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Large scale next generation metagenomic sequencing of complex environmental samples
paves the way for detailed analysis of nutrient cycles in ecosystems. For such an analysis,
large scale unequivocal annotation is a prerequisite, which however is increasingly
hampered by growing databases and analysis time. Hereto, we created a hidden
Markov model (HMM) database by clustering proteins according to their KEGG
indexing. HMM profiles for key genes of specific metabolic pathways and nutrient
cycles were organized in subsets to be able to analyze each important elemental cycle
separately. An important motivation behind the clustered database was to enable a high
degree of resolution for annotation, while decreasing database size and analysis time.
Here, we present Metascan, a new tool that can fully annotate and analyze deeply
sequenced samples with an average analysis time of 11 min per genome for a publicly
available dataset containing 2,537 genomes, and 1.1 min per genome for nutrient cycle
analysis of the same sample. Metascan easily detected general proteins like cytochromes
and ferredoxins, and additional pmoCAB operons were identified that were overlooked in
previous analyses. For a mock community, the BEACON (F1) score was 0.72–0.93
compared to the information in NCBI GenBank. In combination with the accompanying
database, Metascan provides a fast and useful annotation and analysis tool, as
demonstrated by our proof-of-principle analysis of a complex mock community
metagenome.
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INTRODUCTION

Alongside the advances in DNA sequencing, genome annotation has come a long way. Metagenomic
sequence data are becoming available at increasing rates, making accurate and fast (automated)
analysis tools even more important. Through the advancements of sequencing technologies, a single
isolated bacterium prior to sequencing is not a requirement anymore, leading to an increase in the
sequencing of metagenomes. This, in turn, leads to new challenges in annotation. It is common for
metagenomes to be binned prior to annotation into metagenome-assembled genomes (MAGs).
Especially when samples are (ultra-)deep sequenced, the number of MAGs per sample can reach
thousands of near-complete genomes (Anantharaman et al., 2016). Not only do all these MAGs need
to be annotated individually, which is time and effort consuming, there is also the greater ecological
question of how the metabolic processes in the original sample relate to one another.

Additionally, there is the problem of protein ortho- and paralogs, which is especially prevalent
when metagenomes lack enough sequencing depth for binning. Genes in a single genome are often
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distinct enough for a meaningful annotation, especially since for
small genomes direct comparison like BLAST analysis (Altschul
et al., 1990) to a database is still feasible. However, using BLAST
on complex metagenomes is too computationally intense and
time-consuming, and this will increase in the future, as databases
keep growing every day (Evanko, 2009). Therefore, a faster,
indirect comparison is preferred like the use of hidden
Markov models (HMM), where annotation is based on
matching amino acid patterns rather than whole gene or
protein sequences. However, these patterns are very similar for
ortho- and paralogs that have similar evolutionary origins
(Jensen, 2001), which makes HMM databases with high
resolution a necessity to achieve optimal annotations.
Automated annotation is often dividing the process in single,
specific functions like gene-calling, ribosomal RNA gene
identification, and gene annotation. The results of the single
analyses are subsequently combined in so called wrapper-scripts.
For bacterial genomes, Prokka (Seemann, 2014) is probably the
most well-known and fastest pipeline used at the moment. In
recent years, scripts have been published that are able to annotate
multiple genomes simultaneously, often by using well established
databases like PFAM (Mistry et al., 2021), KOFAM (Aramaki
et al., 2020), and TIGRFAM (Haft et al., 2013). Examples of these
are METABOLIC (Zhou et al., 2019), DRAM (Shaffer et al.,
2020), and eggNOG-mapper v2 (here-after eggNOG)
(Cantalapiedra et al., 2021).

Here, we report on the construction of a new database by first
clustering proteins for each KO number of the KEGG pathway
database (Kanehisa and Goto, 2000) involved in central metabolic
functions and subsequently building HMM profiles for each
cluster. Key genes of major metabolic pathways were
organized in pathway-specific individual databases (subsets),
based on the grouping of Anantharaman et al. (2016). These
databases together with a modified version of Prokka were then
used for a gene-centric annotation and analysis of a mock
community and previously published (meta-)genomes, either
for all MAGs separately, or the unbinned assembly.

MATERIALS AND METHODS

Database Creation
For the creation of the database, all KO numbers from the KEGG
database that are part of metabolic pathways (“09100
Metabolism”; https://www.genome.jp/brite/ko00001) were
collected and linked to Uniprot entries through LINKDB
(https://www.genome.jp/linkdb). For KO numbers with more
than three entries, the entries were downloaded from the
TrEMBL UniProt database (release 2018–09) (Bateman, 2019)
and converted into multi-FASTA files. The sequences were
filtered on length by calculating the average sequence length
for each KO number, after which sequences longer than 150%
and shorter than 60% of the average sequence length were
discarded. If a set consisted of less than three sequences after
length filtering, the unfiltered set was used.

For sequence de-replication, sets containing more than three
entries were clustered (nearest neighbor) using Linclust from the

MMSeq2.0 package (settings: -v 0 --kmer-per-seq 160 --min-seq-
id 0.5 --similarity-type 1 --sub-mat blosum80. out --cluster-mode
2 --cov-mode 0 -c 0.7) (Steinegger and Söding, 2018). For each
KO-number, clusters with less than three sequences were
combined into 1 cluster. If less than three unique sequences
were left after de-replication, the entire KO number was
discarded. Subsequently, all resulting sequences for each KO
number cluster were aligned individually using mafft v7
(settings: --quiet --anysymbol) (Katoh and Standley, 2013) and
HMM profiles were created using hmmbuild (default settings)
(Eddy, 2011).

Subsets with key genes for each metabolic pathway were
created automatically based on KEGG classification (“09102
Energy metabolism”) and manually curated where possible
(Supplementary Data S2) based on the functional
classification described in Anantharaman et al. (2016). HMM
profiles for hydrogenases were created by downloading FASTA
files for each hydrogenase group from the HydDB website
(Søndergaard et al., 2016) followed by HMM profile creation
as described above.

