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Protein-protein interactions govern a wide range of biological activity. A proper

estimation of the protein-protein binding affinity is vital to design proteins with

high specificity and binding affinity toward a target protein, which has a variety

of applications including antibody design in immunotherapy, enzyme

engineering for reaction optimization, and construction of biosensors.

However, experimental and theoretical modelling methods are time-

consuming, hinder the exploration of the entire protein space, and deter the

identification of optimal proteins that meet the requirements of practical

applications. In recent years, the rapid development in machine learning

methods for protein-protein binding affinity prediction has revealed the

potential of a paradigm shift in protein design. Here, we review the

prediction methods and associated datasets and discuss the requirements

and construction methods of binding affinity prediction models for protein

design.
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1 Introduction

Protein-protein interactions play a central role in biological activities, including signal

transduction, cell metabolism, and immune system (Osaki et al., 2004; De Las Rivas and

Fontanillo, 2010; Guo, 2014; Szeto et al., 2020). Determining the protein-protein

interactions helps researchers elucidate biological phenomena, find causes of diseases,

and design new drugs (Ryan and Matthews, 2005; Carter, 2006; Fleishman et al., 2011;

Sliwkowski and Mellman, 2013; Guo et al., 2014; Rosell and Fernandez-Recio, 2018). As a

representative example, cancer immunotherapy has been proven to be highly effective

against certain cancer types and has attracted considerable attention (Varela-Rohena

et al., 2008; Restifo et al., 2012). In immunotherapy, T cells recognize and attack cancer

cells by binding the complementary determining regions (CDRs) of the T cell receptors

(TCRs) to the peptide presented by a major histocompatibility complex (pMHC) on

cancer cell (Smith-Garvin et al., 2009). The interactions between TCRs and the target

cancer antigen must be correctly evaluated to design TCRs that efficiently recognize

cancer cells.
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The equilibrium dissociation constant (Kd) or Gibbs free

energy (ΔG), which can be derived from the Kd, is commonly

used to quantify protein-protein interactions (Wang et al.,

2004; Kastritis et al., 2011; Moal and Fernandez-Recio, 2012;

Jankauskaitė et al., 2019). As Kd or inhibition constant (Ki)

measurements of protein complexes are sometimes performed

simultaneously with X-ray crystallography experiments, some

datasets contain protein-protein binding affinity data together

with the 3D structures (Wang et al., 2004; Kastritis et al., 2011;

Borrman et al., 2017). These datasets can therefore be used for

the prediction of binding affinity based on the 3D structures.

However, the experimental measurement procedure for Kd is

labor-intensive and time-consuming, which sometimes

requires sophisticated experimental equipment (Zhou et al.,

2016).

As one of the most important application fields of protein

design, the protein-protein interaction data of antibody-antigen

binding or TCR-pMHC recognition provide crucial information

for immunotherapy, which can characterize the amino acid

sequences and structures of antibody or TCR binding to a

target. Recently, single-cell sequencing has been used in

immune profiling to generate high-throughput quantitative

data on the interaction of TCRs or BCRs (B cell receptors)

and antigens (Bentzen et al., 2016). Using the samples

collected from donors, the sequence of TCR or BCR in each

cell is identified via single-cell sequencing, and the binding

strength of the receptor and antigen is measured based on the

counts of dextramer that carry multiple antigens and can be

quantified based on the feature barcode (10x Genomics, 2020).

Models trained on the single cell immune profiling dataset are

validated on conventional TCR-antigen binding datasets

(Sidhom et al., 2021). Although single cell immune profiling

can measure thousands of T cells simultaneously, the size of TCR

sequence space is estimated to exceed 1020 (Zarnitsyna et al.,

2013), making it impossibly difficult to find the optimal TCR

using samples obtained from donors or those that are randomly

generated.

