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Bacterial diversity is often analyzed using 16S rRNA gene amplicon sequencing.
Commonly, sequences are clustered based on similarity cutoffs to obtain groups
reflecting molecular species, genera, or families. Due to the amount of the generated
sequencing data, greedy algorithms are preferred for their time efficiency. Such algorithms
rely only on pairwise sequence similarities. Thus, sometimes sequences with diverse
phylogenetic background are clustered together. In contrast, taxonomic classifiers use
position specific taxonomic information in assigning a probable taxonomy to a given
sequence. Here we introduce Taxonomy Informed Clustering (TIC), a novel approach that
utilizes classifier-assigned taxonomy to restrict clustering to only those sequences that
share the same taxonomic path. Based on this concept, we offer a complete and
automated pipeline for processing of 16S rRNA amplicon datasets in diversity
analyses. First, raw reads are processed to form denoised amplicons. Next, the
denoised amplicons are taxonomically classified. Finally, the TIC algorithm
progressively assigning clusters at molecular species, genus and family levels. TIC
outperforms greedy clustering algorithms like USEARCH and VSEARCH in terms of
clusters’ purity and entropy, when using data from the Living Tree Project as test
samples. Furthermore, we applied TIC on a dataset containing all Bifidobacteriaceae-
classified sequences from the IMNGS database. Here, TIC identified evidence for 1000s of
novel molecular genera and species. These results highlight the straightforward application
of the TIC pipeline and superior results compared to former methods in diversity studies.
The pipeline is freely available at: https://github.com/Lagkouvardos/TIC.

Keywords: taxonomic classification, microbial diversity, clustering, microbiome analysis, amplicon sequencing,
NGS processing pipeline

1 INTRODUCTION

Today, profiling of microbial communities is often conducted by inexpensive and high throughput
DNA-sequencing (i.e., next generation sequencing, NGS). These profiling techniques often rely on
amplifying target marker genes by using the polymerase chain reaction (PCR) and subsequent
parallel sequencing (Nocker et al., 2007). The obtained sequences are then compared to gene
databases for probable taxonomic assignment. All assigned sequences of a sample result in a
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microbial profile. Since many years, the 16S rRNA gene is the
primary target for most microbiome and diversity studies due to its
versatility and phylogenetic information density (Woese et al., 1980).
This technique can even resolve the microbial profile down to strain
level, as shown in a study of Johnson et al. (2019).

In common approaches, sequence reads are usually de novo
clustered into groups based on their sequence similarity (Blaxter
et al., 2005), (Porter and Hajibabaei, 2018). Subsequently, the
centroids of these similarity groups are classified to the closest
known taxonomic level, obtaining so called Operational
Taxonomic Units (OTUs). To form these clustered groups,
multiple methods have been proposed. Several are based on
calculating pairwise sequence similarities from multiple
sequence alignments using UPGMA or neighbor-joining
algorithms (Liu et al., 2009), (Li, 2015). However, these
algorithms are computationally demanding processes and not
the fastest in finding similar sequences in multiple sequence
alignments, especially when using large similarity matrices as
needed in microbiome studies. Thus, heuristic distance-based
greedy clustering (DGC) and abundance-based greedy clustering
(AGC) algorithms have been developed that produce the required
clustering with a single pass through the data and are much faster
(Edgar, 2010), (Rognes et al., 2016). Taken together, compromises
must be taken between accurate and thoroughmethods on one side
and fast analysis methods on the other side. The shortcomings of
the DGC and AGC algorithms follow from their single pass
through the data. For instance, these algorithms choose the first
amplicon from the sequence pool and take it as the first OTU
centroid. The next sequence is compared to the first based solely on
similarity. If sufficiently similar, the sequence is added to the
centroid. In case the sequence is too different, a second centroid
(second OTU) is initiated. Thus, an OTU is formed by adding
sequences being similar to the centroid above a defined threshold.
This step is repeated with the remaining, not yet clustered
sequences until all are assigned to OTUs (Edgar, 2010), (Rognes
et al., 2016). Hence, the order of sequences in each data set strongly
influences the resulting clustering output. The sequential addition
of new sequences to existing OTUs might even sort sequences into
different OTUs even though they have a significant similarity.
However, these sequences are never evaluated together due to the
sequential nature of the process. Ultimately, this causes random
variation in microbial community assignments (Koeppel and Wu,
2013). While preordering the sequences based on their abundance
in the dataset increases the reproducibility of the clustering process
(Edgar, 2013) this does not eliminate the possible misplacements of
sequences in different OTUs (Edgar, 2013).

More recent approaches argue against the process of clustering
and rather support the processing of sequences only by removal
of chimeras and sequencing errors down to what is referred to as
denoised sequences. Two algorithms are the most common used
for denoising, DADA2 (Callahan et al., 2016) and UNOISE3
(Edgar, 2016). The results are, as said, denoised sequences in both
cases, while the creators of DADA2 call their result amplicon
sequence variant (ASV) and the author of USEARCH names
them zero-radius OTU (zOTU).