Metascan
Metascan expects a folder containing one or more DNA sequence
files in FASTA format, where each file represents either an
unbinned assembly (metagenome contigs) or a single MAG.
When analyzing a complete unbinned metagenome, Metascan
will generate an overview of all metabolic pathways and nutrient
cycles. If the metagenome was binned, providing all MAGs allows
annotation of each MAG. When using MAGs as input, the
unbinned sequences (and, if applicable, small contigs
discarded after size-filtering) are expected to be included as
one or multiple separate bins, since a full gene-centric analysis
of a metagenome is also dependent on the unbinned fraction of
the microbial population that may exist in the sample.

Procedure
The core process starts with gene calling by Prodigal (Hyatt et al.,
2010) (Figure 1). Per default, Metascan runs a few additional
analyses that can be excluded if a fast overview of the nutrient
cycles present in the ecosystem is desired. Before annotation, a
ribosomal RNA gene search is performed by either Barnnap
(https://github.com/tseemann/barrnap) or RNAmmer (Lagesen
et al., 2007). The recovered rRNA gene sequences are compared
against a local NCBI nr database using BLASTN (Sayers et al.,
2019). Subsequent gene annotation is performed using
hmmsearch (Eddy, 2011) against each of the seven subsets of
the key genes representing important nutrient cycles [Nitrogen,
Methane, Carbon fixation, Hydrogenases, C1 (methylotrophy)
molecules, Sulfur, and Oxidative phosphorylation; Table 2] and
one miscellaneous subset of metal cycling. After annotation of the
key genes, the remaining open reading frames (ORFs) are
annotated using the HMM profiles of the remaining metabolic
genes. If the metagenome was previously binned and abundance
was estimated, this data can be entered in a separate TSV file.

For a full annotation of MAGs, the option—prokka is
available. This Prokka legacy option provides tRNA search
Aragorn (Laslett and Canback, 2004), ncRNA scan Infernal
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(Nawrocki and Eddy, 2013), and CRISPR scan Minced (Bland
et al., 2007), exactly as Prokka (Seemann, 2014) would. It also
annotates the remaining unidentified ORFs using BLASTP and
the Prokka internal database. These options are also available
individually.

Bin Size
Metascan uses bin size in two different ways. First, for optimized
gene calling, Prodigal has a single genome or metagenome mode.
Thus, Metascan must determine whether the bin can be
considered as single trustworthy MAG. Since the largest
known bacterial genome is currently a little under 14.8 Mbp
(Han et al., 2013), the maximum size for a bin to be
considered a single prokaryotic genome is 15 Mbp. Anything
larger is regarded as metagenomic by Metascan. Furthermore, for
Prodigal the lower limit of the bin size is set at 0.5 Mbp, as this is
the minimum Prodigal requires for gene-calling in single mode.
Thus, bins smaller than 0.5 Mbp and larger than 15 Mbp are
processed in meta mode. Prodigal in Metascan is also set to
predict partial genes at the ends of contigs, as these are expected
to be abundant in a metagenome. Secondly, the maximum bin
size is also used to limit runtime by preventing time-consuming

analyses like tRNA, ncRNA, CRISPR, and BLAST searches
against small and unbinned contigs, as well as the unbinned
metagenome.

E-values
Like bin size, the e-value settings are important for the final
outcome. Three different e-values are implemented in the
Metascan workflow (Figure 1). The first and lowest e-value
serves as a prefilter for HMM results to reduce the amount of
working data. Here, E-06 is the highest score corresponding to the
lowest protein identity allowed by Metascan, and this e-value is
also used by all other first-level analyses. Next, Metascan
differentiates between the application of the full metabolic
dataset or the key gene set only. If only the smaller key genes
databases are applied, the stringency is set to a more stringent
setting of E-100 to exclude large numbers of false positives. When
including the larger metabolic database, the stringency is lowered
to E-50 because the risk for false positives is reduced by the
probable presence of genes with higher similarity in the database,
and a lower e-value here is useful to avoid false negatives.
Simultaneously, the program applies a filter on size difference
of ≥20% (by default) between target (as calculated by Hmmbuild

FIGURE 1 | Schematic overview of the Metascan pipeline. The bold black lines represent the core analyses of the program. The thin black lines show the default
Metascan pipeline when no options are opted out. The blue dotted lines indicate the options that can be invoked through the command line for full annotations.
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during HMM construction) and query sequence to remove hits
that clearly differ in size, but which contain similar sequence
motifs. After all databases are queried, the hit with the highest bit-
score is selected for each ORF.

For small proteins (<200 amino acids), the only e-value
considered is the prefilter. Short sequences are not long
enough to build up enough bit-score, resulting in large
e-values even when the similarity is high. Since this will also
include incomplete partial genes missing a start or stop codon, the
hits are selected on size difference between target and query of
maximum 30%. If desired, all target e-values can be set manually.
As a final option, the program also accepts user generated HMM
profiles, both as single input or in combination with the existing
databases.

Output
For each analysis, an overview file is produced that contains the
number of hits for each gene of each nutrient cycle and the
number of bins/MAGs harboring these genes, alongside their
relative abundance (Supplementary File S1.1). For both genes
and organisms, the absolute and relative coverage is provided, if
applicable. A Krona (Ondov et al., 2011) HTML file is produced
for visual reference. A TSV file is generated containing all protein
hits for easy retrieval of proteins of interest. Finally, two more
TSV files are created, containing the genes for each process and
metabolic module, as used by KEGGmapper (Kanehisa and Sato,
2020) on the genome.jp website. The process file can be used to
manually create a cycle diagram using the provided blank cycle
diagram (Supplementary File S1.2).

For each bin, an overview file is produced with the number of
hits for each gene and phylogenetic information if applicable. A
file containing hits of all the detected KEGG numbers is created,
which can be entered into KEGG mapper for further analysis.
Two files containing hits against the database and statistics like
bitscore and output from hmmsearch are retained as well. One
file contains all possible hits, the other file is an overview of all the
highest scoring hits. Furthermore a few additional files are
created, including a file containing all ribosomal RNA genes
and a tab-separated file with annotated genes for easy retrieval.
Finally, a few FASTA, statistical, log and GenBank files are
created, similar to standard Prokka output (Supplementary
File S1.1).

