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Machine learning (ML) and in particular deep learning techniques have gained
popularity for predicting structures from biopolymer sequences. An interesting case
is the prediction of RNA secondary structures, where well established biophysics
based methods exist. The accuracy of these classical methods is limited due to lack of
experimental parameters and certain simplifying assumptions and has seen little
improvement over the last decade. This makes RNA folding an attractive target for
machine learning and consequently several deep learning models have been proposed
in recent years. However, for ML approaches to be competitive for de-novo structure
prediction, the models must not just demonstrate good phenomenological fits, but be
able to learn a (complex) biophysical model. In this contribution we discuss limitations
of current approaches, in particular due to biases in the training data. Furthermore, we
propose to study capabilities and limitations of ML models by first applying them on
synthetic data (obtained from a simplified biophysical model) that can be generated in
arbitrary amounts and where all biases can be controlled. We assume that a deep
learning model that performs well on these synthetic, would also perform well on real
data, and vice versa. We apply this idea by testing several ML models of varying
complexity. Finally, we show that the best models are capable of capturing many, but
not all, properties of RNA secondary structures. Most severely, the number of
predicted base pairs scales quadratically with sequence length, even though a
secondary structure can only accommodate a linear number of pairs.
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1 INTRODUCTION

Many RNAs rely on a well defined structure to exert their biological function. Moreover, many RNA
functions can be understood without knowledge of the full tertiary structure, relying only on
secondary structure, i.e., the pattern of Watson-Crick type base pairs formed when the RNA strand
folds back onto itself. Prediction of RNA secondary structure from sequence is therefore a topic of
longstanding interest for RNA biology and several computational approaches have been developed
for this task. The most common approach is “energy directed” folding, where (in the simplest case)
the structure of lowest free energy is predicted. The corresponding energy model is typically the
Turner nearest-neighbor model (Turner and Mathews, 2010), which compiles free energies of small
structure motifs (loops) derived from UV melting experiments.
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Under some simplifying assumptions, such as neglecting
pseudoknots and base triples, the optimal structure can be
computed using efficient dynamic programming algorithms
that solve the folding problem in O(n3) time for a sequence
of length n. While these algorithms yield an optimal solution
given the model, the accuracy achieved on known secondary
structures varies widely and averages about 67% in a benchmark
accompanying the latest Turner parameter set Mathews et al.
(2004). While a variety of factors contribute to the inaccuracy of
prediction, accuracy has hardly changed in comparison to the
previous iteration of energy parameters Mathews et al. (1999),
suggesting that it is the simplifying assumptions of the model,
rather than measurement errors in the UV melting experiments,
that limits prediction accuracy. It is therefore tempting to forego
the simplifying assumptions necessary for dynamic programming
and approach the problem using machine learning techniques.
Inspired by the recent success of deep learning methods in
protein structure prediction, several groups have proposed
deep learning methods for the RNA secondary structure
prediction problem (Chen et al., 2019; Singh et al., 2019; Fu
et al., 2021; Sato et al., 2021).

A major problem for all deep learning approaches is the
limited availability of training data. Even before the recent
machine learning boom, several works have attempted to
replace or improve the Turner energy parameters by training
on a set of known RNA secondary structures (Do et al., 2006;
Andronescu et al., 2010; Zakov et al., 2011). While these works
demonstrated that learning energy parameters is feasible, they
often reported overly optimistic accuracies. Even if test and
training sets do not contain very similar sequences (e.g., with
less than 80% identity), this is not sufficient to avoid overtraining.
As shown in (Rivas, 2013), setting up test/training sets that avoid
biases by using structurally distinct RNAs leads to a significant
drop in accuracy and largely eliminates any advantages of the
trained over measured parameters. Thus, ideally test and training
sets should be constructed from distinct RNA families.

The currently most used training set machine learning on
RNA structures is the bpRNA set Danaee et al. (2018) which
contains over 100,000 distinct sequences. While the number of
sequences in this set is sufficient to train sophisticated models, the
structural diversity of the data set is limited: 55% of the sequences
are ribosomal RNAs (rRNAs) from the Comparative RNA
website (Cannone et al., 2002). The next largest data source is
the Rfam database (Nawrocki et al., 2015), providing 43% of
sequences. At first glance, this subset seems more diverse, since
Rfam release 12.0, used for bpRNA, comprises 2450 RNA
families. Again, however, rRNA and tRNAs make up over 90%
of the sequences in Rfam 12.0. The dataset is therefore dominated
by just four RNA families (three types of rRNA as well as tRNAs)
and it seems highly unlikely that it can capture the full variety of
the RNA structure space. This is also reflected in the extremely
uneven length distribution of sequences in bpRNA, see
Supplementary Figure S1. We will explore the effect of using
a training set with such limited structural diversity in section 5.