To circumvent the above-mentioned limitations of

experimental measurement, methods for predicting binding

affinity using molecular dynamics simulations, empirical

energy functions, and machine learning methods have been

developed (Chothia and Janin, 1975; Horton and Lewis, 1992;

Jiang et al., 2002; Ma et al., 2002; Zhang et al., 2005; Audie and

Scarlata, 2007; Su et al., 2009; Flower et al., 2010; Panday and

Alexov, 2022). Molecular dynamics simulations provide highly

accurate predictions at the cost of high computational intensity

(de Vries et al., 2010; De Paris et al., 2015). Empirical energy

functions are used in protein-ligand and protein-protein affinity

prediction. Although this method is less computation-

demanding, further improvements are necessary to achieve

the accuracy required for molecule design (Kastritis and

Bonvin, 2010). Compared with the previous two methods,

machine learning methods have been developed to handle

complex tasks that do not work well with manually-curated

functions, such as natural language processing and computer

vision (LeCun et al., 2015; Goodfellow et al., 2016). In recent

years, machine learning has demonstrated its potential in various

fields of natural science, including physics, chemistry, and

biology (Stanev et al., 2018; Wu et al., 2019; Jumper et al.,

2021; Li M. et al., 2022). In the field of structural biology,

AlphaFold and RosettaFold have shown high accuracy in

predicting protein structures based on amino acid sequences

(Baek et al., 2021; Jumper et al., 2021).

In the past decade, numerous machine learning methods on

the prediction of protein-protein interactions have been

published, including classification models to identify pairs of

proteins forming complex, protein-protein interaction site

predictions, and binding affinity predictions (Casadio et al.,

2022; Hu et al., 2022; Li S. et al., 2022). In particular, the

high-throughput feature of machine learning models is highly

valuable for virtual screening and protein design.

In this perspective, we focus on quantitative prediction models

for protein-protein binding affinity and associated datasets, which

can be further deployed in protein design. Figure 1 shows how

machine learning models utilize resources in datasets to predict the

binding affinity and different featurization methods. The general

case in protein design is to engineer a protein so that its property falls

within a predetermined range. Considering that the subsequent

experiments are time-consuming, it is extremely important in

practical applications to correctly estimate the property to reduce

false positives and false negatives. General reviews on the application

of machine learning for protein-protein interaction are given by

Casadio et al. (2022), Hu et al. (2022), and Li S. et al. (2022). We

discuss issues in prediction models of protein-protein binding

affinity with regard to their application in protein design, for

which highly accurate quantitative prediction is required. We

also provide guidance on how to take advantage of

information from different datasets to construct accurate

prediction models and discuss the usage of the recently

developed highly accurate protein structure prediction

model in data augmentation.

2 Datasets

Machine learning models are designed based on the type

of data they will be used on. For datasets that are extracted

from the Protein Data Bank (PDB) (wwPDB consortium,

2019), both the 3D structures and amino acid sequences

can be used as the inputs, and Kd, Ki, or IC50 (the

concentration at 50% inhibition) will be the prediction

target (Li et al., 2014; Liu et al., 2015; Liu et al., 2017).

Recently, single-cell RNA-sequencing has been applied to

determine the immune profiles in order to find TCRs or

BCRs that bind specifically to a certain target (10x

Genomics, 2020). For the sequencing datasets, machine
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learning models take the nucleic acid or amino acid sequences

of proteins as the input and predict their binding specificity

(Abbasi et al., 2020; Fischer et al., 2020). In this section, we

briefly discuss the data type, size, and other aspects that may

affect the prediction accuracy of machine learning models

(Table 1).

2.1 PDBbind

The PDBbind dataset is a collection of complex structures

extracted from PDB with binding affinities determined

experimentally (Wang et al., 2004). The first version of

PDBbind dataset was published in 2004 and only contained

FIGURE 1
(A) Structure-based methods use the 3D structure of proteins as input to predict the binding affinities. The information related to the binding
surface, graph neural network, and topology features are used as descriptors and combined with machine learning models to predict binding
affinities. Cross-validation and hold-out test set are used to validate prediction accuracies of models. (B) Sequence-based methods use protein
sequences to predict protein-protein binding affinities. The properties of amino acids, pre-trained representation, and sequence embedding
layer that is trained with the prediction model are used to extract features of protein sequences, which act as inputs for machine learning models.
Cross-validation and hold-out test set are used to validate prediction accuracies of models.
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protein-ligand binding data. Since the update in 2008, protein-

protein complexes, protein-nucleic acid complexes, and nucleic

acid-ligand complexes have also been included in the dataset (Li

et al., 2014; Liu et al., 2015; Liu et al., 2017). Until 2020, the

PDBbind dataset was updated annually. In the first week of each

year, new protein structure data deposited in PDB during the

previous year were included in the dataset. A program was

designed to determine if the PDB files contain protein

complex structure data or not and to classify the complex

structure file into one of the four classes (protein-ligand

complexes, protein-protein complexes, protein-nucleic acid

complexes, and nucleic acid-ligand complex) (Liu et al., 2015).

