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This paper provides an overview of uncertainty visualization in general, along with specific
examples of applications in bioinformatics. Starting from a processing and interaction
pipeline of visualization, components are discussed that are relevant for handling and
visualizing uncertainty introduced with the original data and at later stages in the pipeline,
which shows the importance of making the stages of the pipeline aware of uncertainty and
allowing them to propagate uncertainty. We detail concepts and methods for visual
mappings of uncertainty, distinguishing between explicit and implict representations of
distributions, different ways to show summary statistics, and combined or hybrid
visualizations. The basic concepts are illustrated for several examples of graph
visualization under uncertainty. Finally, this review paper discusses implications for the
visualization of biological data and future research directions.
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1 INTRODUCTION

Data uncertainty can seriously affect its analysis and subsequent decision-making. Therefore,
uncertainty should be considered in the context of visual data analysis and communication. This
is well understood in many disciplines that deal with measured data. For example, error bars are
widely used to indicate the uncertainty that comes with measurements, indicating standard mean of
error or related descriptions of variability or uncertainty. However, uncertainty is not restricted to
measurements but can also originate from numerical error in simulations, uncertainty in devising
models, or many other sources.

In this paper, we discuss approaches to uncertainty visualization that do not restrict themselves to error
bars. We address the problem of uncertainty visualization from a broader perspective, going beyond
traditional statistical graphics and supporting more complex data than individual univariate distributions
of data values, and therefore, linking to advanced visualization techniques. For many reasons, uncertainty
visualization is difficult and considered one of the top research problems in visualization (Johnson, 2004).
We will discuss some of the reasons and show strategies to address the problems.

There are already a number of survey papers on uncertainty visualization (see Section 2). We aim
to complement them by adding some new perspectives: 1) We focus on presenting general concepts
of uncertainty visualization, with an emphasis on strategies for visual mappings. Here, we will use a
categorization that partially differs from existing ones, focusing on structuring the design space.
2) We build a bridge between sampling for visualizing uncertainty and modeling probability
distributions, emphasizing the need for appropriate layout methods. 3) The general concepts are
illustrated with examples in biological data visualization, and implications for visualization in
bioinformatics are discussed.
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This paper is written from the perspective of visualization
research, as for example, presented in conferences like IEEE VIS,
EuroVis, or IEEE PacificVis and journals like IEEE Transactions
on Visualization and Computer Graphics or Computer Graphics
Forum. Therefore, we want to build a connection between
visualization research in general and applications in
bioinformatics. Although this paper has some characteristics of
a survey, it is not meant to be a systematic survey of (biological)
uncertainty visualization techniques. Instead, we often use
examples from our own previous work to illustrate concepts.
The main goal is broad coverage of principles, concepts, and
approaches.

We see the following benefits: This paper provides an overview
of general strategies that can be useful to visualize uncertainty in
biological data. We also discuss practical aspects of integration
into biological data analysis and visual communication, as well as
future directions.

This paper is based on and extends a talk from VIZBI 2021.1

2 RELATED WORK

There are many survey papers on uncertainty visualization that
cover the topic from different perspectives. The seminal paper by
Pang et al. (1997) adopts a general classification of visualization
techniques and applies it to uncertainty visualization. Their
classification is based on: the value of the input data and its
corresponding value uncertainty; the position of the data within
the domain, along with its positional uncertainty; the extent of
location and value; the visualization extent (discrete vs.
continuous); and axes mappings. This kind of classification or
variants thereof are good because they bring order into the large
collection of visualization techniques in general, and uncertainty
visualization techniques in particular. They also facilitate
choosing a visualization based on data characteristics.
However, this taxonomy is less suited to understand how
uncertainty visualization works and how we can use the
design space to come up with new uncertainty visualizations.
Therefore, Pang et al. (1997) also characterize uncertainty
visualization techniques according to the following categories:
adding glyphs, adding geometry, modifying geometry, modifying
attributes, animation, sonification, and psychovisual approaches.

Griethe and Schumann (2006) base their survey on categories
that can be associated with the visualization design space, similar
to Pang et al.’s latter characterization: using free graphical
variables, including additional graphical objects, animation,
interaction, or leveraging other human senses. Later papers by
Potter et al. (2011) and Brodlie et al. (2012) primarily structure
their surveys according to data type, in particular, the
dimensionality of the domain and the attached data values
and uncertainties. Bonneau et al. (2014) organize their survey
according to traditional representations (in 1D, 2D, and for
probability density functions), visual comparison techniques,

modification of attributes, glyphs, and image discontinuity.
Ristovski et al. (2014) present a taxonomy focused on types of
uncertainty and corresponding visualization challenges,
concentrating on medical visualization. Siddiqui et al. (2021)
summarize uncertainty visualization techniques for diffusion
tensor imaging (DTI), considering the whole DTI visualization
pipeline.

The above survey papers not only report on existing
uncertainty visualization techniques, but also provide some
background information: for example, on modeling
uncertainty, how uncertainty data is acquired, and how
uncertainty can be included in visualization processes or the
visualization pipeline.

Jena et al. (2020) use a categorization with respect to
publication type, publication venue, application domain, target
user, and evaluation type. Their survey paper is accompanied by a
web page2 that can be queried and browsed according to the
categorization and that comes with consistent descriptions and
representative images for each visualization technique. Especially
the thumbnail images facilitate quick browsing for potential
solutions to uncertainty visualization problems.

Padilla et al. (2020) start from the design space of uncertainty
visualization, distinguishing graphical annotations of
distributional properties (showing intervals and ratios, or
distributions), visual encodings of uncertainty, and hybrid
approaches. They also summarize some theories for
uncertainty visualization, bringing in a perspective from
psychology.

A recent survey article is by Kamal et al. (2021). They use the
following categories to structure uncertainty visualizations:
geometry, attributes, animation, visual variables, graphical
techniques, and glyphs. They also summarize the conceptual
basis of uncertainty visualization, sources and models of
uncertainty, evaluation approaches, and future research
directions.

As pointed out by Griethe and Schumann (2006), not all
taxonomies are necessarily useful in structuring existing
uncertainty visualizations because they might result in very
uneven distributions of papers to categories. Therefore, our
categorization of visual mappings is inspired by the design-
space-oriented classifications from Pang et al. (1997), Griethe
and Schumann (2006), Bonneau et al. (2014), Padilla et al. (2020),
and Kamal et al. (2021). Our structure of visual mappings in
Section 4 synthesizes a categorization based on variants from the
above previous work, targeting strategies that can be used to
develop new uncertainty visualization techniques.