When both test and training set are derived from bpRNA, they
will exhibit the same biases leading to unrealistically good
benchmark results. The MXfold2 paper (Sato et al., 2021)

addressed this problem by generating an additional data set,
bpRNAnew, containing only sequences from Rfam families
added after the 12.0 release. The bpRNAnew set was also used
in the Ufold paper (Fu et al., 2021) to distinguish between within-
family and cross-family performance. In practice, within-family
performance is largely irrelevant: structure prediction for
sequences belonging to a known family should always proceed
by identifying the RNA family and mapping the novel sequence
to the consensus structure, e.g., using covariance models and the
Infernal software (Nawrocki and Eddy, 2013); this is in fact how
most of the structures in the bpRNA set were generated. Only
sequences that cannot be assigned to a known family should be
subjected to structure prediction from sequence.

2 TRAINING ON ARTIFICIAL DATA

The fact that most known RNA structures are derived from a very
small set of RNA families makes it hard to distinguish between
shortcomings due to the biased training data and more
fundamental problems in deep learning for RNA structures.
Therefore, we propose to test deep learning methods on
completely synthetic data sets generated by classical energy
directed structure prediction methods. First, this allows us to
test the ability of a neural network (NN) architecture to learn a
well-defined biophysical model and discard models that fail to
learn certain aspects or are not efficient in doing so. Second,
future work can use models that have been pre-trained on
synthetic data. This avoids using precious known RNA
secondary structures to learn the full complexity of RNA
folding from scratch. Instead, a NN that has been trained on
the simplified model can subsequently be presented with known
RNA secondary structures to improve on the subtle details of
real-world biophysics.

In this contribution we use RNAfold from the ViennaRNA
package (Lorenz et al., 2011) to fold random sequences allowing
us to generate arbitrary large data sets and guarantee complete
independence of all sequences in training and evaluation data
sets. While structure predictions are far from perfect, they are well
known to be statistically similar to the experimentally determined
structures (Fontana et al., 1993). Most results shown below use a
training set consisting of random sequences (equal A,U,C,G
content) with a homogeneous length of 70 nt, but we also
constructed further data sets with four different length
distributions, as well as a dataset with the same structure
composition as the bpRNA dataset but different sequences.
These synthetic sequences enable us to study scenarios where
test and evaluation set follow different length and structure
distributions.

3 PREDICTING PAIREDNESS

To examine what can and cannot be easily predicted by deep
learning approaches, we first consider a simplified problem.
Rather than predicting base pairs, we restrict ourselves to
predict whether a nucleotide is paired or unpaired, in other
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words, if the nucleotide, in the context of RNA secondary
structure belongs to a helix or a loop region. Since this results
in a much smaller structure space, one might expect the
prediction problem to become easier to learn. This also
corresponds to the traditional approach in protein
secondary structure prediction, where each amino acid is
predicted to be in one of three states (alpha helix, beta
sheet, or coil) while ignoring which residues form hydrogen
bonds to each other in a beta sheet. Note also that chemical
probing of RNA structures Weeks (2010) typically yields
information on pairedness only.

We implemented three different types of predictors: 1) a
simple feed-forward network (FFN) that examines sequence
windows and predicts the state of the central residue, 2) a
more complex 1D convolutional neural network (CNN), again
working on sequence windows, and 3) a window-less bi-
directional long short term memory (BLSTM) network, see
Figure 1. We tested several window sizes for the sliding
window approaches (1 and 2) and varied the number of layers
and neurons in the BLSTM. The FFN architecture is inspired by
classical protein secondary structure predictors, such as PHD
(Rost and Sander, 1993).

The resulting performance when training on sequences of
length 70 is shown in Table 1. While the BLSTM performed
slightly better than the simpler sliding window approaches, none
of the predictors achieved satisfactory performance. This is most
obvious when focusing on the Matthews Correlation Coefficient
(MCC) (Chicco and Jurman, 2020). For this task, an accuracy of
0.5 corresponds to pure chance and thus the networks did little
more than learn that “A” nucleotides have a higher propensity to
be unpaired than “G”s. Our results also indicate that the
performance does not improve by increasing the number of
neurons, or by using more training data (results not shown).
The results were also consistent for different datasets and
different training runs.