Validation
Mock Community
For eight different microorganisms, representing different
metabolic traits, the genomes (Table 1) were downloaded and
fully annotated using Metascan four ways: as separate genome bins
or as a single simulated metagenome and using either only key-
genes or the wholemetabolic set (Table 2). The mockmetagenome
was simulated using CAMISIM (Fritz et al., 2019) on all eight
genomes (default settings). Both the simulated metagenome and
the eight genomes were also analyzed using METABOLIC (default
settings), DRAM (default settings), Prokka and eggNOG (hmmer
method and default settings).

To obtain an accurate list of key genes present in these
genomes, each KO number in the metabolic core dataset was

cross-referenced with the KO numbers present in KEGG for
those organisms. For unclear or missing results, additional
BLAST checks and manual searches in the NCBI GenBank
files were performed. Since no golden standards exist for the
used organisms, the GenBank files generated by Metascan,
Prokka (default settings) and eggNOG were compared to the
GenBank files fromNCBI using BEACON (Kalkatawi et al., 2015)
with an offset of 2%. METABOLIC did not create files that could
be converted into Genbank files. DRAM created Genbank files,
but no annotation was present. Therefore, both programs could
not be included in the BEACON comparison.

The BEACON scores were found to be identical to F1 scores
(Van Rijsbergen, 1977) and we consequently report the BEACON
scores as F1 scores for the comparison of the different
annotations (Supplementary Data S3).

Metagenome Analysis
2537 MAGs and the accompanying coverage data from the
study by Anantharaman et al. (2016) were downloaded from
ggKbase (https://ggkbase.berkeley.edu/2500-curated-genomes/
organisms/). The key gene as well as full metabolic analyses
were performed on the binned and unbinned genomes
(Table 2). Both the binned and unbinned datasets were
furthermore analyzed using METABOLIC (default settings)
and DRAM (default settings). EggNOG accepted only a
single FASTA file, and thus only the unbinned dataset was
analyzed. The results of the Metascan analyses and the original
study were manually compared by analyzing the statistics for the
various nutrient cycles.

Computing Platform
All analyses were performed using 12 cores except for DRAM
(10) on a server with one 32 core Intel(R) Xeon(R) CPU E5-2650
v2 @ 2.60 GHz and 227 G RAM.

Code and Data Availability Statement
Metascan can be obtained from https://github.com/gcremers/
metascan, the required databases from Zenodo.org (https://doi.
org/10.5281/zenodo.6365663).

RESULTS

Database Creation
For the creation of the HMMdatabase, 7,788 unique KO numbers
associated with metabolic pathways were identified from file
ko00000. keg (7 May 2018; renamed in KEGG to ko00001.
keg in recent versions). When connecting these to proteins
deposited in UniProt, 876 KO numbers had less than 3
UniProt entries available and were therefore excluded.
Sequences from the remaining 6,912 KO numbers were
downloaded from the UniProtKB/TrEMBL database, converted
to FASTA format, and subjected to dereplication and length
filtering (60%–150% of the mean length for each set). After
dereplication, 46 sequence sets were discarded because a
limited amount (<3) of unique sequences was left for
alignment. Five unfiltered sets were retained as the length
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filtering step would have dropped the available sequences below
three. In total, this left a final of 6,866 KO numbers available for
alignment and HMM building.

After manually adding missing entries, subsets for each
nutrient cycle were manually created (Table 3). For each key
gene in a nutrient cycle, entries were manually checked and

completed for lesser studied genes like hydrazine synthase.
Finally, 38 profiles were calculated for hydrogenases by
aligning sequences taken from HydDB (Søndergaard et al.,
2016) for each (sub-)category.

Mock Community
We used DRAM, METABOLIC, eggNOG, and Prokka to
analyze the original eight genomes and the CAMISIM
simulated metagenome. We also used Metascan to analyze
the eight genomes of the mock community using four
different input and analysis settings (Table 2). Analysis
times ranged from 16 min for all eight genomes (Prokka)
to 2 days and 7 h for eggNOG; for the simulated metagenome
this was from 10 min (Prokka) versus 1 day and 10 h for
eggNOG. Metascan and Prokka both provided full
GenBank files for further analysis, whereas eggNOG
provided a GenBank files without RNAs. DRAM and
METABOLIC did not include the annotation within the
GFF file, which meant a meaningful GenBank file could not
be constructed.

TABLE 1 | Genomes used in the mock community of this study.

Organism Size (bp) Topology Accession number Metabolism

Methanosarcina acetivorans str. C2A 5,751,492 Circular AE010299 Methanogen
Nitrosomonas eutropha C91 2,781,824 Circular + plasmids CP000450 Autotrophic ammonia-oxidizer
Paracoccus denitrificans PD1222 5,236,194 Circular + plasmids CP000489 Denitrifier and methylotroph
Escherichia coli str. K-12 substr. MG1655 4,641,652 Circular NC_000913 Heterotroph
Candidatus Methylomirabilis oxyfera 2,752,854 Circular FP565575 Denitrifying methanotroph
Nitrospira moscoviensis strain NSP M-1 4,589,485 Circular NZ_CP011801 Autotrophic nitrite-oxidizer
Methylacidiphilum fumariolicum SolV 2,476,671 Circular NZ_LM997411 Nitrogen fixing methanotroph
Candidatus Kuenenia stuttgartiensis MBR1 4,406,153 Circular NZ_LT934425 Anammox

TABLE 2 |Overview of different analysis options, analysis times and properties per dataset. Time is the total analysis time. Pathways indicate whether the results are ordered
by ecological pathways and processes in the output. Abundance shows the option to include depth values into the analysis and GBK indicates the state of the Genbank
file that is created by the program.