The above survey papers are primarily based in the
visualization research community. It should be noted that
there is relevant related research in other fields as well. One
prominent example is geography, geospatial science, and
cartography; see the survey by MacEachren et al. (2005).

Related to perceptual and cognitive theories, Zuk and
Carpendale (2006) applied principles by Bertin, Tufte, and
Ware to examples of uncertainty visualizations to illustrate

1D. Weiskopf: Uncertainty Visualization. Keynote presentation at the 11th
International Meeting on Visualising Biological Data (VIZBI 2021) 2https://namastevis.github.io/uncertaintyVizBrowser/
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and better understand these and assess them.While theirs is not a
survey paper, it provides a theoretical underpinning that is useful
in understanding uncertainty visualization. The survey paper by
Hullman et al. (2019) focuses on one aspect of uncertainty
visualization: its evaluation. Examples of evaluation papers
include the ones by Deitrick and Edsall (2006) or Sanyal et al.
(2009), but many more are reviewed by Hullman et al.

Skeels et al. (2010) pick out another important aspect: what are
relevant models and types of uncertainty for visualization?
Furthermore, visualization in general has to consider the analysis
tasks that should be supported. Murray et al. (2017) provide a task
taxonomy for the analysis of biological pathway data that includes
identifying uncertainty. Also in the context of bioinformatics,
Hamada (2014) summarizes several approaches to handle
uncertainty, in particular, recommending visual representations.

It should also be noted that there are other concepts that are
related to uncertainty and have some overlap. For example,
ensemble visualization aims to show members from an
ensemble, which can be viewed as a special case of describing
variability. Therefore, uncertainty and ensemble visualization
techniques show substantial overlap. Wang et al. (2019)
provide a survey of ensemble visualizations. Other related
concepts comprise human trust building or data provenance,
as integrated into the framework by Sacha et al. (2016).

Some of the example visualizations that we demonstrate in this
paper are based on (joint) research that went into the doctoral
theses by Görtler (2021) and Schulz (2021). These theses also
provide overviews on quantification for uncertainty visualization
and approaches to making visualizations aware of uncertainty. In
particular, they discuss sampling and layout methods for
uncertainty visualization.

In summary, we do not want to replace the aforementioned
surveys that come with a broad coverage of previous literature.
Instead, our goal is to provide some additional perspective on the
problem of uncertainty visualization. In contrast to most of the
previous survey papers, we use many examples from biological
data visualization to illustrate uncertainty visualization.
Furthermore, we present a slightly different categorization of

visual mappings and point out specific issues that were not the
focus of previous papers: the role and challenges of sampling for
the implicit visualization of distributions, and the relevance of
layouts for advanced uncertainty visualization.

3 OVERVIEW OF UNCERTAINTY
VISUALIZATION

This section provides an overview of where and how uncertainty
plays a role in visualization. We use the visualization pipeline to
organize and structure the effects of uncertainty, see Figure 1.

Many of the previous survey papers employ the visualization
pipeline as well (Pang et al., 1997; Griethe and Schumann, 2006;
Brodlie et al., 2012; Ristovski et al., 2014; Kamal et al., 2021;
Siddiqui et al., 2021). Our description is based on a pipeline for
scientific visualization by Haber and McNabb (1990) and the
related one for information visualization by Chi and Riedl (1998).
However, we extend it slightly by including the human user (with
their perceptual and cognitive aspects) and the interaction of the
user with different stages of the pipeline. All of these need to
consider uncertainty as well.

Following Brodlie et al. (2012), we can distinguish between
visualization of uncertainty and uncertainty of visualization. The
former is the typical focus when we address uncertainty
visualization: showing the uncertainty that comes with the data.
The latter term describes the additional uncertainty introduced by
visualization—on top of the uncertainty associated with the data.
Often, these two terms are treated in a combined fashion because
they form the overall uncertainty in the final visualization.

There is an important point that comes with the visualization
pipeline: The different stages have to be made uncertainty-aware
and they have to be able to propagate uncertainty through the
pipeline.

3.1 Uncertainty Modeling and Acquisition
One difficulty is that the term uncertainty is not well defined in
the field of uncertainty visualization. In particular, there is not a

FIGURE 1 | Visualization pipeline including uncertainty.
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unique model of uncertainty. In some vagueness, it may refer to
error, variability, or other aspects that may degrade the quality of
data and visualization. Therefore, a typical challenge in using
uncertainty visualization is to first understand the type of
uncertainty that is to be shown. This is one of the critical
elements in linking visualization to the specific application
at hand.

There are a number of different taxonomies to describe
various types of uncertainty. For example, we can distinguish
between accuracy/error, precision, completeness, consistency,
lineage, currency, credibility, subjectivity, and interrelatedness
(MacEachren et al., 2005, 2012). Skeels et al. (2010) provide a
classification in the form of measurement precision,
completeness (covering missing values, sampling, aggregation),
inferences (covering predictions, modeling, and descriptions of
past events), disagreement, and credibility.

These models of uncertainty are determined by the sources of
uncertainty and how it is used in the visualization and analysis.
For example, there might be measurement errors, numerical
errors from simulations, missing or corrupted data, variability
from statistical observations, or from aggregating larger chunks of
data into a compressed form.

Despite this vagueness, many uncertainty visualization
techniques are based on some kind of probabilistic modeling
of data uncertainty, i.e., in the form of probabilities or probability
density functions. Furthermore, such uncertainty is often
acquired by aggregation or computing summary statistics such
as mean, median, standard error, percentiles, etc. Therefore,
unless stated otherwise, we assume such probabilistic modeling
and that uncertainty is described by summary statistics, by
parameters of probability models (like parameters of
probability density functions), or by providing original data
samples (from which statistical descriptions could be computed).

3.2 Filtering and Transformations
Usually, the input data is not directly mapped to a visual
representation. In particular, for large or complex data, it
might be necessary to reduce the amount of data shown.
Therefore, filtering and transformations of the input data are
required to obtain data that is more informative: it might be
reduced in amount or complexity, or important features might be
extracted for highlighting. Therefore, this stage of the
visualization pipeline is critical for avoiding or reducing
information overload.

