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Recent advances in epigenomics measurements have resulted in a

preponderance of genomic sequencing datasets that require focused

analyses to discover mechanisms governing biological processes. In

addition, multiple epigenomics experiments are typically performed within

the same study, thereby increasing the complexity and difficulty of making

meaningful inferences from large datasets. One gap in the sequencing data

analysis pipeline is the availability of tools to efficiently browse genomic data for

scientists that do not have bioinformatics training. To bridge this gap, we

developed genomeSidekick, a graphical user interface written in R that

allows researchers to perform bespoke analyses on their transcriptomic and

chromatin accessibility or chromatin immunoprecipitation data without the

need for command line tools. Importantly, genomeSidekick outputs lists of up-

and downregulated genes or chromatin features with differential accessibility or

occupancy; visualizes omics data using interactive volcano plots; performs

Gene Ontology analyses locally; and queries PubMed for selected gene

candidates for further evaluation. Outputs can be saved using the user

interface and the code underlying genomeSidekick can be edited for

custom analyses. In summary, genomeSidekick brings wet lab scientists and

bioinformaticians into a shared fluency with the end goal of driving mechanistic

discovery.
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Introduction

Computational biology tools written in different languages and applied across diverse

fields allow for creative interrogation of genomics data to make biological conclusions.

Understandably, the breadth of online genomic data analysis resources may appear

overwhelming to a novice programmer. Fortunately, global efforts to bring bioinformatics

training to general researchers are well underway (Mulder et al., 2018). Nevertheless,

learning how to code may be a barrier to entry for non-bioinformaticians into the field of

epigenomics, yet it is important to incorporate these researchers into the data analysis
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process. A logical solution to this training issue is an inclusive

approach that brings non-bioinformaticians into computational

workflows after completing most of the command line processes,

thereby fostering scientific creativity and leveraging shared

knowledge about how the data are processed, analyzed, and

visualized.

While lab skillsets ideally include formal bioinformatics

knowledge, genomic researchers who do not understand how to

code can readilymakemeaningful conclusions using processed data.

An unmet need within this realm is a software for visualizing

genomics data and filtering epigenomic and transcriptomic

results for downstream analyses, especially considering the

combination of orthogonal genomic datasets required to reveal

more comprehensive mechanisms of cell biology. In addition,

while Excel is a common tool for management and visualization

of data, gene lists can be imported incorrectly into Excel and cause

permanent edits to gene names (Ziemann et al., 2016). To prevent

this issue and to promote independence from the bioinformatician,

the next logical step is to furnish tools to perform data operations

that a novice researcher might otherwise try in Excel.

The availability of distinct measurements to understand

genomic mechanisms governing complex cellular and organ

phenotypes has increased over time, resulting in a need to

combine datasets (Chapski and Vondriska, 2021). Our recent

study using RNA-seq, ATAC-seq, reduced representation

bisulfite sequencing (RRBS), and chromatin structural data is

an example of such integration of orthogonal data to make

meaningful conclusions about chromatin architectural

dynamics during heart failure (Chapski et al., 2021). Another

investigation established an Atlas of murine ATAC-seq and

RNA-seq data across 86 immune cell types and integrated the

two datasets to identify a subset of cell types containing open

regulatory elements bound by retinoic acid receptor-related

orphan receptor gamma (RORγ) or paired-box protein PAX5

(as measured by ChIP-seq), thereby linking chromatin

accessibility, transcription, and transcription factor binding in

specific cell types (Yoshida et al., 2019). A common feature of all

‘omics investigations is the need to ask questions of the massive

datasets once acquired—to prioritize for further mechanistic

evaluation. We also appreciate that even professional

bioinformaticians may not have the time to perform bespoke

analyses for collaborators: thus, a tool for transforming lists of

genes into functional targets for a focused, mechanistic

experiment is an opportunity to bring non-computational

scientists and clinicians into the genomic analysis process.

To bridge the gap between processed data and biological

inference, we built user-friendly genomic data visualization and

manipulation tools for investigators without computational

training. This GUI-based software called genomeSidekick

allows for investigation of transcriptomic (RNA-seq) data in

addition to chromatin accessibility (ATAC-seq) and chromatin

immunoprecipitation-sequencing (ChIP-seq) data in a web

browser. Based on a Shiny (Chang et al., 2021) dashboard

written in R (Team, R. C, 2020), our tool—which we have

named genomeSidekick—generates commonly used, intuitive

graphs with interactive information retrieval. Moreover, we

wrapped data visualization features for each individual

experiment (RNA-seq, ATAC-seq, and ChIP-seq) into

individual tabs to make switching between experiments easier.