Dataset Metascan key
genes

Metascan Full
annotation

DRAM eggNOG METABOLIC Prokka

8 genomes Time 01 h 01 4 h 46 3 h 26 2 days 7 h 02 0 h 39 0 h 16
Pathways Yes Yes Individual no Individual No
Abundance NA NA NA NA NA NA
GBK full full No genes No RNA No genes full

Simulated meta-genome Time 1 h 08 2 h 54 1 h 06 2 days 09 h 18 0 h 50 0 h 10
Pathways yes yes yes no yes No
Abundance NA NA NA NA NA NA
GBK limited limited No genes No RNA No genes full

2,537 genomes Time 2 days 22 h 29 19 days 08 h 21 34 days 13 h 2 NP 3 days 11 h 01 NP
Pathways Yes Yes Individual Individual
Abundance Yes Yes No no
GBK full full No genes No genes

Unbinned meta-genome Time 1 day 23 h 06 12 days 09 h 57 36 days 23 h 42a Over 44 daysb 3 days 17 h 28 NP
Pathways Yes Yes Yes yes
Abundance NA NA NA NA
GBK limited limited No genes No genes

NP, not performed; NA, not applicable.
aProgram crashed and was manually resumed, missing one step in the process.
bThe program run for over 44 days and was manually stopped.

TABLE 3 | Number of genes per subset (cycle) and the number of corresponding
HMM profiles.

#KO Cycles #HMM profiles

38 Hydrogenases 38
25 C1 molecules 319
34 Carbon fixation 643
12 Methane 32
14 Miscellaneous 213
38 Nitrogen 557
14 Oxygen 556
40 Sulfur 650
6,739 Non-key genes 114,157
6,916 Total 117,127
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Runtimes
When testing the mock community, we first needed to identify all
genes belonging to the different nutrient cycle within the NCBI
entries for each microorganism. This proved not to be
straightforward, since in GenBank the annotations are not
stored with these cycles in mind. We thus created the
individual nutrient cycling profiles of the reference organisms
by manually mining KO numbers from their annotations in
KEGG and GenBank for metabolic key genes and compared
these to the Metascan output. For a complete annotation of all
eight genome bins including all ~7,000 metabolic genes, the
analysis took 4 h and 46 min, with an average of 35.6 min per
genome bin. On the same system, it took 2 h and 54 min for the
simulated metagenome, with the exclusion of several steps
(tRNA, ncRNA, CRISPR detection, and BLASTP) in the
process due to bin size. The key genes only analyses took
68 min for the simulated metagenome and 1 h and 1 min for
the binned genomes.

Gene-Centric Annotation
The manual key genes mining of the mock community against
NCBI and KEGG yielded a total of 447 key genes for all eight
genomes, with the Nitrogen cycle being the most abundant (117
genes) and enzymes involved in hydrogen metabolism the least
(nine genes; Table 4).

Overall, the total amount of key genes recovered from the
mock community by Metascan varied from 133% (binned and
key genes only) to 100% (simulated and all metabolic genes)
compared to the GenBank annotations. Among the cycles,
Hydrogen (67%–147%), C1 (methylotrophy; 106%–159%),
Carbon fixation (102%–181%), and Miscellaneous
(95%–163%) have the largest variability, whereas Sulfur
(103%–119%), Methane (96%–100%), Nitrogen (92%–109%),
and Oxidative phosphorylation (102%–113%) showed better
congruency with the GenBank annotation. As could be
expected, the analyses that used all metabolic genes from the
KEGG dataset are more comparable to the GenBank
annotations than the analyses using only key genes. Binning
the mock metagenome into genome bins did not influence these
results much.

When looking into the data in more detail (Supplementary
Data S4), it became apparent that the majority of differences was
caused by a few specific types of proteins, mainly ferredoxins, and
cytochromes. Cbb3-type cytochrome c oxidase subunit III
(K00406) was found 5 and 14 times by Metascan in the
simulated metagenome full metabolic and binned key genes-
only analyses, respectively, vs. three times in the GenBank
annotations. A similar pattern was observed for the
cytochrome b556-containing formate dehydrogenase subunit
gamma (FdoI, K00127; 17 and 6 vs. 5), the Fe-S subunits of
anaerobic carbon-monoxide dehydrogenase (CooF, K00196; 30
and 11 vs. 2) and arsenate oxidase (AoxA, K08355; 9 and 0 vs. 0).
Another example is the Fe-S-containing beta subunit of formate
dehydrogenase (FdoH and K00124), where both binned (19) and
simulated metagenome key genes-only (15) Metascan analyses
yielded a surplus of positive hits. However, BLASTP analysis of
these proteins against the NCBI database identified 13 of them as
NADH-quinone oxidoreductase subunit NuoF. Manual
inspection of the input data (K00124) used to generate the
FdoH HMM profiles (Supplementary File S1.3) showed that
several entries in these protein clusters are labeled as NuoF,
indicating either misannotated entries or unspecificity within this
database entry.

Another group of gene annotations that deviated from the
GenBank entries entailed group 4 Ni-Fe hydrogenases. Here, in
the key genes-only annotation Metascan found seven proteins in
addition to those predicted in NCBI. However, all seven proteins
were apparently corresponding to NuoC or NuoD subunits of
NADH dehydrogenase complexes and not true hydrogenases, as
they also were lacking the catalytic Ni-binding motif, despite
e-values of 0.0 to 9E-161 in the HydDB database search.

Genome-Centric Annotation of
Metagenome-Assembled Genomes
Besides the broad metabolic overview that Metascan provides on
the metagenome level, an additional useful feature is the
possibility for parallel single genome annotations during the
analysis, which allows for immediate downstream analysis of
genomic potential for any given MAG. For comparison of single

TABLE 4 | Number of genes retrieved from the GenBank files of the mock community and four different Metascan analyses, ordered by cycle. Percentages state the
percentage relative to the total number of genes recovered from the GenBank files.