Another program was used to screen the primary reference of the

complex structure file. Articles containing binding affinity

data were manually curated and the PDB IDs, binding

affinities, and comments were recorded in the dataset. In

the current release (PDBbind 2020), there are a total of

23,496 entries in the dataset, comprising 19,433 protein-

ligand complexes, 2,852 protein-protein complexes,

1,052 protein-nucleic acid complexes, and 149 nucleic acid-

ligand complexes. For building a binding affinity prediction

model of protein-protein complexes, the structure and amino

acid sequence data of the complexes can be obtained from the

PDB files and Kd, Ki, or IC50 values recorded in the dataset are

the prediction targets.

2.2 Structure-based benchmark for
protein-protein binding affinity

The structure-based benchmark for protein-protein binding

affinity is an assembled dataset of 144 protein-protein complexes

(Kastritis et al., 2011). The dataset is composed of three complex

classes. Class A contains antigen-antibody complexes (19 cases),

class E is the enzyme-containing class (61 cases), and class O

(“other”) includes complexes that do not fall into the previous

two classes. For each of the complexes, both Kd and ΔG are

reported in the dataset along with the pH, temperature, and

experimental methods used. As the protein-protein

interaction can induce a conformation change, both the

structures of complexes and unbound components are

available in this dataset. Compared with other datasets, the

structure-based benchmark for protein-protein binding

affinity is a small dataset, but the included additional

information of pH and temperature are very valuable for

improving the prediction accuracy. In addition, the

structure data of unbound components can be used to

construct models that predict the binding affinity of two

proteins from different structure resources. This is the

most common case in practice.

2.3 SKEMPI and SKEMPI 2.0

SKEMPI (Structural database of Kinetics and Energetics of

Mutant Protein Interactions) is a database describing the changes

of binding affinities and other kinetics characteristics upon

mutations (Moal and Fernandez-Recio, 2012). SKEMPI 2.0 is

an updated version of the SKEMPI database (Jankauskaitė et al.,

2019). In SKEMPI 1.1, there were 158 PDB entries and binding

affinity data for 3,047 mutants. In SKEMPI 2.0, the numbers of

PDB entries and mutants have increased to 345 and 7,085,

respectively. A large part of the data in SKEMPI was collected

from the structure-based benchmark for protein-protein binding

affinity (Kastritis et al., 2011), ASEdb (Thorn and Bogan, 2001),

PINT (Kumar and Gromiha, 2006), and the associated

TABLE 1 Datasets of protein-protein binding affinities used in machine learning predictions.

Dataset Data size Data type Binding
affinity

Experimental
conditions

Available source

PDBbind v2020 Wang et al. (2004) 2,852 complex structures (PDB) Kd, Ki or IC50 — http://www.pdbbind.
org.cn/index.php

Structure-based benchmark for
protein-protein binding affinity
Kastritis et al. (2011)

144 complex structures (PDB)
and unbound component
structures (PDB)

Kd, ΔG method,
temperature, pH

Supporting
information

SKEMPI 1.1 Moal and
Fernandez-Recio (2012)

3,047 (158 PDB
structures)

complex structures (PDB of
wild type), mutations

Kd, ΔG method, temperature https://life.bsc.es/pid/
mutation_database/

SKEMPI 2.0 Jankauskaitė et al. (2019) 7,085 (345 PDB
structures)

complex structures (PDB of
wild type), mutations

Kd, ΔG method, temperature https://life.bsc.es/pid/
skempi2/

ATLAS Borrman et al. (2017) 694 (123 PDB structures) complex structures (PDB or
template PDB)

Kd, ΔG method, temperature http://atlas.wenglab.
org/web/index.php

10x single cell immune profiling
dataset 10x Genomics (2020)

136,477 cells
(55,221 distinct TCR
clonotypes)

TCR sequence UMI counts — https://www.
10xgenomics.com/
resources/datasets
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references. The additional data included in SKEMPI 2.0 were

collected from datasets associated with published literature and

from the references of the updated version of protein–protein

docking and binding affinity benchmarks (Vreven et al., 2015).