We also provide a tab to integrate RNA-seq, ATAC-seq, and

ChIP-seq datasets, so modulation of the transcriptome and

epigenome can be examined based on multiple criteria from

independent experiments. Lastly, we provide links to external

tools (and offer to perform small analyses locally) to facilitate

Gene Ontology analysis and PubMed searches.

Freely available on GitHub (https://www.github.com/

dchapski/genomeSidekick), genomeSidekick also contains

extensive user-friendly documentation in a README

markdown file with informational links so that most novice

bioinformaticians can achieve results quickly. Lastly,

genomeSidekick is a customizable tool that allows for code

editing to support a shared collaboration between

bioinformaticians and non-computational personnel in the

biological research setting, thereby promoting increased

computational engagement by non-bioinformaticians.

Methods

To run genomeSidekick, users should download the software

from the repository on GitHub (https://www.github.com/

dchapski/genomeSidekick) and then open the app.R file using

Rstudio and click the “Run” button in the upper right corner of the

script. Alternatively, users can download the code and run the app

directly from the terminal using “R -e shiny:runApp (“/path/to/

app.R”).” Comma-separated or tab-delimited input RNA-seq data

should include gene names (either identifiers or common names)

with an adjusted p-value and log2FoldChange (preferably from a

tool such as DESeq2 (Love et al., 2014) or edgeR (Robinson et al.,

2010), which corrected p-values for multiple testing and provide

fold change information). Comma-separated or tab-delimited

input ATAC-seq data should include adjusted p-values and

log2FoldChange information about accessibility peaks [the

output from DiffBind (Ross-Innes et al., 2012) works well], in

addition to either the closest gene or an overlapping gene for each

feature. Gene names should be included for the ATAC-seq data as

they are required formerging the RNA-seq andATAC-seq dataset;

however, independent analysis of ATAC-seq data alone does not

require gene names. Importantly, other epigenomic experiments

such as ChIP-seq outputs containing log2FoldChanges and

adjusted p-values can be used on the genomeSidekick platform,

either alone or in combination with RNA-seq data as described

above for the ATAC-seq tab. We provide test data on GitHub and

a hyperlink to the data directly within the app.

Extensive documentation regarding installation of R,

RStudio, and dependencies for genomeSidekick is provided on
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the GitHub page. This documentation is also provided within the

software so users can directly find information on how to run the

software within the app.We also provide an install.R script on the

GitHub page to facilitate installation of dependencies. To run the

app in a password protected location online, a Shiny subscription

can be purchased from the RStudio website (pricing starts at

$9 USD/month in 2021). For exploration, we also provide online

access at https://genomesidekick.shinyapps.io/genomesidekick/.

Results

The genomeSidekick software, written in R, can be run on a

laptop and requires few dependencies to analyze RNA-seq,

ATAC-seq, ChIP-seq, and any other epigenomics datasets that

contain p-values and fold changes. The utility of genomeSidekick

comes from its interface built on the Shiny framework in R

(Team, 2020). This genomics dashboard allows separation of

experimental strategies via individual tabs in the GUI (Figure 1).

Inputs include processed data tables that can be loaded directly

into the app. For example, an output from DESeq2 (Love et al.,

2014) that contains the log2FoldChange and adjusted p-value

information required for the visualizations. Other inputs include

the output from DiffBind (Ross-Innes et al., 2012), a tool that

statistically evaluates differentially bound or accessible genomic

regions in the case of chromatin immunoprecipitation followed

by sequencing (ChIP-seq) or ATAC-seq data, respectively.

Visualizations for volcano plots are coded using ggplot2

(Wickham, 2016) based code and visualized using ggplotly

(Sievert, 2020), an open-source R package allows for

FIGURE 1
Flow chart detailing genomeSidekick functionalities. After raw sequencing data is obtained from the sequencing core, alignment, and statistical
analyses on genes or chromatin features should be performed by a bioinformatician, with at least three columns as a result: feature name, adjusted
p-values, and log2FoldChange (blue boxes). Then, genomeSidekick users can upload these data tables (.csv or tab-delimited files) as inputs to their
corresponding tabs within the Shiny app (green boxes), which will contain functions for generation of independent interactive volcano plots
(yellow boxes) as well as integrated ATAC-seq and RNA-seq graphs (orange boxes), for example. Note that in addition to ATAC-seq, users may
analyze ChIP-seq and other epigenomics data inputs containing p-values and log2FoldChanges. Uploading an RNA-seq data set will also allow the
application to perform g:Profiler GO analysis (magenta box) and generate downloadable lists of up- and downregulated genes (purple box). HPA:
Human Protein Atlas.
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interactive inspection of graphs (Figures 2A–C). The ggplotly