In any case, after having processed all sequences to a list of OTUs
representatives or denoised sequences they are classified to their

closest taxonomy possible. The outcome of this process is dependent
on initial primer choice (i.e., the variable region of the 16S rRNA
gene used), the software chosen to perform each task and reference
databases used (Abellan-Schneyder et al., 2021), including RDP (Lan
et al., 2012) or SILVA (Quast et al., 2012). Unfortunately, reference
databases have partially different taxonomic nomenclature, differ in
update frequency, and unavoidable errors in such reference
databases are affecting the quality and comparability of the
results (Sierra et al., 2020). For example, the database
GreenGenes DeSantis et al. (2006) has not been updated since
2013 and should not be used anymore. Through the years,
SILVA and RDP have distinguished themselves and are currently
the most frequently used by classifiers.

Taxonomic classification performs well on sequences from
characterized bacteria and archaea, correctly assigning them up
to their genus level. However, unknown sequences not represented
in the reference databases result in incomplete taxonomic paths. In
every sample, there will be sequences from yet undescribed taxa.
For instance, in gut samples, the proportion of OTUs that can be
assigned to fully described species ranges from 35 to 65%. For
environmental samples, this ratio is even lower (Lagkouvardos
et al., 2017). For analysis of ecological patterns in higher taxonomic
levels (e.g., family), sequences with incomplete taxonomic
classification are collectively binned intro groups of “Unknown
taxon” or simply discarded. Obviously, these problems limit the
resolution of the biological signal that could have been extracted
from available sequence data (Figure 1).

Here we present “Taxonomy Informed Clustering” (TIC), a
novel tool that flips the above paradigm, i.e., classifying after
clustering. Here, we first taxonomically classify each sequence
before any clustering is conducted. The taxonomic information
acquired and now attached to each sequence acts both as a guide
and as a limit in an incremental clustering process (Figure 2).
Thus, the dataset is divided into subsets following the assigned
taxonomies and, working within each subset, we avoid merging
sequences from diverse lineages together. As a result, the created
clusters have a higher purity and their number resembles more
that of the intrinsic community structure. The incremental
clustering procedure also allows sequences with incomplete
taxonomic classification to be positioned in the taxonomic
tree, allowing for higher resolution in compositional
comparisons of microbiome studies. Our novel tool, TIC, is
offered as a complete set of scripts, allowing researchers to
perform a thorough analysis from raw reads to compositional
tables for subsequent comparisons (e.g., in alpha- and beta-
diversity, etc.) within a single pipeline.

2 MATERIALS AND METHODS

2.1 Overview
The TIC-Pipeline consists of a setup (i.e., installation) and four
processing steps: 1) Processing raw reads from a study’s FASTQ
files, 2) Extraction of the consensus 16S region, creation of
zOTUs, and taxonomic classification up to the genus level, 3)
De-novo clustering based on taxonomic information (TIC) of the
used zOTUs, 4) Reporting the results from all the previous steps.

Frontiers in Bioinformatics | www.frontiersin.org April 2022 | Volume 2 | Article 8645972

Kioukis et al. Taxonomy Informed Clustering

https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


2.1.1 Pipeline Installation
The TIC-Pipeline is a mixture of bash commands, python, and R
scripts connected by a main python script. An installer script handles
the installation of the command-line tools and their dependencies. The
installer also downloads the reference databases (SILVAv.138), and the
necessary programs, which includes KronaTools v.2.8 (Ondov et al.,
2011), rapidNJ v.2.3.2 (Simonsen et al., 2010), SINA v.1.7.2 (Pruesse
et al., 2012), SortMeRNA v.2.1 (Kopylova et al., 2012), USEARCH v.10
(Edgar, 2010), and VSEARCH v.2.13.4 (Rognes et al., 2016). In
addition, the installer uses a dedicated file-server hosting the tools
and the databases to set up dependencies for the pipeline, guaranteeing
availability without breakages. Taken together, users just run the
installer script, which installs R libraries and the Python packages
needed automatically. After installation, we suggest a test run to ensure
that all dependencies are met.

The structure of the pipeline is modular. An easy to modify text
file “config options.txt” contains the configuration options
controlling the pipeline’s flow. Configuration options include the
number of threads to use, the current active mode (production or
testing), or the input files’ location. The user may also execute each
pipeline’s step independently, given that they provide correctly
formatted data. For example, RDP classifications (Wang et al.,
2007) could be used instead of the default SINA classifier.
Detailed documentation of each option for all steps is given at
the tool repository. Illustrations shown in the present manuscript
directly correspond to generated outputs from the TIC-Pipeline.

2.1.2 Sample-wise Processing
At this step, raw sequencing data are processed to obtain unique
amplicon sequences. Those are the basis for any downstream

analysis. This process includes sequence trimming to remove
primers, merging paired reads, and filtering sequences based on
expected error thresholds. Default options are indicative only and
users are expected to fine-tune the parameters according to
their needs.