Number of genes

Nutrient cycle GBK Unbinned, key
genes

Binned, key
genes

Unbinned, full Binned, full

Sulfur 65 70 77 67 71
Hydrogen 15 19 22 10 12
Methane 25 24 24 25 25
Nitrogen 117 108 117 114 127
Oxidative phosphorylation 53 55 60 54 59
C1 68 95 108 72 79
Carbon fixation 85 123 154 87 118
Miscellaneous 19 26 31 18 18
All 447 520 (116.3%) 593 (132.7%) 447 (100.0%) 509 (113.9%)

GBK: GenBank file from NCBI, Key genes: Analysis using only the key genes as reference. Full: Analysis using all metabolic genes as reference. Unbinned: simulated metagenome
generated by CAMISIM., Binned: separate genomes from NCBI.
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genome annotations, we used BEACON to compare the
annotations produced by Prokka, Metascan, and eggNOG for
each genome used in the mock community to the GenBank files
from NCBI with an offset of 2% (Table 5, Supplementary Data
S5). BEACON (F1) scores range from 0.90–0.91 for E. coli to
0.72–0.73M. acetivorans. The results are very similar for all three
methods for all organisms, except for the eggNOG annotation of
P. denitrificans (0.47), which strongly deviated from Prokka and
Metascan (0.87). When comparing Metascan to the different
approaches, eggNOG, and Prokka F1 scores range from 0.99 to 1,
except for P. denitrificans (eggNOG, 0.55). The similarity scores
to the NCBI annotations again range from 0.72 (M. acetivorans)
to 0.91 (E. coli). These results show that Metascan, eggNOG, and
Prokka annotations are very similar to each other and that all
three equally differ from the NCBI GenBank files.

In-Depth Comparison Metascan vs. NCBI
Compared to Metascan annotations, the number of genes with
function annotations in NCBI GenBank was higher for all
samples (Table 6). This was caused by the higher number of
(conserved) hypothetical proteins in the Metascan/Prokka
annotations, as these programs use a conservative annotation
regime. Annotations containing words like “conserved” and
“containing” are labeled hypothetical, as there is no definitive
known function for these proteins. As a result, there are more

hypothetical proteins in the Metascan annotations and thus a
lower degree of genes with assigned apparent functions.

For two organisms there was a larger difference in the amount
of ORFs called by GenBank compared to the other two methods.
The first wasM. acetivorans, for which 4550 ORFs were predicted
by GenBank and 4,946 by Metascan, which is a difference of 8%
(396 ORFs). However, visualizing the ORFs of M. acetivorans in
Artemis (Carver et al., 2012) (Supplementary File S1.4)
indicated the presence of amber stop-codons (TAG) within
several genes in the NCBI GenBank annotation. The
substitution of a TAG stop codon by a sense codon is a codon
usage variation which has been described in some
microorganisms and ciliates (Tourancheau et al., 1995). As a
matter of fact, the usage of the unusual amino acid pyrrolysine
has first been described in a paper by Heinemann et al. (2009).
When re-analyzing the genome withMetascan using a translation
table that does not use TAG as stop codon like table 25, a more
intuitive layout of the ORFs appeared, as well as a gene count that
is closer to the GenBank file (4,631). BLASTx analysis of a few of
these ORFs against the NCBI nr database showed that they had
full length hits against database entries, which had either amino
acid X or O (pyrrolysine) at the position of the stop codon in the
query sequence (Supplementary File S1.4).

Contrastingly, in the annotation of M. oxyfera Metascan
predicted 2757 ORFs, which are 385 less than in the GenBank

TABLE 5 | BEACON (F1) scores comparisons of the GenBank files created by Prokka, Metascan, eggNOG, and NCBI for all eight genomes.

NCBIa Metascanb

Genbank Metascan eggNOG Prokka NCBI eggNOG Prokka

E. coli 0.91 0.90 0.91 0.91 0.99 1
M. fumariolicum SolV 0.84 0.83 0.84 0.84 0.99 0.99
Candidatus K. stuttgartiensis 0.80 0.79 0.80 0.80 0.99 1
N. eutropha 0.83 0.82 0.83 0.83 0.99 0.99
Candidatus M. oxyfera 0.81 0.80 0.81 0.81 0.99 1
M. acetivorans 0.72 0.73 0.72 0.72 0.99 0.99
N. moscoviensis 0.80 0.79 0.80 0.80 0.99 0.99
P. denitrificans 0.87 0.47 0.87 0.87 0.55 1

aF1 score compared to the Genbank files from NCBI.
bF1 scores compared to the Metascan annotation.

TABLE 6 | Direct and detailed comparison of the GenBank files from NCBI and Metascan. The differences in the grey area are related to the NCBI reference.

Gene calls M. a N. e P. d E. c cM. o N. m M. f cK. s

Detected identical 2,960 2,193 4,324 3,988 2,294 3,400 1,875 3,089
Detected similar 472 75 196 97 106 213 73 177
Unique to NCBI 1,118 379 653 452 742 896 400 833
Unique to Metascan 1,514 490 656 330 361 933 348 825
ΔrRNA −1 0 0 0 0 −1 0 −1
ΔtRNA 57 0 2 2 0 2 1 0
ΔncRNA 0 −3 −2 −72 0 −2 −2 −3
Δframeshift/Pseudo 0 −343 −213 −86 −2 −109 −151 −281
ΔFunctional genes −1,409 −559 −998 −1,052 −1,438 −648 −379 −797
Total Reference 4,550 2,687 5,173 4,537 3,142 4,509 2,348 4,099
Total Metascan 4,946 2,758 5,176 4,415 2,757 4,546 2,296 4,091

M.a =M. acetivorans, N. e = N. eutropha, P.d = P. denitrificans, E. c = E. coli, cM.o = “CandidatusM. oxyera”, N.m =N. moscoviensis, M. f =M. fumariolicum SolV, cK.s = “Candidatus K.
stuttgartiensis”. Δ+, Metascan annotated more genes; Δ−, metascan annotated less.
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file (3,142; 13% difference). When comparing the two analyses
through Artemis, it becomes apparent that the NCBI GenBank
file contains more small proteins (<200 amino acids) than the
Metascan GenBank file. The reason for this could be the threshold
setting (1E-06) for small proteins to be considered a true protein
within Metascan.

