts with the results of the

original ERVcaller paper which showed that ERVcaller was faster

than Retroseq and Melt (Chen and Li, 2019).

In conclusion, our analyses showed that tools and protocols

developed specifically for the detection of HERV-Ks, such as

ERVcaller, Retroseq+, and Steak, generally outperformed

generalist tools such as Mobster and MELT. This trend is

clearly visible in Supplementary Table S3 that reports an

overview of key results across all benchmarking experiments.

This finding is consistent with MELT documentation and

supported by a recent paper from Niu et al. (Niu et al., 2021).

Niu and colleagues found that HERV-K integrations detected by

MELT had a 23% false discovery rate (FDR) when tested using

PCR, which was a much higher FDR than the other transposable

elements. HERV-K insertions in databases based on MELT,

including the widely used GNOMAD-SV (Koch, 2020) and

the newer HMEID database (Niu et al., 2021), are likely to be

unreliable for use in HERV-K focused studies.

Moreover, the experiments highlighted important

characteristics of the tools that the users should consider when

designing their analysis pipeline: our implementation of the protocol

developed by Wildschutte and colleagues (Retroseq+) produced the

most reliable predictions but also the smallest number

(296 predictions across 50 genomes, Table 2); Steak was the only

tool able to comprehensively capture the presence of reference

HERVs but its performance was substantially higher on reference

HERVs than on non-reference HERVs; ERVcaller and Retroseq

showed a good balance between number of detected insertions and

their quality, however, their performance greatly varied across

experiments. For example, they showed high precision and

sensitivity in the simulated data (Table 3), but when applied to

real data that is expected to include a large number of other types of

insertions (the initial large SR-WGS dataset and the matching short

and long-read data, Tables 2, 4), both of them showed high

sensitivity but low specificity.

Given that all tools presented strengths and weaknesses, we

recommend the users to base their choice on the requirements and

objectives of the study and to consider combiningmultiple tools and

a consensus approach if computationally feasible. For example, for

rare genetic diseases in which both common polymorphisms and

rare disruptive variants contribute to their genetics, such as ALS and

other neurodegenerative disorders, one could combine the ability of

Steak to call reference HERVs, with one of the other tools that

showed a higher performance on non-reference insertions.

Moreover, according to the availability of biological samples for

wet-lab validation, onemight choose amore conservative caller such

as Retroseq+ or a more sensitive tool such as ERVcaller.

A limitation of this study is that it is focused on the detection of

non-reference HERV insertions and it does not consider HERV

annotation. HERV annotation could provide key pieces of

information such as HERV family, subtype, location of promoter

and enhancer regions, genotype, truncations and other

polymorphisms, and whether they have potential for

transcription. These are essential for their study and biological

interpretation (Grandi et al., 2021; Jia et al., 2022). However,

while this type of analysis can be performed for reference HERV

loci, it is not possible for non-referenceHERVdetected in short-read

NGS given that this technology does not allow for the

characterization of the insertion sequence beyond the read-length.

In interpreting our results, it is important to note that our data

may stem from the use of the hg19 reference genome. Results might

be slightly different using hg38 as it includes more alternate

sequences as well as corrections to sequencing artefacts

(Schneider et al., 2017). However, the overarching challenge in

calling HERVs remains, regardless of which reference is used, as

short-read sequencing presents intrinsic limitations to capture large

insertions. This challenge applies to most types of variants larger

than some tens of base pairs and consensus approaches have shown
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potential, e.g. Gnomad SV (Koch, 2020). Long-read sequencing can

provide a better solution to the detection of large insertions and its

use is on the rise, analyzing short-read sequencing data for large

variants is still highly relevant given the great availability of this type

of data and its higher per base sequencing resolution.
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