2.1.3 Overlapping Regions Detection and Taxonomic
Classification
Sequences from different studies cannot always be directly
compared as usage of different V-regions of the 16S rRNA
genes results in sequences of different lengths and sometimes
non-overlapping V-regions, which cannot be integrated. Matters
are further complicated, even for sequences originating from the
same method, due to the usage of diverse primers (and despite
using the same V-regions) among studies. Reference Based
Alignment (RBA), like SINA, has been used in the past to
tackle this problem, effectively detecting any overlapping
region among sequences from various studies and focusing the
analysis on regions, which are represented most often
(Lagkouvardos et al., 2014). Every sequence in the input
dataset is aligned to the reference database (SILVA) producing
a global alignment of 50,000 positions. By summing the number
of aligned bases in each position of the multiple sequence
alignment, the user can identify the most representative
region, enabling the extraction of this region. The TIC
pipeline provides an automatic calculation of this vector and
plots the result, so the user can confidently identify the most
informative region and set proper limits for the extraction of that
region (Figure 3). The chosen region is used for taxonomic
classification. The classification sub-process uses the Last

FIGURE 1 | Schematic representation of the shortcomings of missing detailed taxonomic assignments in microbiome analysis. OTUs missing taxonomic
classification for a certain level (e.g., genus) are analyzed together under the unknown label. The resulting conclusions can be deceiving when the constituting natural
divisions are present nonuniformly across conditions.
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Common Ancestor (LCA) shared by at least 7 of the 10 closest
sequences in the database to place a sequence.

2.1.4 Region Extraction and Denoising
Based on the user’s evaluation of the region with the highest
coverage among samples (recorded as parameter in the
configuration file), each sequence is trimmed for positions
outside this defined region. Trimmed sequences are pooled,
dereplicated, and denoised using the UNOISE3 algorithm
(Edgar, 2016) to create zOTUs. All denoised sequences are
checked for valid 16S rRNA sequences by SortMeRNA using
the SILVA bacteria and archaea databases. The taxonomic
information derived from the previous step is added
automatically to the header of the zOTU FASTA file and is
used in the next step to guide the clustering.

2.1.5 Taxonomy Informed Clustering
A step-wise taxonomy-guided clustering was implemented to
utilize position-specific taxonomic information for purer clusters.
TIC’s starting point is the pool of unique denoised sequences
(zOTUs) with a recognized genus name (Gseqs). Gseqs are

clustered within each genus to produce molecular species
(sOTUs) within the identified genera. Afterwards, sequences
that have been classified only up to the family level (Fseqs) are
processed. In order to account for limitations in the taxonomic
classification (i.e., missing levels), such Fseqs are first searched if
they match any existing sOTU from Gseqs within the current
family. In case a match is found, the taxonomy of the zOTU in
question is updated if within a designated species cutoff level.
However, sequences matching existing sOTUs above the
designated genus cutoff level, but below the species level, are
assumed to be novel sOTUs within the existing genera. Finally,
Fseqs without a match, even at the genus level to existing sOTUs,
are used to produce novel sOTUs that are next clustered again to
novel gOTUs. Sequences with an unidentified taxonomic family
follow the same procedure as before, but with the added layer of
fOTUs. For instance, they are first matched against sOTUs,
gOTUs, and known families of the same order. If no matches
are found according to corresponding cutoffs, the unidentified
sequences are designated as novel fOTUs (Figure 4).

Since there is no consensus on sequence similarity values
between orders, classes, and phyla across all bacteria, TIC

FIGURE 2 | Simplified representation of the TIC algorithm. (A) Sequences are divided based on their identified taxonomic level. (B) 1) Denoised sequences within
the same genus are clustered to produce sOTUs. 2) Sequences of unknown genera within the same family are clustered into sOTUs. 3) Produced sOTUs are further
clustered into novel gOTUs. 4) Sequences of the unknown family are first clustered into sOTUs. 5) Those sOTUs produce gOTUs. 6) fOTUs are formed from the gOTUs of
an unknown family.
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produces only novel fOTUs, gOTUs and sOTUs, while filling the
other missing taxonomic ranks (i.e., phylum, class and order)
with a placeholder, i.e., UNKPHYLUM, UNKCLASS, and
UNKORDER, respectively. Since no universal cutoffs for 16S
rRNA gene fragments (i.e., amplicons) exists for delineating
species, genera, and families, we adopt the popular cutoffs
normally used for the whole 16S rRNA molecule (97, 95, and
90%, respectively). However, we recommend that those cutoffs be
tailored to each analysis to reflect the variance captured within the
selected fragment (i.e., V-region used).

2.1.6 Results Reporting and Graphs
The produced zOTUs are outputted in FASTA format with the
full taxonomic path up to sOTU level, incorporating any novel
families and genera in the header of each zOTU. Furthermore, the
taxonomic tree (Figure 5A) indicates novelty (i.e., unknown
bacteria and archaea) within the given study by color-coding
each branch (Asnicar et al., 2015). Towards this end, the
microbial novelty and diversity in the examined samples are
displayed by uniting the taxonomic tree and the quantification
information contained within the Krona plot in a combined
figure (Figure 5B). Finally, the zOTU table produced shows
how many reads in each sample constitute the respective

sOTU together with the sOTUs’ taxonomy. Additional
mapping files produced as output reflect the relations between
sOTUs to gOTUs and gOTUs to fOTUs.