Filtering can be as simple as selecting data items based on
allowed ranges of data, which might be specified by the user or
driven by the distribution of the input data. Clustering is a
common transformation approach in visualization because it
facilitates structuring and grouping data, supporting
summarized and compact representations; see, for example the
survey paper by Xu andWunsch (2005). Another typical example
is the use of dimensionality reduction methods (or
multidimensional projection) that allow one to transform
high-dimensional input data to 2D or 3D data, leading to an
easy mapping to visualization space. For background reading, see,
for example, the book on nonlinear dimensionality reduction by
Lee and Verleysen (2007). Modeling in high-dimensional space is

very generic and can be used for manifold applications. One
bioinformatics example is the representation of phylogenetic
trees that lends itself to multidimensional projection and
uncertainty visualization (Willis and Bell, 2018).

Complex types of transformations can introduce additional
uncertainty, i.e., they can lead to increasing visualization
uncertainty. For example, multidimensional projections cannot
fully guarantee the preservation of the original characteristics of
the input data. The introduced distortions from projections can
be identified and visualized, as summarized in a survey paper by
Nonato and Aupetit (2019). Or, as in fuzzy clustering (Baraldi
and Blonda, 1999), transformations might provide gradual or
fuzzy assignments to clusters on purpose, again resulting in
uncertainty that only originates at this stage of the
visualization pipeline.

However, transformations do not only contribute to
visualization uncertainty, they also have to be able to propagate
incoming uncertainty downstream the pipeline. In this case, the
transformation stage does not add errors during the process, but it
has to pass them through appropriately. Since transformations can
be highly nonlinear, this propagation might be hard to compute
and it might distort the uncertainty substantially.

For example, uncertainty-aware principal component analysis
(PCA) (Görtler et al., 2020) incorporates the uncertainty in high-
dimensional data points to adapt the computation of the
projection operator. Figure 2 illustrates the effect of
uncertainty on PCA. Uncertainty not only affects the display
of the data points (which get wider with increasing uncertainty),
but it even impacts the projection directions as indicated by the
rotation of the PCA axes.

This example demonstrates the importance of making
transformations aware of uncertainty. While there are
uncertainty-aware variants already for some of the typical
filtering and transformation techniques, there is still much
room for future work in this direction. This is a research
question not just for visualization but any field where
numerical analysis of uncertain data is performed. Therefore,
related methods may be developed in a range of different research
fields.

3.3 Mapping and Rendering
The mapping stage of the visualization pipeline takes the
transformed data and produces a renderable representation,
for example, in the form of geometry together with attributes
like color or opacity. Such geometry could be the set of points
to be shown in a scatterplot, or a triangle mesh for an
isosurface. This representation is then rendered to generate
the final visualization image. The actual rendering is mostly
well understood, with manifold techniques available from
computer graphics.

In contrast, the mapping stage is in the center of visualization
because it is the critical link between data and image. Developing
appropriate visual mappings can already be hard for visualization
without uncertainty, and it becomes even more challenging for
uncertainty visualization. Visual mapping is a focal point of this
paper, with a detailed discussion of mapping strategies in a
dedicated later section (see Section 4).

Frontiers in Bioinformatics | www.frontiersin.org February 2022 | Volume 2 | Article 7938194

Weiskopf Uncertainty Visualization

https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


3.4 Perception and Cognition
Visualization only works in combination with a human that uses
imagery to understand the data or communicate with others.
Therefore, visual perception and cognition play a critical role in
visualization in general (Ware, 2021). In this context, user-
oriented evaluation of visualization techniques is relevant and
challenging at the same time (Lam et al., 2012); there is even a
specialized series of workshops addressing evaluation methods
for visualization.3

Including uncertainty makes understanding and assessing
perception and cognition even harder. In particular, we have to
be careful in designing uncertainty visualization so that it is
correctly understood by the recipient. For example, even
researchers have problems understanding and correctly
judging the information encoded in the, at first sight quite
simple, visualizations in the form of confidence intervals and
error bars (Belia et al., 2005). These findings led to
recommending alternatives to error bars (Correll and
Gleicher, 2014).

Error bars are quite simple and very common; therefore, it is
conceivable that more complex uncertainty visualizations could
be affected even more from difficulties with perceiving and
understanding them (Boukhelifa and Duke, 2009). Assessing
cognitive aspects is particularly hard when complex decision-
making has to be done under uncertainty (Padilla et al., 2021). It
can also make a difference whether experts or non-experts use
and read uncertainty visualizations. For example, Tak et al. (2014)
study how non-experts perceive and understand typical examples
of uncertainty visualizations. Some theories and further examples
of perceptual and cognitive considerations are summarized by
Padilla et al. (2020). Similarly, special attention needs to be paid to
perform a proper evaluation of uncertainty visualization; see the
survey paper by Hullman et al. (2019).

3.5 Interaction
While uncertainty visualization sometimes targets passive
consumption, for example, in the form of an illustration for
visual communication, it is often employed in an interactive
environment. Interactive visualization or visual analytics are
typically used to facilitate visual data analysis.

Therefore, the interaction needs to be made aware of
uncertainty as well. This includes how data serves as the basis
for the interaction technique. However, uncertainty can also be
present in the interaction itself. The user may not be sure about
what they want to exactly specify with their input. For example,
the input may serve as a threshold for interactive filtering. Here,
uncertain input may be specified by sliders that are connected to
uncertainty in the form of probability density functions (Greis
et al., 2017). Another example is fuzzy selection facilitated by
several selection modes, including triangle and trapezoidal shapes
(Höferlin et al., 2011); see Figure 3.

Overall, the topic of uncertainty-aware interaction has not
received much attention in visualization research. Therefore, we
see the need for more work in this direction. One challenge is
that this is directly linked to the difficult problem of
understanding cognition and mental models of
uncertainty—related to the previous subsection. Another
challenge is that uncertainty-aware interaction has to be
adapted to the different steps of the visualization pipeline.
For example, specifying uncertain value ranges (as in the two
examples above) is appropriate for defining value-oriented
filtering, but different inputs are needed for other filters,
transformations, or visual mappings.