The poor performance suggests that the short cut simply does
not work. While it is possible that attention based models such as
transformers would performed a little better, the most likely
interpretation is that pairedness cannot be predicted
independently of the full secondary structure. Moreover, RNA
secondary structure is apparently too non-local for sliding
window approaches to succeed. This is also in contrast to the
fact that RNA secondary structure formation is thought to be
largely independent of tertiary structure.

FIGURE 1 | Paired/unpaired prediction approach: (left) sliding-window: A window, consisting of a central symbol and context in the form of a fixed number of
leading and tailing symbols is slid along the sequence. The output sequence is a concatenation of the single predictions per window position. (right) schematic
representation of the input/output encoding for the bidirectional long short term memory (BLSTM) neural network. The detailed network architectures can be seen in
Supplementary Figure S2.

TABLE 1 | Performance of the paired/unpaired prediction: The performances on the validation set of 20,000 sequences of length 70 for all models trained on 80,000
sequences of length 70 for 100 epochs. After 100 epochs the best performing model is chosen based on maximum validation MCC. The epoch in which this
performance is reached can also be seen in the table. The metrics used are accuracy, F1, loss and MCC. All values are rounded to three decimal places.

Modeltype Parameters Epochs Accuracy F1 Loss MCC

BLSTM 1 Layer, 40 Neurons 43 0.667 0.594 0.609 0.166
1 Layer, 80 Neurons 27 0.664 0.589 0.612 0.168
3 Layers, 40 Neurons 38 0.676 0.609 0.604 0.207

Sliding Window Window 15 89 0.654 0.559 0.623 0.120
Window 35 94 0.659 0.559 0.620 0.118
Window 71 59 0.661 0.569 0.618 0.118

CNN Sliding Window Window 15 67 0.660 0.588 0.616 0.156
Window 35 65 0.666 0.586 0.609 0.166
Window 71 30 0.668 0.580 0.608 0.170
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4 PREDICTING BASE PAIR MATRICES

To account for the non-locality of secondary structure, recent
deep learning approaches for RNA secondary structure have
focused on predicting base pairing matrices. In the typical
approach a sequence of length n is expanded to a n × n
matrix, where each entry corresponds to a possible base pair.
Convolutional networks (or variants thereof) are then used to
predict an output matrix containing the predicted pairs, i.e., a 1 in
row i and column j indicates that nucleotides i and j form a pair.
Various postprocessing steps can be appended to derive a valid
secondary structure from the pair matrix. Since we were
interested in analyzing the performance of the network, we
avoided any sophisticated postprocessing and either directly
analyses the output matrix (with values between 0 and 1), or
obtained a single secondary structure by retaining only the
highest entry per row, rounding to obtain values of 0 or 1,
and removing pseudoknots.

For our experiments we re-implemented the SPOT-RNA
network (Singh et al., 2019), a deep network employing
ResNets (residual networks), fully connected layers and 2D
BLSTMs, see Supplementary Figure S3. The paper explored
several variants, that differ in the size or presence of the
different blocks. Most experiments were performed on 3
models, corresponding to Models 0, 1, and 3, in the SPOT-
RNA paper. Of these, Model 3 is the only on containing the
BLSTM block.

We first tested the simple scenario where all sequences in the
training and evaluation sets have the same length of 70 nt. The
three models achieved a performance in terms of MCC of 0.554
for model 0, 0.580 for model 1 and 0.640 for model 3. This is quite

similar to the values reported for SPOT-RNA after initial training,
though models 0 and 1 perform slightly worse in our case. Since
model 3 (with BLSTM block) had the best overall performance in
this test, and since all three models exhibited very similar
behavior in all experiments, we will show only results for
Model 3 in the following.

The bpRNA data set shows a very uneven distribution of
sequence lengths, with most sequences in the range of 70–120 nt,
the length of tRNAs and 5S rRNAs (see Supplementary Figure
S1). We therefore explored scenaria where the length distribution
of sequences in test and training set differs, by generating four
synthetic data sets with sequences of 25–100 nt, but markedly
different length distributions, see Figure 2. In each case, the
training set consisted of 30,000 and the validation set 5000
different random sequences.

We then trained and evaluated our networks on all 16
combinations of training and evaluation sets. Results for
Model 3 are shown in Table 2. Even though the datasets were
restricted to a rather small range of lengths, from 25 to 100 bases,

FIGURE 2 | Length distribution of the four synthetic datasets used for prediction of base pair matrices.

TABLE 2 | The performances of all combinations of training and validation data
sets for the four distributions shown in Figure 2. The diagonal in red shows the
performance, when training and validation dataset have the same distribution.