2.2 Benchmarking
2.2.1 Naive Classifiers vs TIC
Comparisons between naive classifiers (USEARCH and
VSEARCH) and TIC require a dataset for which the complete
taxonomic information is available. We created a dataset fulfilling
this requirement by using the sequences from the Living Tree
Project (Yarza et al., 2008) and their corresponding similarity
matches at a threshold of 98% of the non-redundant SILVA v128
database. This dataset was designated LTP. All sequences
included were classified with SINA and, in order to simulate
real-life scenarios, we pruned the produced taxonomies with two
strategies, designated “hard” and “soft.” Hard pruning
corresponds to the removal of whole clades from the
taxonomic tree at random levels. We removed about 10, 5, 2.5
and 1% from the tree at the level of genera, family, order, and
class, respectively. This hard pruned dataset was used to test the
performance for cases where completely unknown taxonomic
groups are present within the actual data. The chosen percentages
were based on empirical observations on missing taxonomic

FIGURE 3 | Sum of bases on each SINA alignment position. The height identifies the region with the most coverage in the coverage plot. Guided by this plot, users
should select the target region for their analysis. All sequences will be trimmed around those positions, and only those containing a sufficient number of bases will be
passed to the next step.
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FIGURE 4 | Overview of the TIC processes. (A) Diagram of the TIC process for sequences with identified genus-level taxonomy. All sequences within each genus
are used to create sOTUs. (B) Diagram of the TIC process for sequences with identified taxonomy up to the family. First step is searching for matches among those
sequences and sOTUs contained within genera in the current family. Not matched sequences create novel sOTUs, which are searched for matches at the genera cutoff
level (default 95%), as specified at the configuration file; if not matched again, they produce novel gOTUs. Any matched sequence gets the taxonomy of its match.
(C) Diagram of the TIC process for sequences without family classification. Searching for matches among existing sOTUs at the order level. Not matched sequences
create novel sOTUs, which are searched for matches at the genera cutoff level; if not matched again, they produce novel gOTUs. Another search is conducted afterwards
at the user-specified family similarity percentage (default 90%), afterward, and if not matched again, novel fOTUs are created. Any matched sequence gets the taxonomy
of its match.
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classification at each level when using SILVA on real data. The
second pruning strategy “soft” is the stochastic removal of
taxonomic information, simulating shortcomings of the
classification process in assigning taxonomies to every leaf of
each clade correctly, also following the above percentages. Those
strategies are needed because LTP consists only of taxonomically
known sequences on which classifiers have an advantage. Our
pruning strategies allow a fair comparison between the
taxonomy-aware TIC and the naive clustering algorithms. For
testing, the clustering was performed 100 times for each strategy
and tool.

2.2.2 Clustering Metrics
The following metrics were calculated for every trial: cluster
purity, Adjusted Rand Index (ARI), and Normalized Mutual
Information (NMI). Concerning cluster purity, this value
ranges from 0 to 1. It shows the mean fraction of sequences
across all clusters that are correctly pooled together according to
the genus taxonomic information included in LTP. Next, the ARI
gives a value about how often a randomly chosen sequence from
the dataset was found in the same cluster as in the original LTP
data set, when producing the same clustering (Steinley, 2004).
Finally, the Normalized Mutual Information (NMI) quantifies
the amount of information we obtain from clustering A by
observing the clustering B; thus, it is a measure on how
similar two different clustering runs (i.e., A and B) are (Vinh
et al., 2010). A higher NMI score indicates that the information

we got by clustering reflects the original taxonomic assignments
closer. In turn, this allows us to approximate the entropy of the
produced clustering.

We compared execution time for TIC with USEARCH and
VSEARCH, allocating eight threads on the same machine and
with Debian Linux as the host operating system. Each tool was
evaluated further based on the number of produced families,
genera, and species. This evaluation allowed us to determine the
inflation for each type of clustering in each’s diversity measures.

2.2.3 Template Data
Bifidobacteriaceae are a group of bacteria, which are responsible
for oligosaccharide metabolism in mammals. They are one of the
dominant families present in the human gastrointestinal tract
during infancy (Pham et al., 2016). There is a growing interest in
their role as probiotics. Therefore, illuminating the microbial
diversity within this family will help us evaluate the range within
which we operate and potential sources of hidden diversity. The
template data include 227,418 Bifidobacteriaceae sequences,
which were classified as such by RDP classifier. These
sequences have been originally detected across 11,074 samples
of diverse environmental origin within IMNGS. IMNGS is a
database containing currently more than 500 k samples analyzed
by 16S rRNA gene amplicon sequencing. All data are
preprocessed and IMNGS offers, next to other means,
automated export of all sequences belonging to a selected
taxonomy at once (Lagkouvardos et al., 2016). In addition to

FIGURE 5 | Plots produced from the TIC-Pipeline from the mouse dataset of Muller et al. (A)Graphlan plot depicting the taxonomic tree of the denoised sequences
after TIC incorporated both novel (red) and known (white) clades up to the family level. (A) Krona plot quantifies the size of each taxonomy in the merged study samples.
Contains novel and known taxonomies as produced by the SINA classifier and TIC.
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the above, to illustrate the use of TIC in microbial profiling
studies based on amplicon data, we processed the dataset from
Müller et al. (2016). In this study, the role of nutrition and
hygiene concerning mice’s gut microbiomes was investigated.
The original results demonstrated that diet and the hygiene level
of the mouse facility affect the mice’s gut microbial profiles. The
raw sequencing data of the study are available in ENA under
accession PRJEB13041.