visualizations allow for truly interactive point-by-point

investigation to reveal individual metrics about each data

point (gene name, adjusted p-value, log2FoldChange, and

other custom information within the table). Superimposed

on these visualizations are gene names highlighted by small

lines [visualized using ggrepel (Slowikowski, 2021)] to

indicate the n most significant points in the dataset.

Notably, when a gene point is clicked within a volcano

plot, genomeSidekick links the user to either the NCBI

database, the UniProt (UniProt, 2021) website, or the

Human Protein Atlas (Uhlen et al., 2015) for further

FIGURE 2
Example visualizations of sample RNA-seq and ATAC-seq data using genomeSidekick. (A)Volcano plot of RNA-seq data shows down-regulated
genes in blue, upregulated genes in red, and non-significant genes in gray. Thresholds for p-value and log2FoldChange can be adjusted within
genomeSidekick. (B) Searching for a particular gene(s) will highlight the target gene in red and mark the non-target genes in blue. In the example
query for three genes, only one is found and visualized on the graph. (C) The non-target genes can be hidden by clicking on the Non-Target
label in the legend (resulting in a grey label) and un-hidden by clicking the label a second time. Details about any gene shown on the interactive
volcano plot can be shown by hovering over the dot on the plot. (D) Looking at the RNA-seq data upload page, genes without a p-value are not
plotted on the volcano plot and therefore will not return any results when queried on the graph (see red lines). Common RNA-seq analysis packages
do not evaluate all genes in the genome due to low detection, and this varies by experiment. Panels (A) through (D) use RNA-seq data as an example,
but the functionalities are the exact same for ATAC-seq data. (E)Once both RNA-seq and ATAC-seq data sets are uploaded, they can be integrated
into one graph using either the RNA-seq or ATAC-seq data as the base. Example data shown have padj <0.05 and FDR <0.1 in the RNA and ATAC-seq
datasets, respectively.
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investigation of candidate gene functions. Some genes are not

available for data visualization since many tools that calculate

differential expression/accessibility only statistically evaluate

loci containing experimental data, thereby resulting in

unmeasured regions without a p-value (Figure 2D shows an

example of this phenomenon). When RNA-seq and ATAC-

seq (or ChIP-seq) inputs include common genomic feature

information (for example, gene names), genomeSidekick can

merge and filter these tables to produce a list of the n most

upregulated and downregulated genes with accessibility

information. In addition, the merge computation is

performed in a way that gene names do not become

corrupted from loading data in Excel [for more, see

Introduction above and (Ziemann et al., 2016)]. This

merged dataset can then be visualized as a volcano plot:

one dataset (RNA-seq, for example) is plotted along the

axes and the other dataset visualized using different point

size and coloring to show additional information (Figure 2E).

To test the ease of dataset integration in a setting outside our

institution, a collaborator provided a use case for custom analysis

of RNA-seq and ATAC-seq data from (Chapski et al., 2021).

Specifically, this collaborator sought to determine how the

expression and chromatin accessibility at gene loci change

with 3 days cardiac pressure overload (a pathological model

that eventually leads to heart failure) in mice. Interestingly,

the integrated RNA-seq and ATAC-seq output of

genomeSidekick showed a significant increase in transcription

and chromatin accessibility at the Xirp2 gene locus (Figure 3),

consistent with an earlier study showing that the cardiac stressor

angiotensin II elicits an increase in Xirp2 transcription mediated

by the transcription factor MEF2A (McCalmon et al., 2010). This

exercise, performed on the collaborator’s first exploration of the

software, suggests that genomeSidekick is useful for quick

exploration of datasets and can provide meaningful scientific

insights to first time users.