Training
Set

Validation Set Performance
(training set)1 2 3 4

1 0.64 0.59 0.61 0.71 0.72
2 0.61 0.58 0.59 0.68 0.66
3 0.64 0.60 0.62 0.70 0.71
4 0.63 0.57 0.59 0.75 0.87
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notable differences are already observable. In general,
performance on validation set 4 is best, simply because it
contains mostly very short sequences whose structures are
easier to predict. Conversely, networks trained on set 4
perform poorly on longer sequences. In addition, we usually
observe better performance when training and evaluation set
follow the same length distribution, as seen in the diagonal entries

of the table. This happens even though all sets are perfectly
independent.

To further analyze how predictions change with sequence
length we generated a series of evaluation sets, varying sequence
length from 30 to 250 nt. The number of base pairs is expected to
grow linearly with sequence length, since a structure of length n
must form less than n/2 pairs. The ground truth provided by
RNAfold perfectly follows the expected behavior. However, for all
three network models the number of base pairs, as measured by
the number of entries in the output matrix > 0.5 (i.e., before any
postprocessing), grows quadratically (see Figure 3). This
happens, because the output matrix has n2 entries and,
asymptotically, the networks predict a constant fraction of all
possible base pairs.

This failure of the network models to reproduce the correct
asymptotic behavior exemplifies that it is much easier to learn
local properties than global ones. We therefore compared the
statistics for several additional structural properties between NN
predicted structures and the RNAfold ground truth.

As can be seen in Table 3, the network almost perfectly
recapitulates the relative frequency of GC vs. AU vs. GU pairs
and essentially never predicts non-canonical pairs. Frequency
and length of hairpin and interior loops are learned quite well.
The largest discrepancy is observed for multi-loops, where the
network predicts more nucleotides in multi-loops even though it
predicts fewer such loops. Consequently, the median length of
multi-loops at sequence length 100 is 9 for RNAfold and 16 for
model 3. The full distribution of multi-loop lengths is shown in
Supplementary Figure S4. Multi-loops are, of course, harder to
learn since they are rarer than the other types and also less local.

FIGURE 3 | Predicted number of base pairs: Average number of base
pairs predicted by model 3 (bullets) and in the ground truth data set (crosses)
for 2000 sequence per length bin (30–250). The blue and orange curves are
least-square regression fits of the data points. The ML-model predicts a
wrong quadratic growth (blue curve) for the number of base pairs in contrast to
a correct linear growth (orange line). Results for Models 0 and 1 are
indistinguishable.

TABLE 3 | Predicted structural features for RNAfold (VRNA) andModel 3 (NN) trained on sequences of length 70. The test sets consisted of 2000 sequences each of lengths
70 and 100.

Frequency of Bases in Context

External Loop (EL), Bulge Loop (BL), Hairpin Loop (HL), Internal Loop (IL), Multi Loop (ML)

model/length paired EL BL HL IL ML

VRNA/70 0.508 0.176 0.033 0.156 0.114 0.014
NN/70 0.445 0.222 0.027 0.161 0.127 0.019
VRNA/100 0.541 0.123 0.031 0.143 0.126 0.035
NN/100 0.433 0.185 0.030 0.146 0.152 0.053

Average number of structural element

model/length helix EL BL HL IL ML

VRNA/70 4.825 0.992 1.112 1.754 1.841 0.118
NN/70 4.354 0.993 0.840 1.730 1.686 0.098
VRNA/100 7.132 0.991 1.586 2.314 2.889 0.343
NN/100 6.146 0.991 1.080 2.135 2.632 0.299

Relative frequency of base pair types

model/length GC CG AU UA GU UG NC

VRNA/70 0.257 0.262 0.169 0.170 0.071 0.071 0.00
NN/70 0.258 0.260 0.170 0.172 0.070 0.070 9.63 · 10–5
VRNA/100 0.262 0.255 0.173 0.170 0.068 0.071 0.00
NN/100 0.257 0.252 0.177 0.175 0.068 0.070 2.30 · 10–5
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A noteworthy effect of learning from data generated by the
Turner model is that the training data does not contain
pseudoknots or bases forming more than one pairs. However,
even though no pseudoknots were available in the training set, out
of 2000 structures with length 100, 975 structures contained one
or more non-nested base-pairs (2407 base-pairs total), and 1512
structures contained one or more nucleotide with multiple pairs
(6250 multi-pairs total). The ability to predict pseudoknots is an
attractive feature of neural networks. However, since networks
predict pseudoknots, even if the ground truth is pseudoknots free,
this casts doubt on the networks ability to learn which potential
pseudoknots will form in reality.