3 RESULTS

3.1 Benchmarking Results
3.1.1 Number of Created Taxa
The LTP dataset used contains sequences with known taxonomic
assignment up to the species level, with 458 families, 1,590 genera, and
13,903 species. The TIC pipeline identified 508, 460, and 458 clusters
at family level when using hard- and soft-pruned, and the complete
taxonomy, respectively. In contrast, both USEARCH and VSEARCH
resulted in estimations almost twice the size of the actual family
numbers (Figure 6). Of note, when the complete SINA classification
is available (no pruning), TIC, as expected, successfully mirrors the
underlying family structure. Thus, overall, values produced by TIC
are the closest reflection of the ground truth we could get.

The results for the genus level reconstruction showed that,
when taxonomic information is missing (e.g., due to novel taxa or
incomplete classifications), TIC and VSEARCH perform
similarly. In contrast, USEARCH inflates genus numbers
(Supplementary Figure S1). Since TIC is the only tool
utilizing taxonomy knowledge, the results match the initial
genus composition as expected in the no pruning scenario. All
three tools fail to recapture the species diversity contained within
the dataset (Supplementary Figure S2). We suggest that this is
because taxonomic species definitions are not solely based on 16S
rRNA gene sequence similarity, and none of the tools can account
for this external information. However, TIC calling USEARCH
produces species cluster closer to the ground truth regardless of
the pruning scenario, while the TIC with VSEARCH improves its
performance significantly when compared with default running
of VSEARCH.

3.1.2 Quality of Created Taxa
Clusters produced by TIC are purer than those produced by
USEARCH and VSEARCH (Tables 1, 2). Since TIC uses
taxonomic information, unwanted merging of sequences
originating from distant taxonomies is less likely, while other
tools are blind to taxonomy and, thus, combine unrelated
sequences solely based on similarity thresholds. Although
VSEARCH produces a higher ARI score, this stems from the
inflation of the number of produced species, genera, and families
in combination with the rigorous approach taken when
calculating pairwise similarity scores, resulting in many one-
member clusters that should have been merged otherwise. The
NMI score calculated for all tools is almost identical. Therefore,

FIGURE 6 | Comparison of the three tools in regards to predicted family
number on the LTP dataset under different configurations. TIC was executed
containing USEARCH (TIC-U) and VSEARCH (TIC-V) as the integrated
clustering tool, with different modes of taxonomic pruning of the input
sequences. These tools were also executed as standalone. The dashed line
represents the actual number of families in the dataset. USEARCH performs
worse in terms of inflation of predicted family level clusters, with VSEARCH
resulting in only moderate inflation. TIC reflects this trend in its operation
depending on the tool utilized, especially with hard pruning (compete for
removal of assignments for whole taxonomic branches). For soft (stochastic)
pruning (only removing taxonomic information for random sequences), the TIC
performs significantly better than the naïve usage of the corresponding
clustering tool. In cases where the classifier can successfully assign family level
taxonomy to all sequences, as for the sequences in the LTP dataset, the TIC
mirrors this information resulting in a perfect grouping of the sequences as
expected.

TABLE 1 | Clustering quality comparison among tools.

Level Scenario Purity ARI NMI

Species TIC_Stohastic_VSEARCH 0.99 0.93 0.97
TIC_Stohastic_USEARCH 0.99 0.93 0.97
TIC_Hard_VSEARCH 0.99 0.93 0.98
TIC_Hard_USEARCH 0.99 0.93 0.97
USEARCH 0.98 0.88 0.97
VSEARCH 0.97 0.97 0.97

Genera TIC_Stohastic_VSEARCH 1 0.93 0.97
TIC_Stohastic_USEARCH 1 0.93 0.98
TIC_Hard_VSEARCH 1 0.93 0.98
TIC_Hard_USEARCH 1 0.93 0.97
USEARCH 0.87 0.88 0.97
VSEARCH 0.93 0.97 0.97

Families TIC_Stohastic_VSEARCH 1 0.93 0.97
TIC_Stohastic_USEARCH 1 0.93 0.97
TIC_Hard_VSEARCH 1 0.93 0.98
TIC_Hard_USEARCH 1 0.93 0.97
USEARCH 0.97 0.88 0.97
VSEARCH 0.88 0.97 0.97

Regardless of the pruning method, taxonomic level, and the underlying tool, the TIC
creates better clusters in terms of purity and the NMI statistic. VSEARCH inflates the
number of clusters and, in conjunction with its no-heuristic approach when calculating
the sequence pairwise identity score, results in higher ARI scores. Although USEARCH
uses heuristics for this calculation, the TIC restrains it, thus keeping the ARI score high.
Maximum values are highlighted (bold) for each column for each level.
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this value should not be viewed in isolation. Taken together,
across all metrics tested here, TIC is the better choice.