Importantly, the gene list outputs from each genomeSidekick

tab are displayed for direct use as inputs for other software. For

example, genomeSidekick includes a feature to perform local

Gene Ontology analysis on smaller gene list outputs using the

gprofiler2 (Kolberg et al., 2020) package in R in addition to a link

to the g:Profiler website (Raudvere et al., 2019) for analyses of

larger output gene lists from genomeSidekick that might take

longer on a local machine. Lastly, we include a feature for quick

PubMed searches of genes of interest that outputs query results

directly in the app. This feature is based on the easyPubMed

package in R (Fantini, 2019) and is designed to keep users’ eyes

on their data instead of opening a new tab to perform queries on

data points of interest. Taken together, these features allow a

non-bioinformatician to increase their computational fluency

without having to learn how to code.

FIGURE 3
Example integrated RNA-seq/ATAC-seq visualization from a collaborator’s first time using genomeSidekick. A collaborator recently visualized
change in transcription and promoter accessibility at themurine Xirp2 locus after 3 days cardiac pressure overload. This gene, also upregulated at the
transcriptional level after angiotensin II treatment, also becomes more accessible with pressure overload, suggesting that the observed increase in
transcription is a consequence of increased accessibility. Dot size and color scale indicate ATAC-seq-log10(adjusted p-value) and
log2FoldChange, respectively. Example data shown have padj and FDR less than 0.05 in the RNA and ATAC-seq datasets, respectively.

TABLE 1 Example graphical user interfaces for genomics tasks (genomeSidekick in bold).

Software Advantages and considerations Reference

DEApp Differential expression and data visualization in one tool, many options to calculate statistics Li and Andrade, (2017)

DEBrowser End-to-end analysis (filtering, heatmaps, dimensionality reduction), may require more than basic knowledge of statistics Kucukural et al. (2019)

VisRseq End-to-end analysis (filtering, heatmaps, dimensionality reduction), requires knowledge of JavaScript Object Notation (JSON) Younesy et al. (2015)

genomeSidekick Volcano plots, experiment integration, Gene Ontology analysis, PubMed search, suitable for early beginners This paper
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Discussion

We built a tool called genomeSidekick to facilitate inclusion of

non-bioinformaticians into computational workflows for RNA-seq,

ATAC-seq, ChIP-seq, or any other datasets that undergo statistical

testing. This GUI-based software written in R allows individuals to

focus their efforts on biological inference without having to frontload

the bioinformatics training required to maneuver the command line.

Specifically, genomeSidekick facilitates integration of gene expression

and chromatin accessibility data, for example, to narrow down gene

lists for further analyses. In addition, the software provides an

opportunity for non-bioinformaticians to perform small edits to

the code to customize their visualizations and filtering criteria

without having to learn R. Overall, genomeSidekick will bring wet

lab scientists onto amore level playing field for common data analysis

questions, thereby reducing dependence on bioinformaticians.

Additional software exists for analysis of gene expression and

epigenomics data and may be useful for more computationally

versed individuals. For example, DEApp can be used to perform

differential expression testing and data visualization (Li and

Andrade, 2017), although a significant hurdle to using this

tool is knowing which statistical approach to use for

differential expression within the software. In addition,

DEBrowser (Kucukural et al., 2019) and VisRseq (Younesy

et al., 2015) are useful for performing end-to-end

bioinformatics analyses of datasets, and both programs

complete complicated tasks such as heatmap generation and

principal component analysis. Importantly, these tools may

require knowledge of data transformations at each step of a

given analysis and/or training in statistics. In contrast,

genomeSidekick provides a platform for users to explore and

integrate processed transcriptomics and epigenomics data and

create figures without the complexity seen in other tools

(Table 1).

The simplicity of genomeSidekick allows researchers with

no bioinformatics background to investigate their own

datasets after initial mapping, quantification, and

differential testing by a bioinformatician. Thresholding of

p-values for individual experiments can be edited for

custom stringency, which allows wet lab researchers to

perform independent analyses without requesting

individual gene lists from a bioinformatician. Moreover,

extensive documentation providing explanations of

individual functions and links to learning resources is

condensed into an intuitive README file on GitHub with

an intuitive interface and examples.

The genomeSidekick application allows bioinformaticians to

send data to collaborators and then have them interact with

multiple datasets independently. Importantly, the app can be

hosted online for a small monthly fee using https://www.

shinyapps.io, thereby facilitating longer distance

collaborations. Accordingly, for simple data exploration, we

provide genomeSidekick online at https://genomesidekick.

shinyapps.io/genomesidekick/. Overall, genomeSidekick will

help bring wet lab researchers into the computational realm

by fostering creativity with data visualization and integrative

analyses in a user-friendly format.
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