5 THE EFFECT OF BIASED TRAINING DATA

As mentioned earlier the commonly used bpRNA is heavily
biased towards a small number of RNA families and thus
exhibits little structural diversity. To explore the effect of this
bias, we generated an artificial training set with the exact same
bias. We used each structure contained in bpRNA and
generated a sequence folding into this structure using the
RNAinverse program of the ViennaRNA package. If
RNAinverse was not able to generate a sequence folding
exactly into the target structure, the best sequence out of 6
RNAinverse runs was used. As before, the synthetic data use
the RNAfold predicted structure as ground truth. While it is
maximally diverse with respect to sequences, this bRNAinv
data set carries the same structure bias as the original bpRNA
data set. For efficiency reasons, we only used RNAs with a
length between 25 and 120 nt. Furthermore, we removed
pseudoknots from the bpRNA structure and eliminated
structures containing more than 6 base pairs in
pseudoknots. This resulted in a data set of 65,766 sequence/
structure pairs that was further split into training and
validation sets of 52,613 and 13,153 sequences, respectively.

We now trained our Model 3 on this data set. We started from
a network that had been pre-trained for just 3 epochs on random
sequences of length 119 and 120, since we had noted that such
pre-training led to faster training, and then performed 40 epochs
of training on the inverse folded bpRNA training set. The model
eventually achieved an MCC of over 0.9 on the training set and
over 0.85 on the validation set.

To test whether the model was able to generalize to RNAs
with structures other than those contained in the bpRNA data
set, we generated a test set containing 10,000 sequences by
inverse folding as explained above. This inverse folded dataset
has the same structure bias as the bpRNA dataset and the
training set. A randomized version of the test set was created
by di-nucleotide shuffling each sequence using ushuffle (Jiang
et al., 2008) and computing the corresponding structure using
RNAfold. This shuffled dataset has the same sequence
composition, but a much higher structural diversity. On the
inverse folded tests set (again replicating the structure bias of
the training set) the network achieved excellent prediction
accuracy with an MCC of 0.86, on the shuffled sequences,
however, MCC dropped to only 0.52. This effect was not visible

on the pre-trained network where both inverse folded RNAs
and shuffled RNAs achieved an MCC of 0.46. During training,
performance on the inverse dataset improved rapidly within a
few epochs, while performance of the suffled dataset improved
only marginally.

6 CONCLUSION

The performance of deep networks is strongly dependent on
quantity and quality of the available training data. Biological data,
however, are strongly biased towards a small number of well
studied model systems. This makes it hard to study the
capabilities and shortcomings of networks independently of
the quality of available data. This problem can be avoided, if
there is a way to generate synthetic training data that are
statistically sufficiently similar to real data. By performing
machine learning experiments on the synthetic data one can
identify strengths and shortcomings of different network
architectures, determine the amount of training data required,
and study the effect of biases in the training data. For RNA
secondary structure prediction, algorithms that compute the
minimum free energy structure via dynamic programming on
a biophysical energy model can provide such a data source.

While recent RNA secondary structure data sets provide a
large number of training sequences, this comes at the expense
of making the data set extremely unbalanced, with more than
95% of sequences deriving from ribosomal RNAs or tRNAs.
Neural networks learn to exploit this bias, leading to predictors
that perform very well on RNAs whose structures are well
represented in the training set. The networks generalize well to
RNAs with no sequence similarity, as long as the structure has
been seen in the training set. However, the performance on
new structures remains poor. Even on otherwise unbiased
synthetic training sets, performance suffers when training
set and evaluation set follow a different length distribution.
These results emphasize the importance of using training and
test sets that are structurally distinct, i.e., no RNA family
should be present in both training and test set. An ideal
data sets should fairly sample the space of secondary
structures, but this would require large scale structure
determination beyond selected biologically interesting RNAs.

Our experiments with training on synthetic data also reveal
which properties of RNA structure are easy or hard to learn for
current network architectures. Features such as base pairs,
interior-, and hairpin-loops, are local with respect to the base
pairing matrix and easy to learn. Indeed, the prevalence of
different types of base pairs, as well as length and size of
hairpin and interior loops, almost perfectly matches the
ground truth. Multi-loops and pseudoknots are less local and
exhibit significant deviations from the ground truth. Finally, the
networks struggle to correctly reproduce global properties and
scaling behavior, as exemplified by the fact that for all networks
the number of predicted base pairs scales quadratically with
sequence length. While this behavior can easily be addressed
during postprocessing, it is not clear whether that would correct
or merely hide the underlying problem.
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