The changes in binding energy upon mutations, as well as

information on the experimental methods and

temperatures, were acquired manually from the associated

literature and added to the database. For the structure data,

the PDB IDs of the wild-type proteins were recorded. In

instances, where the crystal structures of the mutants were

also reported in the papers, the structure data were also

included in the dataset.

2.4 ATLAS

The ATLAS (Altered TCR Ligand Affinities and Structures)

database is a collection of the binding affinity of a TCR to a

pMHC(Borrman et al., 2017). The database includes a total of

694 entries with 123 PDB structures. Each entry includes the

TCR, peptide, MHC, binding affinity, and PDB ID if the crystal

structure is known. For the complexes whose crystal structure is

not reported, a template PDB ID for the complex is included for

further calculation of the structure based on the template. ATLAS

contains information similar to SKEMPI and SKEMPI 2.0, but

the dataset is focused on TCR-pMHC complexes. As the design

of proteins with the desired properties often involves introducing

mutations to proteins from a specific family, this dataset’s focus

on a certain domain is well suited for constructing efficient

prediction models for protein design based on the same

domain. Other datasets, such as the AB-Bind (Sirin et al.,

2016), antibody-antigen docking and affinity benchmark

(Guest et al., 2021), focus on the antibody-antigen interaction

and are therefore useful for antibody design.

2.5 10x single cell immune profiling
dataset

Unlike the previously described datasets, the 10x single cell

immune profile dataset is generated via single-cell RNA-

sequencing (10x Genomics, 2020). T cells obtained from four

healthy donors were labeled with antibodies to find CD8+ T cells

with the ability to kill cancer or virus-infected cells. The dataset

comprises data of 136,477 cells, which includes 55,221 distinct TCR

clonotypes. The specificities of the TCRs with regard to binding to

pMHCswere identified using dextramers that carry antigens. For this,

44 dextramer reagents with six negative controls were mixed with the

cells and the binding strength was quantified using the counts of

unique molecular identifier (UMI) on the dextramer. Although the

data obtained using this method are noisy, this method represents a

high-throughput method for identifying TCRs with high binding

strength to a target pMHC.

3 Machine learning methods

Machine learning is a research field that focuses on the data

to find patterns, build models for prediction or explanation, and

understand the relationship underlying the data (Bishop, 2006;

Mitchell, 2013). Machine learning methods, from simplest linear

regression to deep learning (Seal, 1967; Cortes and Vapnik, 1995;

Tin Kam Ho, 1995; Breiman, 1996; Friedman, 2002; LeCun et al.,

2015; Goodfellow et al., 2016), have been developed for decades

and are implemented in science, finance, healthcare, and other

fields (Dixon et al., 2020; Guo et al., 2020; Varoquaux and

Cheplygina, 2022; Zhang et al., 2022). In structural biology,

machine learning methods have been used to predict the

structure of proteins based on their amino acid sequences,

design new molecules for enzyme inhibition, and predict the

protein-protein interactions (Vamathevan et al., 2019; Baek et al.,

2021; Jumper et al., 2021; Romero-Molina et al., 2022). In this

section, we focus on regression models for protein-protein

interaction prediction (Table 2). In protein design, it is

common to restrict the binding strength to a particular range;

thus, the prediction models should be able to assess the binding

affinity accurately.

3.1 Structure-based methods

Structure-based methods use the 3D structure of a protein as

model input to predict the binding affinity. As the data contain

extensive information regarding the protein-protein interface,

the feature vector is well-designed to capture the essential

information for each model. Vangone and Bonvin used the

network of inter-residue contacts and the non-interacting

surface as the descriptors (Vangone and Bonvin, 2015). The

performance of a linear regression model was tested on a

benchmark dataset of 79 protein-protein complexes; the

Pearson correlation coefficient (Rp) of the experimental ΔΔG
(binding affinity change caused by mutations) and predicted

ΔΔG was 0.73. Rodrigues et al. proposed a method to predict

binding affinity based on graph-based signatures, which

described the distance patterns between atoms on the binding

interface (Rodrigues et al., 2021). Complementary features,

including experimental conditions and non-covalent contacts,

were also a part of these models. An extra trees model, trained on

the graph-based signatures and complementary features, was

shown to have best performance on the SKEMPI 2.0 dataset with

Rp = 0.75.