Performance
The computational speed for TIC is primarily dependent on the
underlying tool. TIC manages to offset the required time to
handle taxonomic information by clustering smaller subsets of
data created from the taxonomy classification (Figure 7).
Performance is further affected by the rate of available
taxonomic information and no-pruning run times are always
shorter than those from simulations, including partial
classifications.

3.2 Template Results
3.2.1 Amplicon Showcase
The Müller dataset (Müller et al., 2016) contains 238,936 raw
sequences produced from 24 samples. This dataset contains 6,580
unique sequences after extraction of the representative region
(i.e., SINA alignment positions: 6,500–22,500, number of bases:
384), trimming around it, and denoising to zOTUs. Taxonomic
classification using the integrated SINA classifier with SILVA as
the reference database resulted in 319 and 2,412 unclassified
zOTUs for family and genus level, respectively. Clustering those
sequences to form molecular species (sOTUs) using TIC or the
two naive clustering tools (i.e., USEARCH, VSEARCH) resulted

TABLE 2 | Level of impurity for genus and family level clusters created by USEARCH and VSEARCH compared with the TIC approach for the LTP dataset.

Tool Species Mixed genera (percentage) Mixed families (percentage)

USEARCH 6,668 299 (08.20) 115 (11.50)
VSEARCH 5,817 179 (05.84) 83 (08.80)
TIC_Soft_VSEARCH 5,824 0 0
TIC_Soft_USEARCH 6,315 0 0
TIC_Hard_VSEARCH 5,839 0 0
TIC_Hard_USEARCH 6,371 0 0

Impurity was calculated as the number of genera/families containing LTP sequences with conflicting taxonomic backgrounds. Both naive clustering tools result in more than 5% of genera
and 8% of families having impure composition.

FIGURE 7 | Comparison of execution times for VSEARCH, USEARCH, and TIC running with each as an underlying tool respectively. Although slower, TIC is
comparable with either tool regardless of the pruning method.
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in similar sOTU numbers (≈ 1380; Table 3). However, 78 and 83
out of the predicted sOTUs created by USEARCH and
VSEARCH, respectively, contain zOTUs with non-matching
taxonomic assignment, strongly suggesting impure clusters.
Moreover, 656 and 694 sOTUs created by USEARCH and
VSEARCH respectively, have incomplete taxonomic
assignments when we follow the old paradigm of clustering
first and assign taxonomy later. For instance, 153 and 150
sOTUs produced by USEARCH and VSEARCH, respectively,
have not been assigned to any family, while 503 and 544 sOTUs,
respectively, have family classification only, but were not assigned
to a genus (Table 3).

In contrast, TIC organized unclassified sOTUs in many cases
within distinct gOTUs of a given family. Such unclassified sOTUs
would otherwise be collectively treated as unknowns or even
discarded. Similarly, for four taxonomic orders containing
sOTUs with unknown family assignments, TIC stratified the
sequences in appropriate fOTUs, further enhancing the
insights into the community’s structure of this dataset.

3.2.2 Diversity Showcase
For testing about diversity outcomes when applying TIC, the used
dataset contains only sequences within the Bifidobacteriaceae
family as identified by the RDP classifier (v.2.11 with training
dataset 16) included in the IMNGS database. We re-classified the
retrieved sequences using SINA and the latest online RDP
classifiers (training dataset 18), removing all sequences not
classified as Bifidobacteriaceae. After identifying the most
representative region in this dataset (i.e., SINA alignment
positions: 12,000–25,300, number of bases: 288), trimming and
dereplication, almost 75,000 unique denoised sequences
remained. The produced dataset was processed with TIC,
resulting in about 72,000 molecular species organized in about
1,100 gOTUs. The known genus Bifidobacterium has about
69,000 sOTUs, reflecting the total molecular species diversity.
The rest of the nine described genera from the Bifidobacteriaceae
have 2,876 sOTUs, with an average of 320 sOTUs per genus
(Figure 8A). The 1,134 remaining novel gOTUs contain only a
single sOTU (Figure 8C). Comparing TIC to the other naive
clustering algorithms shows again an inflation of the numbers of
species and genera cluster formed (Table 4). Furthermore, both
similarity-based tools separated the Bifidobacteriaceae sequences
into 1000s of new families, while TIC kept them as one family.

About half of the discovered gOTUS (1.1 k) incorporate
sequences originating solely from bovine samples, with only
13 gOTUs (which include most of the already described
genera) containing sequences from diverse origins. The other

half of the gOTUs consist exclusively of sequences of non-bovine
origin (Figure 8B), including the genera Bombiscardovia,
Scardovia, and Gardnerella that were not found in any of the
bovine samples used in our analysis.

