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Segmentation of mouse brain magnetic resonance images (MRI) based on anatomical
and/or functional features is an important step towards morphogenetic brain structure
characterization of murine models in neurobiological studies. State-of-the-art image
segmentation methods register image volumes to standard presegmented templates
or well-characterized highly detailed image atlases. Performance of these methods
depends critically on the quality of skull-stripping, which is the digital removal of tissue
signal exterior to the brain. This is, however, tedious to do manually and challenging to
automate. Registration-based segmentation, in addition, performs poorly on small
structures, low resolution images, weak signals, or faint boundaries, intrinsic to in vivo
MRI scans. To address these issues, we developed an automated end-to-end pipeline
called DeepBrainIPP (deep learning-based brain image processing pipeline) for 1) isolating
brain volumes by stripping skull and tissue from T2w MRI images using an improved deep
learning-based skull-stripping and data augmentation strategy, which enables
segmentation of large brain regions by atlas or template registration, and 2) address
segmentation of small brain structures, such as the paraflocculus, a small lobule of the
cerebellum, for which DeepBrainIPP performs direct segmentation with a dedicated
model, producing results superior to the skull-stripping/atlas-registration paradigm. We
demonstrate our approach on data from both in vivo and ex vivo samples, using an in-
house dataset of 172 images, expanded to 4,040 samples through data augmentation.
Our skull stripping model produced an average Dice score of 0.96 and residual volume of
2.18%. This facilitated automatic registration of the skull-stripped brain to an atlas yielding
an average cross-correlation of 0.98. For small brain structures, direct segmentation
yielded an average Dice score of 0.89 and 5.32% residual volume error, well below the
tolerance threshold for phenotype detection. Full pipeline execution is provided to non-
expert users via a Web-based interface, which exposes analysis parameters, and is
powered by a service that manages job submission, monitors job status and provides job
history. Usability, reliability, and user experience of DeepBrainIPP was measured using the
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Customer Satisfaction Score (CSAT) and a modified PYTHEIA Scale, with a rating of
excellent. DeepBrainIPP code, documentation and network weights are freely available to
the research community.

Keywords: MRI, deep learning, image segmentation, image registration, brain atlas, data augmentation, mouse
brain

1 INTRODUCTION

Segmentation of brain structures frommagnetic resonance (MRI)
images is an important step for accurate morphometric
measurement and morphogenetic characterization and is a
rate-limiting step for neuroimaging studies. Our work is
motivated by a need to perform such segmentation
automatically and robustly for large and small (less than about
5% by volume) mouse brain regions for hundreds of recordings of
both in vivo and ex vivo MRI image volumes for both wild-type
and mutants. In order to be accessible to research staff regardless
of level of computational expertise, we also required our method
to be easy to use.

Although manual segmentation of brain structures by
domain-experts is considered to be accurate and reliable
(Dong, 2008), it is labor intensive, time-consuming, and
therefore impractical for evaluating the large datasets essential
for evaluating small changes in brain structures resulting from
interventions or genetic modifications. Automated methods have
traditionally been limited by the number of brain structures that
can be segmented (Tan et al., 2020), or have required multiple
expert-annotated atlases (Ma et al., 2014) increasing study time
and complicating the analysis. Such methods made use of hand-
crafted features to segment brain regions (Clarke et al., 1995;
Balafar et al., 2010; Nanthagopal and Sukanesh, 2013), which is
not robust against variations in tissue geometry and imaging
modalities.

Most recent advancements in machine learning, especially
deep learning, have revolutionized segmentation of medical
images. Deep learning-based methods, especially convolutional
neural networks (CNN) (Krizhevsky et al., 2012), eliminate the
burden of feature engineering and automatically extract robust
features. In recent years, researchers have developed several high
performing CNN model architectures for image segmentation
(Long et al., 2015; Milletari et al., 2016; Chen et al., 2017, 2018;
Badrinarayanan et al., 2017; Jégou et al., 2017; Ellis and
Aizenberg, 2020; Hsu et al., 2020; Tan et al., 2020). The U-Net
(Ronneberger et al., 2015), one such CNN-based architecture, is
particularly widely used for medical image segmentation because
of its high accuracy. It is an encoder-decoder based architecture
consisting of a contracting and a symmetrically expanding path to
capture context and produce precise localization.