3.6 Integration
So far, we have discussed the stages of the visualization pipeline
one after another. However, uncertainty needs to be propagated
through the whole process (Wu et al., 2012). Unfortunately, it can
be hard to accurately compute uncertainty propagation because
the various stages of the visualization pipeline can be quite
complex and highly nonlinear. In particular, it is challenging
to include human perception, cognition, and interaction in this

FIGURE 2 | Uncertainty-aware PCA applied to a simple test data set with four points with two data dimensions. Increasing the amount of uncertainty attached to
the data points, we obtain wider and wider distributions (here, normal distributions) that lead to larger and larger coverage in the visualization. However, the changes in
the distributions of uncertain input even affect the computation of the PCA axes: they are rotated to reflect the changing distribution of the input. Image: © 2020 IEEE.
Reprinted, with permission, from Görtler et al. (2020).

3BELIV: Evaluation and Beyond – Methodological Approaches for Visualization,
https://beliv-workshop.github.io
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propagation. Another problem is that typical uncertainty
propagation methods tend to increase uncertainty
substantially, especially, when transformations are highly
sensitive or when there is a sequence of transformations. The
uncertainty estimates are often too conservative and, therefore,
unrealistically large if uncertainty is passed on without a full
model of the data and visualization process. By including

additional information, more accurate and tighter descriptions
of uncertainty might be possible.

Overall, the whole visualization process should be made aware
of uncertainty (Correa et al., 2009). Since this might not be fully
possible, we recommended assessing the visualization workflow
and identifying the most substantial contributors to uncertainty,
along with the intended visualization goals and tasks. Based on

FIGURE 3 | Interactive selection by fuzzy filtering. The data context is given by a histogram (blue), along with some data details (at the column highlighted in light
red). The user chose a trapezoid function for fuzzy selection, setting the four parameters x1 to x4 accordingly. The yellow area indicates the selection. Image: “Speed
filter” by Höferlin et al. (2011) licensed under CC BY 3.0.

FIGURE 4 |Overview of visual mapping strategies to show uncertainty. The individual visualization techniques only serve as illustrative examples and are not meant
to provide a complete list of methods.
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this, efforts in incorporating uncertainty can be directed to the
most relevant components.

4 VISUAL MAPPING

In this section, we discuss visual mappings of uncertainty in more
depth. Visual mapping strategies are summarized in Figure 4.
This figure is inspired by the visual summary used by Padilla et al.
(2020). However, our categorization partially differs from theirs
and also from the other taxonomies reviewed in Section 2. Please
note that the icons in Figure 4 illustrate typical representatives for
the respective strategy, but they are not meant to be
comprehensive, i.e., it is to be understood that there are more
visualization approaches for the respective strategy.

If not stated otherwise, we assume a probabilistic model of
uncertainty—typically in the form of probability density
functions (PDFs) describing distributions of data values. These
may be reduced to concise characteristic descriptions, for
example, by summary statistics. Or the raw samples might be
available before computing summary statistics or
constructing PDFs.

4.1 Explicit Visualization of Distributions
Let us start with the first kind of visual mappings: these aim to
show distributions explicitly and fully. For example, a PDF can be
seen just as a function and, therefore, a function plot displays the
uncertainty distribution comprehensively. If the uncertainty data
is provided as “raw” sampled data, traditional histograms in the
form of bar charts can be employed. An alternative is the dot plot
(Wilkinson, 1999), or the nonlinear dot plot (Rodrigues and
Weiskopf, 2018) for higher dynamic range. The sample-based
visualization can even be used if only a PDF is available: just by
drawing samples from the given PDF.

The advantage of the explicit visualization of distributions is
that they provide full disclosure of uncertainty information. A
disadvantage is the extra visualization space needed: frequency or
probability (density) are plotted along an axis (usually, the
vertical axis) that is perpendicular to the axis that carries the
data values (usually, the horizontal axis), i.e., we require 2D space
instead of 1D space just for the data axis.

A related characteristic is that the 2D visualization axes carry
different meanings: data values vs frequency or probability (density).
This difference can have benefits if we want to clearly separate the
two meanings. At the same time, it can lead to problems if the
visualization space is taken as one 2D space.

Overall, the explicit visualization of distributions is typically
employed for rather small data sets, or for data drill down to show
detailed views on large data sets.

4.2 Implicit Visualization of Distributions Via
Samples
Some problems of the above explicit visualization can be
addressed by showing distributions implicitly via samples
drawn from the distribution. The basic process is as follows:
In the first step, the distribution is sampled to produce potential

realizations of the data, compatible with the uncertainty
representation. Each sample is treated as if it was not affected
by uncertainty. In the second step, each sample is visualized. The
last step is responsible for showing the visualizations of all
samples in some combined fashion.

Variants of this uncertainty visualization approach mostly
differ in the way they implement the last step. One option is
to overlay or composite the individual visualizations of the
samples, for example, by additive blending or alpha blending
(Schulz et al., 2017). Another option is the use of animation,
showing individual visualizations one after another, e.g., in the
form of the animation of potential realizations (here, surfaces) by
Ehlschlaeger et al. (1997) or in the form of Hypothetical Outcome
Plots (Kale et al., 2019). Yet another option places individual
visualizations next to each other in one large image, in the form of
small multiples (Tufte, 1990).

All of these implicit visualizations have the advantage that they
just use the regular visualization space, i.e., there is no need for
extra space with other semantics, as for the explicit visualization
of distributions. Therefore, the uncertainty visualization should
be understandable by the user if they are familiar with the
original, non-uncertainty-affected visualization. The variants
for the last step have specific advantages and disadvantages.
The overlay approach has the advantage that it essentially
needs just the visualization space that a single visualization
would need. Another advantage is that it results in a static
image, i.e., it can be flexibly used in visual communication,
and it gives the user enough time to carefully inspect the
visualization. The main disadvantages are overplotting, clutter,
and ambiguities that can arise from compositing many
visualization samples.

The animation approach avoids this overplotting and provides
some advantages in interpreting uncertainty (Kale et al., 2019).
However, this approach comes with typical problems of animated
visualization that can be difficult for analysis tasks (Robertson
et al., 2008). Animation also has some issues with scalability with
the number of samples shown: it is hard to get a quick overview,
which in contrast is possible with the single and static image in
the overlay approach.

Small multiples are similar to the animated display because
they show individual visualizations independently. The main
difference is that animation puts the individual images one
after another along time, whereas small multiples place them
next to each other in an enlarged visualization space. Similarly to
animation, this approach avoids overplotting. However, it needs
much visual space and, again, has issues with the scalability
regarding the number of samples. Also, it might be hard to
perceive and interpret differences between the individual
visualizations.