4 DISCUSSION

4.1 Amplicon Studies Integration Is
Problematic due to Partially Overlapping
Targeted Regions
Selection of different hypervariable regions for each amplicon-
based experiment inevitably results in different primer sets used
in different studies (Schloss et al., 2011), (Liu et al., 2008). The
absence of a consensus (Abellan-Schneyder et al., 2021) of the
scientific community on which region should be targeted for a
given purpose further complicates this issue (Li et al., 2014),
(Dassi et al., 2014). Such diverse primer designs prohibit the
effortless integration of amplicon studies even in the absence of
other experimental differences. In such cases, the suggested
procedure is to identify a common region across studies, when
such a region exists, and trim all sequences accordingly
(Lagkouvardos et al., 2016). The proposed TIC pipeline
follows this idea by using the SINA aligner. Extracting the
region of overlap for different studies and collapsing gaps
(which are inserted otherwise for better alignments) makes the
sequences compatible and allows us to analyze samples processed
with different, but overlapping V-regions together. Currently, the
selection of the common region is performed by manual
inspection, but an automated procedure is in development.

4.2 Naive Classification Tends to Produce
Impure Clusters
Naive clustering tools are based solely on sequence similarity in
creating groups. In contrast, TIC enhances the clustering process
by utilizing the taxonomic information of each sequence acquired
beforehand. The metrics tested here, clustering purity, ARI, and
NMI, show that TIC outperforms both USEARCH and VSEACH
(Table 4).

Fixed similarity levels cutoffs used for clustering will not
always produce clusters that correspond to valid taxonomic
paths (Edgar, 2018), (Schloss and Westcott, 2011), (White
et al., 2010), (Huse et al., 2010). New approaches to clustering
have been proposed, based on machine learning and other
methods, but they have not yet seen widespread adaptations

TABLE 3 | Comparison of TIC with naïve clustering approaches on microbial amplicon data from mice.

Tool Predicted SOTUs No genus assigned No family assigned

USEARCH 1,378 656 153
VSEARCH 1,380 694 150
TIC-Pipeline 1,279 — —

Nearly 700 sOTUs produced by naïve de novo clustering have the missing genus-level classification, and around 150 of those could not be assigned to a known family. The TIC organizes
those sequences to 356 novel gOTUs and introduces 16 novel fOTUs.
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(James et al., 2018) (Eren et al., 2015), (Navlakha et al., 2010),
(Preheim et al., 2013), (Mahé et al., 2014). The accuracy of
similarity-based tools can be improved by introducing clade
specific similarity cutoffs. For such an approach, phylogenetic
distances of all described taxa could be used to generate clade-
specific similarity limits reflecting the average distance of
taxonomic units (e.g., average distances among sequences from
all genera within a family to set the genus similarity cutoff for that
family). These limits should be further refined based on the
selected region of the 16S rRNA gene used in each study.

In any case, all tools tested struggle mapping sequences to the
underlining taxonomic delineation for species-level clusters. The
main reason is that taxonomic nomenclature, especially at the
species level, is not necessarily reflected in adequate differences in
the 16S rRNA gene. Instead, functional characteristics,
phenotypes, or pathogenicity differences of the bacteria are
used to designate species. A well-known example is the
Escherichia-Shigella clade, with otherwise almost identical 16S
rRNA genes, but even different genus names. Other such
examples exist. Thus, since classifiers based on 16S rRNA
cannot (yet) assign taxonomy up to the species level, TIC
cannot overcome the absence of this information in the
molecular species-level prediction. In any case, all classification

tools finally rely on reference databases that affect their
performance. That is why the usage of the latest and most
comprehensive iteration is the recommended practice.

Naive similarity-based clustering tools’ results are affected
only by their underlying algorithm regardless of other
available information. In contrast, TIC’s performance is bound
to the completeness of the classifier-provided taxonomic
information. Already with the current level of knowledge
extractable from commonly used classifiers, TIC outperforms
naive clustering tools despite some novel sequences existing in
most studies. Furthermore, as the classifiers improve in their
capacity to translate sequence signatures to finer taxonomic
classifications, TIC-produced clusters will also be affected and
improved in terms of purity and quality.

4.3 Evaluation of Taxonomy Informed
Clustering in Single Amplicon Studies
There has been a growing tendency to abandon “traditional”
OTUs based pipelines due to their problems in clusters purity,
reproducibility, and interoperability in favor of denoised
sequences. Denoised sequences are called with different names
depending on the tool used (e.g., ASVs, zOTUs). Although there

FIGURE 8 |Overview of the environmental origins of theBifidobacteriaceae sequences grouped in gOTUs. (A)Rank order of 10most diverse gOTUs, differentiated
by the origins of their constituent sOTUs. Bifidobacterium is by far the most diverse genus of this family. (B)High niche specificity of Bifidobacteriaceae gOTUs contained
within the bovine samples. (C) Pie chart indicating the size of gOTUs created by TIC from all available sequences classified as belonging to the Bifidobacteriaceae family
extracted from IMNGS.

TABLE 4 | Diversity estimations among the three tools for the Bifidobacteriaceae sequences extracted from IMNGS.