Noteworthy are the 57 tRNAs in M. acetivorans found by
Metascan that were not present in the GenBank entry. This
exemplifies that also GenBank files are far from perfect, as was
discussed before (De Simone et al., 2020). However, Metascan
had difficulties in identifying pseudo-genes (up to 343 genes in
Nitrosomonas eutropha) and ncRNAs (up to 72 in E. coli).

Metagenome Analysis
For a metagenome analysis, 2,537 genomes from a large-scale
metagenomic study of aquifer sediments (Anantharaman et al.,
2016) were downloaded from ggKbase (https://ggkbase-help.
berkeley.edu) together with a pre-parsed file containing the
average coverage depth for each bin. The per-genome key
gene analysis for all 2,537 genomes in this dataset took almost
three full days to complete, with an average of 1.7 min per
genome. In the full analysis using all metabolic genes, it took
the script about 19.5 days, corresponding to an average of 11 min
per genome. The key gene analysis of the unbinned metagenome
(i.e., the combined bins) was finished in just under 2 days, which
would equate to 1.1 min per genome (Table 2).

Similar to the mock community analyses, the formate
dehydrogenase iron-sulfur-containing beta (K00124; 369, 1018,
973, and 951 hits in the Full Annotation (FA), Binned Key gene
(BK), Unbinned Key gene (UK), and Full Unbinned (FU)
analyses, respectively) and gamma subunits (K00127; 126 FA,
1413 BK, 1381 UK, and 454 FU), and the anaerobic carbon-
monoxide dehydrogenase iron-sulfur subunit CooF (K00196; 654
FA, 1862 BK, 833 UK, and 766 FU) showed clear differences in
gene counts. Furthermore, malyl-CoA ligase frequencies were
overestimated in the key gene analyses. BLAST analysis of these
indicated that the misannotated genes were actually succinyl-
CoA ligases, a gene not included in the key gene set but present in
the large metabolic set.

Metascan vs. Reference
A direct comparison between the analyses from Anantharaman et al.
(2016) and Metascan is hampered by different choices made during
analyses, like which genes to include in the key gene set and how to
define the nutrient cycles. However, a few things became apparent
(Table 7; Supplementary File S1.5). For instance, when focusing on
methylotrophy Metascan identified 82 enzymes related to the
pyrroloquinoline quinone (PQQ)-dependent methanol
dehydrogenases (MDH) in the binned key gene analysis, which
were not reported in the original analysis. After curating the
retrieved set for (nearly) full length genes, a tree was constructed
(Felsenstein, 1985; Saitou and Nei, 1987; Jones et al., 1992; Kumar
et al., 2016), revealing that most of these proteins are PQQ-dependent
alcohol dehydrogenases from largely uncharacterized lineages within
this protein family (Supplementary File S1.6). Anantharaman et al.
(2016) found one organism (Burkholderiales bacterium
RIFCSPLOWO2_12_67_14) putatively involved in methane

oxidation, based on the presence of the genes encoding the
particulate methane monooxygenase (pmoCAB). In the key genes-
only analysis,Metascan foundfive pmoB, and one pmoC gene hits that
could also be confirmed using BLAST. In the full metabolic
annotation, Metascan found additional six pmoA and five pmoC
genes. In total, these genes were divided over four species from the
order Burkholderiales. Thus, besides the earlier mentioned species, the
dataset contained three previously unrecognized Burkholderiales
bacteria encoding particulate methane monooxygenase. From those
three, two MAGs contained two complete pmoCAB operons and one
was predicted to only encode pmoA and pmoC. However, a BLAST
search on the gene directly downstream revealed that pmoCA is
followed by an unrecognized pmoB in this organism as well. Based on
the coverage of the four species containing the pmoCAB genes,
methanotrophy is found in ca. 0.6% of the entire sample and
0.16% of the total number of organisms, and methylotrophy
constitutes 0.82% and 0.84%, respectively. Correspondingly, malyl-
CoA lyase (mcl), a marker gene for the serine pathway in
methanotrophy and methylotrophy, had a total abundance of 1.7%
and was detected in 0.1% of all organisms. While these findings
expand the number of putative methane oxidizers present, it still
indicates that methane oxidation is of minor importance in this
aquifer ecosystem.

On the contrary, a process in the nitrogen cycle that appears
to be over-predicted by Metascan is nitrate reduction to
ammonium (both assimilatory and dissimilatory), which is
mainly caused by large numbers of misannotated small
subunits of the two main enzyme systems catalyzing nitrite
reduction (nirD and nrfH). BLAST analyses showed that besides
true nirD these genes encode diverse ferredoxins, Rieske 2Fe-2S
proteins and dioxygenases.

Metascan vs. METABOLIC and DRAM
The eggNOG analysis ran for over 44 days and was expected to
run for over a year at 5 h per genome, therefore the analysis was
not included into the metagenome analysis in this paper.
METABOLIC and DRAM reported the results as lists of
identified genes per genome and did not provide a combined
overview of all analyzed genomes. However, for DRAM an
overview could be created from the available data. The
binned analysis took 31 days and 13 h, 12 days longer than
Metascan. The unbinned analysis ran for 36 days and 23 h, after
which it crashed due to memory issues during the creation of the
GFF files. Nevertheless, the distillation of the annotation was
possible with the annotation files that were produced so far.
Strikingly, both DRAM analyses were nearly identical and can
thus be reported as one (unbinned; Supplementary Data S6). In
METABOLIC, the binned analysis ran for 3 days and 17 h, the
unbinned analysis for 3 days and 11 h. As METABOLIC did not
provide a full overview of the combined genomes only the
unbinned dataset was used for comparison. Both
METABOLIC and DRAM reported the results in KEGG
numbers, which were used for making the comparisons.