While the visual representation is quite different in the three
approaches, they all share the need for appropriate registration or
alignment between the individual images—whether these are the
images that go into the blending, animation, or as part of the small
multiples. The potential problem is that individual images may
look very different even if the sampling from the distribution leads
to similar data. In other words, some visualization techniques can
be very sensitive to slight changes in the input data. For example,

Frontiers in Bioinformatics | www.frontiersin.org February 2022 | Volume 2 | Article 7938197

Weiskopf Uncertainty Visualization

https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


many graph drawing algorithms can lead to quite different outputs
even if the input is similar (e.g., in the form of rotated images).
Section 5 discusses the registration problem and visualization
approaches for the example of graph drawing in more detail.

4.3 Summary Statistics as Range Plots
The above explicit and implicit visualizations aim to show the full
characteristics of the underlying distributions. However, it is often
sufficient to convey just some aggregated or concise representation of
the distributions. For example, summary statistics may rely on some
indicator of central tendency (such asmean ormedian) and variability
(like standard deviation, standard error, or percentiles). Statistical
graphics then maps these summarizations to visual representations
such as error bars or box plots.

From the perspective of visualization, these mappings lead to a
representation of ranges. For example, a typical box plot shows
the range from the 25 percentile to the median and then to the 75
percentile, where each of the boundaries is indicated by a line in
the box plot. Another observation is that these range plots need
additional visualization space to make room to show the ranges.
Therefore, they work fine for traditional statistical plots where
one has just a few data items that are enriched by statistical
graphics. However, it becomes harder to fit the range plots into a
visualization that already needs a lot of space on the image to
show data without uncertainty.

One strategy maps the original data to a lower-dimensional
visual representation that supports adding ranges. For example,
3D volume data can first be reduced to a 1D curve by letting a
space-filling curve cut through the volume; afterward, we can
apply bands or range representations around the curve (Demir
et al., 2014). Figure 5 shows an example that uses a data-adaptive
space-filling curve to perform the reduction to 1D (Zhou et al.,
2021). Here, the data comes from a heart ischemia simulation; see
Rosen et al. (2016) for background reading.

Another strategy relies on a generalization of the idea of a box
plot, utilizing the concept of statistical depth, which can be seen as
the generalization of medians or percentiles in complex data. For
example, contour box plots indicate parts or ranges in a spatial
domain that correspond to certain values or ranges of depth
(Whitaker et al., 2013). Another example shows variability in
functions by function box plots (Mirzargar et al., 2014).

Yet another strategy places small glyphs on the domain to
indicate data ranges at respective locations. For example, radial

glyphs can be used to represent the range of vector quantities at
respective locations in a vector field (Hlawatsch et al., 2011).
Furthermore, the concept of displaying ranges can be extended to
rather complex geometric representations, for example, in order
to visualize confidence intervals for fiber tracking for showing 3D
brain structures (Brecheisen et al., 2013).

In general, range plots provide a representation of
summarizing characteristics of uncertainty and are rooted in
well-known visual representations from statistical graphics.
Therefore, they can be used without much learning required
by recipients of the visualization. Another advantage is that
ranges show quantitative information about summary
statistics. However, there is a caveat: as mentioned before,
even traditional error bars might be misinterpreted (Belia
et al., 2005). Furthermore, the principle of showing distinct
ranges can lead to the wrong interpretations because they
might lead to introducing false categorical boundaries, e.g.,
inside vs outside regions (Padilla et al., 2020). Finally, range-
based visualizations tend to need substantial extra space on the
visualization image that might not be available.

4.4 Summary Statistics in Visual Variables
and Glyphs
We can still use characteristic quantities from summary statistics,
but now map them to visual channels, such as color, brightness,
texture characteristics, etc. There are many different design
choices for this mapping, with different characteristics and
effectiveness for uncertainty visualization. Most of these
mappings focus on including the variability of the input data
into the visual representation.

For example, MacEachren et al. (2012) link visual channels for
uncertainty representation to the semiology of graphics by Bertin
(1983). Visual variables (also called retinal variables by Bertin)
describe a set of visual primitives from which we can construct a
visualization. MacEachren et al. (2012) investigate the following
visual variables according to their usefulness for uncertainty
visualization in terms of intuitiveness and task performance
(focusing on map reading): location, size, color hue, color
value, color saturation, orientation, grain, arrangement, shape,
fuzziness, and transparency. These exhibit different adeptness for
uncertainty visualization, for example, fuzziness shows a high
level of intuitiveness in their study.

FIGURE 5 | Functional box plots applied to a data-adaptive space-filling curve. The volume rendering on the left shows the median of a heart ischemia simulation.
The center part shows the variability in the input along the horizontal axis that corresponds to a space-filling curve cutting through the volume. Here, the user can select
(brush) ranges of interest such as an area where the potential value is larger than 3 eV. The corresponding ischemic region is highlighted (yellow) in the volume rendering
on the right. Image: © 2021 IEEE. Reprinted, with permission, from Zhou et al. (2021).
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These visual variables are only one approach to structure the
design space. Boukhelifa et al. (2012) provide a grouping into
three main categories: color-oriented approaches (hue,
saturation, or brightness), focus-based methods (mapping
uncertainty to contour crispness, transparency, or resolution),
and geometric mapping (e.g., sketchiness in rendering, distorting
line marks). Animation (for example, oscillating displays) can
also be used to represent uncertainty (Pang et al., 1997).

In particular, if such mappings are used to modify larger
graphical elements such as icons or glyphs, we have a quite large
design space that allows us to represent uncertainty. For
example, Vehlow et al. (2013) modify attributes of (larger)
nodes to show uncertainty: by color gradients or alternatively
by star-shaped icons. In another application, glyphs are
designed to represent the distribution of fibers (Schultz et al.,
2013).

Figure 6 shows an example of a 3D visualization using
waviness to represent uncertainty, here for the uncertainty
that comes from disagreement in secondary structure
assignments (Schulz et al., 2018). Alternative visualization
methods for the uncertainty in secondary structure
assignments are discussed by Hamada (2014). Another
example of uncertainty visualization for proteins is by Maack
et al. (2021), who address the visual representation of
uncertainty in the conformation of proteins.