Tool Species number (k) Genera number (k) Families number

USEARCH 62 35 2.8 k
VSEARCH 52 28 3.5 k
TIC-Pipeline 52 1.1 1

Denoised sequences were clustered with the three tools. Using VSEARCH for within branch clustering, The TIC produces the most conservative results and should be used as a baseline.
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are clear benefits in such pipelines using denoised sequences,
limiting processing to the molecular strain level also is often
problematic. To the extreme, a strain can be any single bacterium
differing by a single mutation across its genome, effectively
accounting for nearly as many strains as individual bacteria in
a sample. However, commonly “strains” are viewed as relatives
belonging to a given species and differing in few to several
phenotypic characteristics. In any case, strains are not well
defined, especially when derived by molecular sequences.
Sequence fragments of the 16S rRNA gene of, e.g., about 300
bases may be identical and, therefore, different strains are
assigned to one amplicon variant, although originating from
several. Increasing the length of the fragment, e.g., by different
sequencing technologies, may reveal an increased number of
strains/variants for the same sample. Therefore, alpha-diversity
measures based on denoised sequences of different lengths offer a
non-comparable sample diversity measure only. Common OTU
clustering of 16S rRNA genes to a fixed similarity cutoff for
accommodating molecular species is more defined, stable across
sequencing lengths and technologies and, reflects a more
meaningful ecological entity. However, other problems with
OTUs, as mentioned above, exist. Concerning, beta-diversity
measures similar problems arise. For instance, methods like
Jaccard and Bray-Curtis do not consider the similarity
(i.e., taxonomy) among the different strains in a sample and,
therefore, tend to inflate the distances across microbial profiles
between samples. Finally, it defeats its purpose when studies
perform strain-level processing at first, but use the binned family
abundances or even higher taxonomies for their comparisons. In
contrast, TIC offers an incremental, structured dissection of the
sequencing outputs from zOTUs to sOTUs, and then proceeds to
gOTUs and fOTUs. Since the taxonomic placement of the
sequence is clear, exploring the different hierarchical levels is
easy depending on the question. For instance, the test run using
real amplicon data showed that multiple well differentiated
fOTUs and gOTUs were revealed. These would otherwise be
collectively treated as unknowns and not contribute to
understanding a sample’s or experiment’s ecology. Clearly, the
refined taxonomic classification of every sequence assists
downstream comparisons among higher taxonomic levels and
reveal differential patterns across yet undescribed groups. Since
taxonomy-informed clustering always results in purer clusters
and more informative outcomes, we strongly recommend
integrating tools like TIC in future amplicon analysis pipelines.

4.4 Diversity Analysis of Bifidobacteriaceae
The Bifidobacteriaceae family has attracted much interest due to
its mostly positive effects on humans and other mammals.
Microbes of this family colonize the infant gut, aiding in
nutrient absorption (Turroni et al., 2011) and can act as
probiotics with beneficial effects in patients with irritable
bowel syndrome (Yuan et al., 2017) and other intestinal
diseases (Matsuoka et al., 2018). This family is currently
composed of 10 genera containing 124 valid species in
taxonomic nomenclature. Specifically, the genus
Bifidobacterium covers most of the family’s diversity with
105 species, representing the most diverse genus of the

Bifidobacteriaceae. This genus is most frequently associated
with the gastrointestinal tract of humans (Scardovi and
Trovatelli, 1974). However, molecular evidence has shown
the presence of Bifidobacterium in other niches beyond the
mammalian gut (Watanabe et al., 2009), (Dong et al., 2000).
Species within the Bifidobacteriaceae show varying degrees of
ecological adaptation with few cosmopolitan taxa within an
otherwise specialized majority. This is due to the intense
selective pressure for acquiring and retaining genes
responsible for utilizing various carbohydrates to compete in
their respective ecological niches (Milani et al., 2014), (Milani
et al., 2015).

Our findings indicate an even larger Bifidobacterium genus,
followed by also prolific, but less known genera and
numerous novel candidate genera. Interestingly, the
distribution of the novel genera and species detected here
by molecular data seems to follow the distribution of
currently known and described species within the
recognized genera (normalized chi-square p-value: 0.12). It
is safe to assume that part of this discrepancy in species
numbers (i.e., known vs unknown) is attributed to uneven
sampling and isolation efforts devoted to human and
mammalian gut environments in general, which the genus
Bifidobacterium seems to dominate. Nevertheless, the
observed pattern is so pronounced that it calls for further
research to unravel the ecological constraints that dictate this
massive differentiation of Bifidobacterium and the modes of
persistence and dispersal of this vital family of bacteria in
contrast to the other genera in this family.

5 CONCLUSION AND FUTURE WORK

The TIC pipeline is a modular set of tools that facilitate fast and
easy analysis of microbial data to produce the data files most
commonly used in microbial ecology. In the present manuscript,
we demonstrate the advantages of reversing the current practice
of de novo sequence clustering followed by taxonomic
classification. In contrast, taxonomically placed sequences
allow utilizing the classifier’s information in guided clustering
and this approach results in higher cluster quality and purity, and
allows proper placing of yet unassigned sequences in the
taxonomy.

Currently, the TIC pipeline will soon be integrated in online
analytical services while further simplifying the technical
requirements for users. New features and outputs, such as
making the TIC pipeline available to distributed systems,
enhanced graphical representations, and other features, which
can be requested by the community, will be added.
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