Table 8 summarizes the annotation results, reporting the
maximum number any single protein assigned to the respective
process was detected, or the sum of all detected hydrogenases
in the case of hydrogen metabolism. Overall, annotations are
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similar for all three methods, with a few exceptions. Most
notably, DRAM did neither detect any methanol
dehydrogenases, nor anaerobic ammonium oxidation
(anammox). The high number for MDHs in the other
methods is likely an overestimation, which was confirmed
by BLAST analysis that indicated that the number of MDHs
is more in line with the predicted methanotrophy genes (15–17
MDHs). DRAM also did not report several sulfur cycling
processes. For thiosulfate oxidation, METABOLIC detects
the largest number of genes (320 vs. ~130 in Metascan and
DRAM), but the lowest for thiosulfate reduction (133). Here,
Metascan reports much higher numbers (684 and 1,372),
followed by DRAM (234). However, these numbers
especially for Metascan appear to be an overestimation, as
they are only based on the detection of PhsA. In contrast, PhsB
was detected 385 and 226 times by Metascan, and PhsC even
only 0 and 25 times, However, none of these genes was
included in METABOLIC or DRAM, hampering a
comparison between methods.

Finally, when comparing the two Metascan analyses with
each other, it becomes apparent that the number of genes
predicted in the full annotation is higher for almost all
cycles, likely due to the higher e-value (E-50 vs. E-100) used
in the full annotation.

DISCUSSION

Database Construction
In this study, we present Metascan, a new tool for analysis of the
metabolic potential of complex microbial communities. We
developed this tool to enable researchers to obtain a fast but
detailed and reliable overview of the main nutrient cycle reactions
encoded by complex microbial communities in large
environmental metagenomic datasets. This functionality
currently is lacking in most annotation tools, which mainly
focus on genome-centric analyses and rarely structure their
output to give an overview of the biogeochemical nutrient
cycles being catalyzed in the investigated environment.
Moreover, the currently available databases used for similarity
search-based annotations are too large to allow fast annotations
of complete metagenomes, too unstructured to yield an overview
of the nutrient cycles taking place, or, in the case of well-curated
databases, also too small to offer the required resolution especially
for environmental communities rich in uncultured and
understudied microorganisms. We thus constructed a novel
HMM-based database that not only allowed fast and accurate
gene- or genome-centric annotation of complex metagenomes,
but also categorized the identified protein-coding genes according
to the relevant nutrient cycles.

TABLE 7 | |Results from the Anantharaman et al. (2016) study and Metascan binned key gene analysis. Groundwater and sediment sample annotations were taken are from
Anantharaman et al. (2016).

Groundwater Sediment Metascan

N# org %O-Deptha N# org %O-Deptha N# org %O-Deptha

Carbon Cycle
Carbon fixation 186 12 186 30 1022 38
Methanogenesis 0 0 0 0 0 0
Methanotrophy 0 0 0 0 5 <1
Methylotrophy NA <1 NA <1 51 3

Hydrogen oxidation 356 22 356 45 400 14
Sulfur Cycle
Sulfate reduction 21 <1 21 2 165 9
Sulfite reduction 21 <1 21 <1 724 32
Thiosulfate oxidation 77 7 77 9 199 10
Thiosulfate reduction 53 2 53 6 361 17
sulfite oxidation 51 3 51 8 83 6
sulfide oxidation 208 17 208 29 371 18
sulfur oxidation 157 13 157 14 2 <1
sulfur reduction 223 16 223 23 194 12

Nitrogen cycle
Nitrogen fixation 54 3 54 1 87 5
Anammox 11 2 11 1 22 <1
ammonia oxidation 0 0 0 0 14 <1
Nitrite oxidation 85 8 85 15 265a 14a

DNRA 108 12 108 13 499b 22b

Denitrification
Nitrate reduction 212 15 212 18 265a 14a

Nitrite reduction 150 23 150 21 159 7
Nitric oxide reduction 109 6 109 11 168 10
Nitrous oxide reduction 56 3 56 4 98 6

a%O-depth is the percentage of the organisms that can perform the process in absolute numbers (depth). For instance, 12% of every single bacteria/archaea can perform Carbon Fixation
in Groundwater.
bThe HMMs, in Metascan cannot distinguish between nitrate reductases and nitrite oxidoreductases.
cThese are the numbers for the small subunit NirD. Large subunit NirB has N# 151 and 10% O-depth.
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Metagenome Analysis
A direct comparison of different annotation tools is hampered by
the choices made during the analysis and the reporting of the
results. Genes with multiple subunits can be reported as present
when all, some or just one subunit is present. Some processes are
part of two pathways (e.g., carbon fixation in methanol
metabolism), and some cycles are represented by multiple
pathways (carbon fixation). Obviously, different choices have a
direct impact on the results. For instance, some protein
complexes with multiple subunits like the anaerobic sulfate
reductase (ASR) consist of subunits rarely detected in the
Metascan full annotation (AsrA and ArsC, both detected five
times) and others that are likely overpredicted (AsrB, detected
480 times).

In general, Metascan reached a similar level of precision as the
GenBank reference annotation, although it tended to overpredict
certain functions. This was especially prevalent for annotations of
cytochromes and ferredoxins, which are very common proteins in
nature and participate in a wide range of metabolic reactions, not
seldom with overlap and interchangeability in function. To this

extent, while both cytochromes and ferredoxins contain
conserved domains that can easily be recognized through
bioinformatics, a large set of well annotated reference proteins
is required to ensure their exact annotation. However, this level of
resolution is not present in most databases, and many
automatically annotated genomes contain mis-annotated genes
or lack proper annotation altogether. These errors then are
propagated through different databases, consequently leading
to a reduced reliability of annotation also in conventional
tools (Schnoes et al., 2009). An example of this is K00124
(FdoH) in the UniProtKB/TrEMBL database, where either 1)
the UniProtKB/TrEMBL dataset is heavily misannotated and
many true NuoF are wrongly categorized under K00124, 2)
the protein entries identified by BLASTP in the GenBank
database are wrongly annotated as NuoF and in fact are true
FdoHs, which then would also indicate that in the GenBank files
from the mock community NuoFs are underrepresented, or 3)
these subunits belong to distinct protein complexes participating
in different pathways but are too similar to be distinguished by
HMM searches. While the last option seems plausible here, since
NuoF and FdoH both are Fe-S proteins with a common
evolutionary history (Oh and Bowien, 1998), this issue mainly
appears to be caused by the propagation of misannotations in the
public databases (Schnoes et al., 2009), as especially many
formate dehydrogenase beta subunit genes appear to be
deposited as NuoF in GenBank. Similarly, for the
overestimated carbon monoxide dehydrogenase iron-sulfur
subunit CooF (K00196), the raw data gathered from
UniProtKB/TrEMBL contained mostly unnamed ferredoxins,
which corresponds to a large part of the obtained false
positives in our analyses.