Liu et al. proposed a machine learning model combining a

graph neural network (GNN) with a gradient-boosting tree

(GBT) (Liu et al., 2021). The GNN used the message passing

architecture (Gilmer et al., 2017) to generate the feature vector of

the complex, and a self-supervised training scheme was used to

train the GNN (Doersch and Zisserman, 2017). Perturbations

were applied to the coordinates of the protein side chain, the
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GNN was used to encode the perturbated 3D structure to a

hidden vector, and the model was trained to reduce the

discrepancy between the reconstructed coordinate and the

original coordinate. This self-supervised training procedure

was considered to help the GNN capture important

information on the interactions between the proteins in the

complex. The performance of GBT using the descriptor

generated by the GNN was Rp = 0.58 and 0.52 on SKEMPI

and SKEMPI 2.0 datasets, respectively.

Wang et al. developed a topology-based network to capture

the geometric and topological pattern of the complex efficiently

(Wang et al., 2020). The features were calculated using

persistent homology (Edelsbrunner et al., 2002; Zomorodian

and Carlsson, 2005), which was also applied in material science

and protein-ligand binding affinity prediction and has been

known as a powerful tool in machine learning (Kovacev-Nikolic

et al., 2016; Shirai and Nakamura, 2019). The features generated

by persistent homology were processed using a convolutional

neural network (CNN) to extract high-level feature vectors.

Combining the feature vectors with information of atom types,

the final input vectors were created and GBT was used to

predict the ΔΔG. The model was named TopNetTree and

achieved an Rp of 0.85 and 0.79 on SKEMPI and SKEMPI

2.0 datasets, respectively.

Another topology-based model named PerSpect-EL was

proposed by Wee and Xia who combined persistent homology

with ensemble learning to improve the prediction accuracy (Wee

and Xia, 2022). CNN models were trained to predict binding

affinity from the persistent homology features, and a GBT model

was trained using the physical properties of the protein complex

for binding affinity prediction. Meta learners conducted the final

prediction based on the CNN outputs and GBT output. The

ensemble model achieved an Rp of 0.853 on SKEMPI dataset.

PPI-Affinity is a web tool that predicts the binding affinity

using support vector machine and other classic machine learning

models (Romero-Molina et al., 2022). Accepting thousands of

features generated by ProtDCal as input (Romero-Molina et al.,

2019), the model showed a performance of Rp = 0.77 on SKEMPI

dataset. As the ProtDCal is a general-purpose program for

generating 3D-structure descriptors, it is said that some

machine learning models can extract binding information

from the universal descriptors to predict the binding affinity.

3.2 Sequence-based methods

Sequence-based methods take the amino acid sequence as the

input and directly predict the binding affinity. The featurization

TABLE 2 Machine learning methods for protein-protein binding affinity prediction.

Model Data
type

Features Model details Accuracy

Vangone and Bonvin Vangone
and Bonvin (2015)

3D structure network of inter-residue contacts and
non-interacting surface

linear regression Rp = 0.73 on a benchmark of 79 protein-
protein complexes

mmCSM-PPI Rodrigues et al.
(2021)

3D structure graph-based signatures and
complementary features

extra trees Rp = 0.75 on SKEMPI 2.0

GeoPPI Liu et al. (2021) 3D structure graph neural network gradient-boosting tree Rp = 0.58 on SKEMPI, Rp = 0.52 on
SKEMPI 2.0

TopNetTree Wang et al. (2020) 3D structure persistent homology, CNN gradient-boosting tree Rp = 0.85 on SKEMPI, Rp = 0.79 on
SKEMPI 2.0

PerSpect-EL Wee and Xia (2022) 3D structure persistent homology, physical
properties

ensemble model (CNN
+ GBT)

Rp = 0.853 on SKEMPI

PPI-Affinity Romero-Molina
et al. (2022)

3D structure ProtDCal support vector machine Rp = 0.77 on SKEMPI

PPA-Pred Yugandhar and
Gromiha (2014)

protein
sequence

amino acid properties from AAindex
and other resources

multiple regression Rp = 0.909a on 135 complexes selected from
the structure-based benchmark

ISLAND Abbasi et al. (2020) protein
sequence

kernel representation support vector regression Rp = 0.44 on structure-based benchmark

PIPR Chen et al. (2019) protein
sequence

pre-trained embedding representation residual recurrent
convolutional neural network