Uncertainty encoding in visual variables has the advantage
that it can, if done appropriately, provide an intuitive
visualization of uncertainty that integrates well in existing
non-uncertainty visualization techniques because the original
visualization technique might not be changed substantially.
However, these visualization techniques tend to focus on
rather qualitative representations; it is usually hard to read off

accurate uncertainty information. Another issue is that there can
be conflicts in choosing the visual variables: one has to balance
between the need for a good visual representation of uncertainty
and the other kinds of information that should be shown in the
visualization. Also, one has to be careful that there might be
(negative) interactions between visual variables that can make it
hard to include uncertainty information in an existing
visualization.

In summary, this mapping approach needs careful design but
can lead to good qualitative overview visualizations.

4.5 Uncertainty as Additional Data
Dimension
The above approaches to including summary statistics
essentially use different visual mappings to integrate the
additional information that comes with summary statistics.
To this end, they employ different variants of visual
mappings.

However, we can also cast the problem of uncertainty
visualization into the problem of multivariate visualization.
For example, let us consider the case of data with n data
attributes or dimensions. And let us assume that each data
dimension comes with uncertainty described by one measure
of variability (e.g., standard error of means). Then, we just
increase the dimensionality of the data from n to 2n to
represent, for example, both the means and the standard error
of means. From this perspective, we have transformed the
problem of n-D visualization (for precise data) to the problem
of 2n-D visualization (for uncertain data). Therefore, we can
apply standard visualization techniques that can deal with
multiple data dimensions (Wong and Bergeron, 1994), such as

FIGURE 6 | Visualization of uncertainty in secondary structure assignment for the example of the photoactive yellow protein of E. coli (PDB ID: 2ZOI). The ribbon
diagram (left image) represents this uncertainty in the form of waviness in the geometric shape. The insets show details of parts of the sequence diagrams (images to the
right), stacking the differing assignments along the vertical axis. The agreement structure merges the assignment results where possible. Image: © 2018 IEEE. Reprinted,
with permission, from Schulz et al. (2018).
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parallel coordinates (Inselberg, 1985; Heinrich and Weiskopf,
2013) or scatterplot matrices.

The advantage of this approach is that it can readily use
existing visualization techniques and, thus, there is no or only
little extra effort required. Another advantage is that many of
these visualization techniques support accurate visualization. For
example, parallel coordinates or scatterplots let us read off
quantitative information accurately from the diagrams, which
is in contrast to the more qualitative visualizations in the previous
subsection. The important disadvantage is that we lose the nature
of uncertainty in the visualization: there is no intuitive connection
to variability. Therefore, this approach is less useful for conveying
uncertainty in visual communication, and it can be prone to
misinterpretations even by expert analysts.

4.6 Hybrid Visualizations and Systems
The above visualization techniques can be used in combination or
together with other non-uncertainty visualizations, leading to
hybrid visualizations. One strategy is to build a composition of a
larger visualization that combines different visual
representations. Often, the uncertainty visualization is placed
next to the usual, non-uncertainty visualization. For example,
Holzhüter et al. (2012) use an explicit representation of
uncertainty with additional bar charts placed next to the
actual visualization to show uncertainty from the visualization
of biological expression data. Typical strategies use juxtaposition
of visualizations or overlays to perform the composition. The
summary plot (Potter et al., 2010), for example, integrates a box
plot, histogram, a display of statistical moments, and a plot of the
distribution.

Another common strategy employs multiple coordinated
views (Baldonado et al., 2000) to link separate visualization
views, often in connection with brushing and linking (Becker
and Cleveland, 1987). Multiple coordinated views are popular in
larger visualization or visual analytics systems because they allow
us to represent data from different angles.

Hybrid visualizations, in particular, multiple coordinated
views, are quite common and useful for uncertainty
visualization because they allow us to reduce the complexity of
each individual visualization, which is especially important for
the increased difficulty that comes with including uncertainty in
the visualization. However, we have to be careful that we do not
overload the user with too complex combinations and hard-to-
handle interactions. Therefore, attention needs to be paid to an
appropriate design of the visualization and interaction.

5 EXAMPLE: GRAPH VISUALIZATION

We want to illustrate the aforementioned concepts for the
example of graph visualization, with a focus on node-link
diagrams. There are several reasons for choosing this example:
1) It is a rather complex kind of visualization already for the
traditional non-uncertainty case. Therefore, it serves to show
what challenges and opportunities arise with advanced
uncertainty visualization. 2) It is an example of visualization of
abstract data (often referred to as information visualization),

which is less well explored than uncertainty visualization for
scalar or tensor fields (as in scientific visualization). Therefore,
this example illustrates the current developments in uncertainty
visualization. 3) Graphs are a versatile form of data representation
with manifold uses in bioinformatics and beyond. Therefore,
there is direct relevance for applications in biological data
visualization.

Graph visualization is a large subfield of visualization, with
many techniques available; see, for example, Battista et al. (1998),
von Landesberger et al. (2011), and Beck et al. (2017) for
background information.

Our first example (Vehlow et al., 2012) aims at the
visualization of biochemical reaction networks. Such networks
play a role in understanding certain cell functions or diseases. Our
first step is to interface with the underlying modeling of the
system and data acquisition (the early steps of the visualization
pipeline; see Section 3). In this example, the modeling is circled
around ordinary differential equations (ODEs) that are
connected in the form of a directed graph. Vertices of the
graph represent species and edges correspond to reactions.
Besides regular edges, there might be hyper-edges representing
regulatory interactions. Uncertainty is introduced by noise in
measurements and, subsequently, by the uncertainty that comes
with Bayesian parameter estimation.

From the visualization perspective, we are dealing with data in
the form of a graph with uncertain and time-dependent attributes
on the graph’s vertices and edges, where time dependency comes
from the temporal evolution of the reactions. Figure 7 shows a
snapshot from a visualization system that facilitates the
uncertainty-aware visual analysis of such kind of data. It takes
the general approach of multiple coordinated views with
brushing-and-linking (Section 4.6) to present the data from
different angles and with different levels of detail. The node-
link graph visualization (Figure 7 (1)) shows the topological
structure of the graph and includes the visualization of
uncertainty for edge and vertex attributes via color-coding of
respective standard deviations; therefore, the uncertainty
visualization uses a visual variable (here, color) to represent
summary statistics (here, standard deviation); see Section 4.4.
The same color-coding is used to show uncertainty in a detail
view (Figure 7 (4)).