Another factor hampering correct functional annotation can
be overlapping functionality of enzymes. For instance, malyl- and
succinyl-CoA ligases react with two structurally quite similar
substrates, as both malate and succinate are small four-carbon
dicarboxylic acids. Since both proteins furthermore catalyze the
same type of reaction, they are structurally very similar with
respect to their conserved regions, which is also reflected in the
fact that succinyl-CoA ligase is able to use malate as alternative
substrate (Nolte et al., 2014). Consequently, when using a small
database as in our key genes-only analysis that contained only the
malyl-CoA ligase, E-values for hits against succinyl-CoA ligases
are small enough to be considered significant, leading to the
observed overestimation of malyl-CoA ligases. For this particular
case, this could largely be resolved by adding the succinyl-CoA
ligase to the core gene set representing the citric acid. In general,
this showcases the necessity of using databases with good
resolution, but it also highlights the underlying intrinsic
problem of annotating complex microbial communities, where
the genes of novel microorganisms might be so distinct that an
automatic differentiation between such similar functions is not
possible.

Despite these imperfections in our HMM database,
annotations with Metascan achieved a level of precision
comparable to other annotation tools, but at a greatly reduced
analysis time. In general, it is becoming increasingly challenging
to obtain fast and reliable annotations due to the rapid growth of

TABLE 8 | Results from Metascan (unbinned), Metabolic (unbinned), and DRAM
(unbinned) analyses of the Anantharaman metagenome (2016).

Metascan METABOLIC Dram

key full

Carbon Cycle #hitsa #hitsa #hitsa #hitsa

Carbon fixation 1578 2776 1707 1686
Methanogenesis 0 0 0 0
Methanotrophy 6 8 5 6
Methylotrophy 99b 294b 66 0

Hydrogen formationc 557 545 471
Hydrogen oxidationd 1370 2596 537 2008e

Sulfur Cycle
Sulfate reduction 193 480f 127 124
Sulfite reduction 449 718 378 388
Thiosulfate oxidation 133 195 320 124
Thiosulfate reduction 684g 1372g 133 234
sulfite oxidation 152 317 45
sulfide oxidation 491 877 587
sulfur oxidation 2 3 2
sulfur reduction 451 681 276

Nitrogen cycle
Nitrogen fixation 103 208 102 87
Anammox 53 90 60 0
Ammonia oxidation 6 8 6 6
Nitrite oxidation 294 537 162 198
DNRA 670 578 290 198
Denitrification
Nitrate reduction 294 537 148 198
Nitrite reduction 168 358 201 195
Nitric oxide reduction 181 303 340 194
Nitrous oxide reduction 98 39 96 96

aReporting the maximum number any single protein assigned to the respective process
was detected.
bCombined XoxF, MxaF (both EC:1.1.2.7) and NDMA-dependent MDH (EC:1.1.99.37).
cSum of all Fe-Fe hydrogenases.
dSum of all Ni-Fe hydrogenases.
eSum of all hydrogenases detected, as there is no distinction between Ni-Fe and Fe-Fe
hydrogenases in DRAM.
fInflated by AsrB, otherwise 338.
gInflated by PhsA, otherwise 385 and 226, respectively, based on PhsB detection.
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reference databases and the increasing size and sequencing depth
of metagenomic samples to be analyzed. Thus, methods that
reduce the reference dataset by clustering entries into subsets
represented by HMM profiles are promising developments to
overcome this hurdle, especially when considering that Metascan
reached a high precision despite the drawbacks of the uncurated
input database.

As indicated above, it became apparent during the
development of this tool that we needed to construct a
database that not only allows fast and accurate annotation of
gene functions, but also categorizes the output according to the
major nutrient cycles, which required a novel approach to build
and structure this database.

Further Considerations
Here, we opted for a proof-of-concept approach, based on
clustering proteins deposited in the UniProtKB/TrEMBL
database. This database is by no means perfect since many
protein entries in TrEMBL are not correctly annotated or
incomplete, and herein lies the major point of improvement of
our HMM database. The ideal input dataset would be manually
curated like for instance the UniProtKB/SwissProt database,
which will vastly increase the correctness for annotation.
However, such well-curated databases are not yet suitable as
many KO numbers are represented by less than three entries,
which is the minimal number of sequences needed to create a
HMM profile. A solution to circumvent this limitation would be a
top-down approach, starting from a well curated database and
subsequently adding missing HMM profiles using entries from
other, less-well curated data sources.

Another possibility to improve the reliability of annotation is
by employing a more stringent trimming and clustering
algorithm when building the HMM database. However, while
creating a database with stricter clustering rules will increase
correctness, this will be at the expense of a longer analysis time.
Lastly, the proteins in our database were clustered based on
similarity, but if clustering instead was achieved by means of
phylogenetic trees, this would provide additional information not
only about evolutionary descent, but also about the exact function
of proteins belonging to large and diverse enzyme families.
However, this comes with its own set of difficulties and is not
a trivial matter.

In the future, similar HMM subsets as developed here for
nutrient cycling metabolic pathways could be constructed for
non-metabolic pathways for a more complete genomic
annotation. This will however greatly increase the runtime
of the script, which would mean the need for a heavier
computational infrastructure. For virus detection, a database
of viral genes could be constructed in a similar way as
presented here. Furthermore, the same procedure might be

applicable for cell loci-specific proteins (e.g., cell wall or
S-layer spanning), as these often share stretches of
conserved amino-acids. In combination with RNA-seq, our
HMM-based annotation approach would not only detect
metabolic potential, but also actual activity of the overall
cycles.

All things considered, we feel that Metascan can be of great
help in mapping the important nutrient cycling pathways in an
ecosystem by reducing and simplifying the input databases
without compromising accuracy.
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