Rp = 0.873 on SKEMPI

PIPR + S2F Xue et al. (2022) protein
sequence

pre-trained sequence embedding residual recurrent
convolutional neural network

Rp = 0.264 on a subset of SKEMPI 2.0

TcellMatch Fischer et al. (2020) TCR
sequence

sequence embedding neural network Rp = 0.63 on 10x dataset

aThe average of correlations obtained by nine prediction models for nine subclasses in the dataset.
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methods include substitution matrix representation (SMR),

position-specific scoring matrix (PSSM), and other embedding

methods developed for natural language processing (Zvelebil and

Baum, 2008; Dubitzky et al., 2013; Yang et al., 2018). Yugandhar

and Gromiha proposed PPA-Pred (Yugandhar and Gromiha,

2014), which was a multiple regression model using amino acid

properties from AAindex and other resources as features

(Kawashima and Kanehisa, 2000; Ofran and Rost, 2007). A

dataset with 135 complexes selected from the structure-based

benchmark for protein-protein binding affinity were divided to

nine subclasses. One model was built for each subclass and the

correlations ranged from 0.739 to 0.992. ISLAND (In SiLico

protein AffiNity preDictor) combined a kernel representation of

protein sequences with the support vector regression to predict

the binding affinity (Abbasi et al., 2020). The Rp of the measured

and predicted ΔGwas 0.44 on the structure-based benchmark for

protein-protein binding affinity. Chen et al. developed an end-to-

end model to predict the binding affinity from the amino acid

sequence based on a recurrent convolutional neural network

(RCNN) (Chen et al., 2019). Compared with other models using

autocovariance or composition-transition-distribution

descriptors as features, a Siamese residual RCNN with a

pretrained embedding representation of protein sequences

provided the best performance (Rp = 0.873). Another model

based on pre-trained embedding and residual RCNN was

proposed by Xue et al. (Xue et al., 2022). This method was

different from other sequence-based methods, as the structure

information and functions of proteins were used in the pre-

training stage to generate sequence embeddings containing

structural and functional information of the proteins. The

performance of the model (Rp = 0.264) was reported using a

homology and structure similarity-base data splitting method on

a subset of SKEMPI 2.0. Fischer et al. considered the UMI counts

in 10x single cell immune profiling dataset as the binding

strength of TCR-pMHC complex (Fischer et al., 2020). A

model named TcellMatch was developed to predict the pMHC

count based on the TCR sequence, surface protein counts, and

other covariates (donor, total count of mRNA, and negative-

control pMHC counts). The R2 of the prediction was 0.63 on the

10x dataset.

4 Discussion

In this study, we introduced several datasets and models for

binding affinity prediction. In this section, we will discuss issues

regarding the practical application in protein design. As machine

learning methods offer high-throughput prediction with high

accuracy, they are desirable tools for screening newly designed

proteins for specific binding to a target. Recent reviews on this

topic cover prediction models of protein-protein interaction that

are mainly classification models (Casadio et al., 2022; Hu et al.,

2022; Li S. et al., 2022); however, there has been little discussion

on the quantitative prediction of machine learning models. Since

it is an essential prerequisite in protein design to correctly

estimate whether the properties of the engineered protein are

within the desired range, the current situation and problems of

the quantitative prediction for protein-protein binding affinity

should be clarified for further improvement.

The most pressing problem is that there is no widely accepted

evaluation method for protein-protein binding affinity models.

As shown in Table 2, the accuracies of the models discussed in

Section 3 are tested on different datasets. In addition, different

studies use different data splitting methods in cross-validation to

report prediction accuracies on the same dataset. Among them,

ten-fold cross-validation is used in most of the models. However,

multiple studies have reported that the accuracies can be

overestimated due to the similarity of data in the training

dataset and test dataset (Park and Marcotte, 2012; Hamp and

Rost, 2015; Abbasi and Minhas, 2016; Liu et al., 2021). Liu et al.