The visualization system also includes bands around temporal
function plots (Figure 7 (6), (7)), implementing a range
visualization of summary statistics; see Section 4.3.
Furthermore, there is an explicit display of value distributions
in the form of histograms (Figure 7 (3)), again focusing on
selected details; see Section 4.1. Value distributions are also
shown in an overlay of sample points in a scatterplot
(Figure 7 (2)); see Section 4.2. Finally, there is additional data
processing and extraction of information that is aligned with
uncertainty-affected input: fitting of axes due to principal
component analysis (Figure 7 (2)) and correlation according
to Pearson coefficients (Figure 7 (5)).

This example demonstrates that multiple different
perspectives are often required to obtain a comprehensive view
and analysis of uncertain data. The different views are also needed
to support a variety of analysis tasks. In this example, the system
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was developed and evaluated in collaboration with domain
experts.

The next example shows uncertainty visualization for the case
where uncertainty is introduced not at the data acquisition stage,
but only later during the visualization pipeline in the
transformation stage (Vehlow et al., 2013). Here, graph
clustering (i.e., community detection) is applied to facilitate data
analysis of a protein–protein interaction network on different levels
of granularity: graph nodes are combined in groups that can be
then shown by meta-nodes representing groups of nodes.
Uncertainty is introduced by applying fuzzy clustering, which
can lead to the gradual membership of a node in several groups.

In this example, the amount of uncertainty associated with
grouping in a meta-node is represented by the amplitude of spikes
in star-shaped icons (see the middle and right image in Figure 8),
i.e., summary statistics is represented in a visual variable of the
icon. In addition, original nodes may belong to several fuzzy
clusters; here, the certainty of membership is shown again by a
visual variable, now in the form of a color gradient within a node
(several examples in the left image in Figure 8). Besides the visual
mapping to visual variables, the layout of the networkhas to incorporate
the information from fuzzy clustering, i.e., the mapping stage of the
visualization pipeline has to be aware of the uncertainty model.

The previous two examples have focused the graph visualization
aspect on showing summary statistics via visual variables. Our third
example shifts the focus: how does uncertainty in edge attributes
affect the geometry of the node-link diagram? The uncertainty
model assumes distributions of weights on edges. Differing edge
weights should influence the length of the edge. Therefore, the
layout has to incorporate the variability of the weights.

A probabilistic graph layout (Schulz et al., 2017) achieves
uncertainty visualization by showing distributions implicitly
via overlay. Figure 9 illustrates the processing steps. First, we
need a model of the probabilistic graph. Here, one has to
consider whether there are dependencies between the
probability density functions for the weights on the different
edges. With this uncertainty model, we can then draw samples:
these samples are complete graphs with edge weights, albeit
each weight is now a fixed value that comes from drawing the
sample. The next step produces a graph layout independently
for each of the graph samples, here via a force-directed graph
layout.

As already discussed in Section 4.2, registration or alignment
is needed if the individual visualizations do not fit together. This
is the case with many graph layout results. Therefore, we need an
alignment step, here implemented by tying the individual layouts

FIGURE 7 | Coordinated multiple views for uncertainty visualization, analyzing an insulin signaling model. Image: © 2012 IEEE. Reprinted, with permission, from
Vehlow et al. (2012).
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to a reference layout. In other words, an appropriate layout is a
key component in this kind of uncertainty visualization.

The final step renders the overlay of the individual graph
visualizations. The basic idea is to perform blending of the
individual images. However, this approach would lead to
problems caused by visual clutter. Therefore, a combination of
splatting nodes, curve bundling for the edges, and adapted node
coloring and clustering is used.

Figure 10 shows an example of probabilistic graph
visualization for protein–protein interactions. The edge
weights are derived from scores computed from data from
the STRING database.4 The comparison between the
traditional visualization without uncertainty (left image in
Figure 10) and the one that incorporates uncertainty (right

image in Figure 10) demonstrates varying levels of (un)-
certainty associated with the different interactions.

This example is based on an overlay resulting in a static image. By
exchanging the last part of the processing pipeline, one could also use
small multiple or animation to show the individual graph
visualizations coming from the sampling process. For example,
Zhang et al. (2022) present and discuss amethod based on animation.

The sampling approach essentially reduces the problem of
uncertainty visualization to the visualization of many individual
samples. Figure 11 illustrates the process.

We start with the uncertainty model in the form of probability
density functions or similar probabilistic descriptions. From these,
points—in a potentially abstract and complex space—are produced
by sampling (e.g., Monte-Carlo random sampling, quasi-Monte-
Carlo sampling, etc.) and mapped to intermediate images by
applying regular non-uncertainty-oriented visualization. In the
last step, the images are overlaid to generate the final
visualization. As in the example of probabilistic graph

FIGURE 8 | Visualization of data of a protein–protein interaction network (Jonsson and Bates, 2006). The images show the same subnetwork as in the original
article, containing 1,253 weighted interactions between 232 proteins, where edge weights indicate confidence scores for the interactions. From left to right: increasing
level of aggregation, starting from the original network data. Image: © 2013 IEEE. Reprinted, with permission, from Vehlow et al. (2013).

FIGURE 9 | Processing steps for sampling-oriented node-link visualization of uncertain graph data. Image: © 2017 IEEE. Reprinted, with permission, from Schulz
et al. (2017).

4https://string-db.org/
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visualization, this last step aims to generate a density representation
(here, of nodes and edges), e.g., by employing kernel density
estimation. Therefore, the process essentially performs a
discretization into points and then a reconstruction of a density
field, i.e., a numerical approximation with several potential sources
for errors and required parameter choices.

Ideally, we would avoid the construction of in-between
samples and, instead, directly go from the probability
description of the data to the density model of the visual
output. This can be readily done when there is no registration
needed, such as for typical cases of scientific visualization with
given spatial embedding. For example, the probability where an
isosurface cuts through the volume can then be mapped to
density, which can be rendered by color-coding (Pöthkow and
Hege, 2011). However, when the visual mapping implies more
complex transformations, the density computation becomes
more difficult. For certain scenarios of multidimensional data,
there are techniques that construct density plots for parallel
coordinates and scatterplots (Bachthaler and Weiskopf, 2008;
Heinrich and Weiskopf, 2009; Heinrich et al., 2011) that carry
over to respective uncertainty plots (Zheng and Sadlo, 2021).
However, developing similar techniques for other advanced

examples of uncertainty visualization remains a largely
unsolved problem so far.