(2021) and Xue et al. (2022) evaluated the models using devised

data splitting methods based on homology and structure

similarity. As each model is designed to exhibit high

performance when evaluated on a specific dataset with a

specific data split, it is nearly impossible to compare the

prediction accuracy fairly without a common evaluation

method. A desirable dataset for evaluation is expected to be

large, having different types of protein-protein interactions, such

as antibody-antigen, enzyme-substrate, and other complexes. In

addition, both low- and high-binding affinity complexes are

necessary to evaluate the performances of models for varying

types of data. Moreover, as different models use different

information as inputs, experimental conditions and other

auxiliary information should be recorded with the sequential

and structural information of the complex. However, as building

a large and comprehensive dataset is time-consuming and can be

a future solution for model evaluation, a practical evaluation

method using currently available dataset is testing models on

SKEMPI 2.0 dataset, which combines binding affinity data from

multiple sources and has gained a lot of attention due to its wide

use in recent research. To identify the issues in performance

evaluation due to the similarity of data between the training and

test datasets, both ten-fold cross-validation and similarity-based

data splitting should be applied to evaluate the accuracies of

models, as the deviation between different data splitting methods

shows the robustness of the model when trained using different

training data, which is an important aspect in the model

evaluation.

Since the task of binding affinity prediction for protein design

is different from general protein-protein binding affinity

prediction, in which the prediction targets are in the same

protein family, such as antibody, TCR, or enzyme, the

evaluation method for prediction models used in protein

design should be specified accordingly. As an example, in

antibody or TCR design, mutations are introduced to a

specific protein to enhance the binding affinity to a particular
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range (Makowski et al., 2022). Therefore, an evaluationmethod is

required to evaluate the prediction ability of models in a subspace

that covers the mutants generated in protein design.

While this model evaluation is relatively simple, models can

perform poorly in the high binding affinity region. This is

because the binding affinities of most antibodies or TCRs are

in the low affinity range, and training data for the model may not

be sufficient to learn the pattern of high-affinity proteins. This

type of problem also exists in other fields, such as materials

design (Lookman et al., 2019), where one of the solutions is active

learning combined with simulations and experiments. As an

example, binding affinities of proteins generated by a Bayesian

optimization method can be calculated using highly accurate

simulation models. The data are collected and used to improve

the prediction accuracy of machine learning models.

In addition to simulations and experiments, recently

developed highly accurate structure prediction models are also

important tools in the study of protein-protein interactions (Baek

et al., 2021; Jumper et al., 2021). As the structure of the designed

protein or the complex is rarely known, the structures predicted

by machine learning models are used as input for structure-based

binding affinity prediction models (Bryant et al., 2022).

Combining the binding affinity dataset with the virtual

structure database generated by AlphaFold is expected to

alleviate some of the data shortage in protein-protein binding

affinity prediction (Szklarczyk et al., 2021; Varadi et al., 2022).

Other advances in experimental measurement methods, such as

cryo-electron microscopy, can also promote data accumulation

in this research area (Yip et al., 2020).

In order to improve the prediction accuracy, various

techniques have been used in the models. Rodrigues et al.

included the experimental conditions and other auxiliary

information in the model (Rodrigues et al., 2021). As

temperature and pH have been shown to change binding

affinities (Kastritis and Bonvin, 2010; Dias and Kolaczkowski,

2017), using this additional information offers a simple yet

effective approach to increase the prediction accuracy.

Moreover, protein complex data without binding affinity

information have been used to train the feature extraction

model (Liu et al., 2021). For sequence-based models, the

structure information can be used to pre-train the

embeddings of protein sequences (Xue et al., 2022). The

properties of amino acids and feature vectors generated as

general-purpose descriptors also have shown predictive ability

in various studies (Yugandhar and Gromiha, 2014; Romero-

Molina et al., 2022). To integrate different models using varying

features, ensemble learning is extremely helpful to combine

outputs of models to obtain better performance (Wee and

Xia, 2022).

Although machine learning methods have been extensively

used in various fields of science to address pertinent issues, it has

some limitations as well. One of the common problems is the lack

of data, which is also present in the protein-protein binding

affinity prediction. However, the rapid development of related

research fields raises expectations for the emergence of large

datasets that can enable highly accurate prediction models.

Experimental methods such as cryo-electron microscopy

increase the accumulation of structure data, prediction models

for protein structures are used to generate virtual protein

structures, and simulation methods can predict the binding

affinities based on protein structures. Therefore, a high-

performance model trained on a large dataset is expected to

appear in the near future andmake itself an indispensable tool for

protein design, which can be further applied to various fields

associated with healthcare, material sciences, and energy.
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