6 DISCUSSION

We have surveyed concepts, strategies, and methods for uncertainty
visualization—mostly from the perspective of visualization research.
This section discusses general observations, open questions, and
directions for future research. In addition, we link this discussion
to recommendations geared toward use in applications of biological
data visualization.

6.1 Open Questions and Future Directions in
Visualization Research
We have seen that there has been quite some progress in uncertainty
visualization, leading to a large variety of available techniques.
However, we have also discussed that uncertainty visualization is
challenging due to the difficult, yet relevant interplay of many
different components in the visualization process. Therefore, there
are a number of directions for future research.

FIGURE 10 | Probabilistic graph layout for visualizing protein–protein interactions for pancreatic alpha-amylase (Amy2). The left image shows the expected
(average) graph, i.e., traditional non-uncertainty visualization. The right image shows the uncertainty visualization. Image: © 2017 IEEE. Reprinted, with permission, from
Schulz et al. (2017).

FIGURE 11 | Process of sampling and density estimation for the implicit visualization of distributions.
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Layout is key to advanced visual mappings. One issue with
integrating uncertainty information in an already complex
visualization is the lack of space, for example, to place glyphs,
integrate range representations, use waviness or sketchiness of
larger visual marks, etc. Here, the layout process essentially needs
to balance the different and conflicting requirements from showing
complex data and its uncertainties. Visualization space is a scarce
resource in this respect. The example of probabilistic graph
visualization exhibits another layout problem: the one of aligning
or registering individual visualization images. Therefore, future
progress in the visual mapping of uncertainty is related to
developing appropriate layout methods that optimize for
potentially conflicting goals.

Perception, cognition, and evaluation. Understanding how we
perceive visualization and reason with it is a central problem in
visualization in general; and this problem is even harder when we
include uncertainty. Therefore, this topic will continue to play a
highly relevant role in uncertainty visualization, and it is tightly
connected to ways of how uncertainty visualization is evaluated,
e.g., from the user perspective.

Uncertainty visualization literacy. There is the general issue of
visualization literacy, i.e., dealing with how people can generate
and read visualizations. With the progress in uncertainty
visualization techniques comes the opportunity of working on
improving respective literacy. Due to the difficulties that users
have with many visual representations of uncertainty, there is a
great potential from the interplay between improving
visualization techniques and teaching skillsets.

Interacting with uncertainty visualization. We have touched
on some examples of interaction techniques geared toward the
process of uncertainty visualization. However, this topic is largely
untapped so far. We see great potential for future research on
interaction methods that will have to include the perceptual and
cognitive aspects discussed above.

Integration with machine learning and explainable AI. The major
trend toward including machine learning also manifests itself in
uncertainty visualization. Here, the special interest is in assessing and
visually communicating the uncertainty associated with automatic
data analysis and machine learning, which also links to visualization
as a means to support explainable artificial intelligence (AI).

Frameworks and software integration. A message from the
consideration of the complete visualization pipeline is: it is not
sufficient to just look at stages of the pipeline separately. For
example, it is not enough to only consider visual mappings of
uncertainty. Instead, there is a need for frameworks that provide a
unified perspective. There is already some work on frameworks
and integration (e.g., Correa et al. (2009), Wu et al. (2012), and
Sacha et al. (2016)), but with the progress coming from the other
topics listed above, the frameworks will need to be adapted and
extended. In particular, there is the challenge of including the user
in the combined process of human–machine visual data analysis.
A practical problem is the lack of uncertainty visualization
techniques in many existing software systems. Available
implementations of uncertainty visualization are often

restricted to individual and separate research prototypes.
Therefore, there is the need for extended software systems
supporting uncertainty visualization.

6.2 Recommendations
The lack of widespread implementations of uncertainty
visualization is one issue that makes it hard to include it in
applications of biological data visualization. Still, there are
opportunities for practical impact of uncertainty visualization
on bioinformatics applications. Some of the following
recommendations might facilitate the integration of
uncertainty visualization in such applications.

Think about data modeling and the context of the visualization
process. An important early step is to understand the data and
uncertainty model, which naturally has to be deeply rooted in
the application at hand. The next step is to consider the tasks that
should be solved with visualization and how they might be affected
by data uncertainty. To this end, interdependencies between the
components for data acquisition, processing, and visualization
should be taken into account, including propagation of
uncertainty. Here, rough estimates or models might be sufficient
for a coarse description of the interdependencies, and these might
be done completely outside of visualization software systems.

Focus onmain players for uncertainty.Although we argued for the
importance of considering the whole visualization process, it is clear
that not all stages are equally important for each application. Instead,
it is better to focus the attention on the main sources and effects of
uncertainty. Then, only these parts of thewhole processmight have to
be extended from regular non-uncertainty processing to an
uncertainty-aware counterpart. This approach can reduce the
effort substantially, especially when there is no comprehensive
uncertainty visualization system available.

Choose appropriate visualization techniques. In general,
visualizations should be chosen to match data characteristics,
tasks, and intended audience. Usually, there is not a single-best
method. This statement is especially true for uncertainty
visualization. For example, existing multivariate data
visualization might be enough for your own internal processes
of data analysis, but not for effective communication to a broader
outside audience. The choice of visualization technique might
also be related to the availability of implementations (or lack
thereof). Some visual mappings are easier to integrate into
existing non-uncertainty-oriented visualization techniques than
others. For example, per-pixel visual variables like color or others
tend to be easy to integrate into existing non-uncertainty-
oriented visualization systems; it might be as simple as
modifying the color map or extending multivariate
visualization in parallel coordinates with additional data axes.
Other uncertainty mappings require much more work, for
example, when there is a serious impact on the layout or
when comprehensive systems have to be changed for a full
visual analytics framework for uncertainty. Such efforts in
modifying or implementing visualization techniques should
play a role in choosing appropriate techniques.
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Need for integration in existing software. In general, there is a
lack of comprehensive uncertainty support in existing
visualization software in many bioinformatics applications.
Therefore, some community effort could help with including
more of the uncertainty-aware stages of the visualization pipeline.

Uncertainty awareness. Due to the complexity of uncertainty
visualization, there might not be a single and comprehensive
solution. Instead, the main goal of this paper is increased
awareness of issues that come with uncertainty in visualization.
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