Such advanced machine learning-based methods must ideally
be trained on large ground truth datasets laboriously annotated
by experts. This task is demanding for high-resolution volumetric
images and large structures within them. Therefore, in addition to
deep learning methods, researchers rely on a paradigm of
automated image registration to an atlas. This approach does
not require manual annotation beyond the original template or

atlas. The accuracy of such registration-based segmentation,
depends on the performance of a pre-registration skull-
stripping step, in which skull tissue appearing in the image is
digitally removed, isolating the brain tissue (Woods et al., 1993;
Klein et al., 2010; Kleesiek et al., 2016). Skull stripping can benefit
from improvements provided by modern deep learning
methodology, because it is more accessible for initial manual
generation of ground truth by expert annotation.

In recent years, several highly performant automated skull
stripping tools have been developed for human MRI research
(Cox, 1996; Shattuck and Leahy, 2002; Leung et al., 2011; Doshi
et al., 2013; Isensee et al., 2019). Unfortunately, those tools are not
well-suited for mouse brain skull-stripping from MRI data
acquired at high magnetic fields. Moreover, human and mouse
MRI images differ significantly in anatomical structure and tissue
geometry, further reducing the efficacy of re-using those machine
learning models. Therefore some recent works focused on MRI-
derived mouse brain structure directly [MU-Net (De Feo et al.,
2021), U-Net (Hsu et al., 2020), RATS (Oguz et al., 2014), PCNN
(Chou et al., 2011), SHERM (Liu et al., 2020), (Schell et al., 2019)].
This is a fast developing field. To the best of our knowledge, the
most recent mouse brain extraction models have been developed
by De Feo et al. (2021) and Hsu et al. (2020). De Feo et al. (2021)
developed a U-net like architecture (MU-Net) for both skull
stripping and segmentation of brain regions. They demonstrate
their results on segmentation of the cortex, hippocampi, striati
and brain ventricles. Skull stripping and region segmentation are
treated as separate tasks with two output maps generated from the
final block of the U-net’s decoder branch. MU-Net was trained on
T2w mouse brain MRI data with each brain delineated with a
bounding box. To automate the task of bounding box generation,
an auxiliary network is included in the MU-Net system. The skull
stripping performance reported in that work produces a Dice
score of 0.978 when trained on the datasets available to their
study. However, a much lower Dice score of 0.577 (see Results
and Discussion) was obtained when we used the same network
weights with our dataset (T2w TSE). Hsu et al. (2020) based their
work on a U-net architecture to perform 2D slice-by-slice
segmentation. They reported a skull stripping Dice score of
0.85 on a T2w RARE dataset. Although this is a suitable
performance level for many applications, improvement is
necessary for more nuanced morphogenetic studies; especially
those targeting both large and small brain regions.

To achieve such improvement, and develop highly
performing segmentation models for both skull-stripping
and targeted region segmentation, we took advantage of the
U-net approach and its variant proposed by Isensee et al.
(2017) motivated by its power to combine feature abstraction
and localization.
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Moreover, as stated above, expert neurobiologists require an
integrated solution that performs skull stripping and image
segmentation in a reliable and accessible manner at large scale,
even without computational expertise. With this additional goal
in mind we were motivated to develop DeepBrainIPP (deep
learning-based brain image processing pipeline), which we
present in this paper. DeepBrainIPP facilitates high-
throughput brain structure segmentation. Objective evaluation
of our neural network models and subjective evaluation of the
end-to-end system demonstrate the high utility of the
DeepBrainIPP approach.

The rest of this paper is organized as follows: in Section 2, we
introduce the dataset, our computational approach, and describe
the software. In Section 3, we present results of running our
analysis and discuss performance, limitations and evaluation of
our approach. We conclude in Section 4 with some remarks.

2 DATASET AND METHODS

2.1 Dataset Details
To develop our approach, and validate our machine learning
models, we focused on two in-house-collected mouse brain MRI
datasets (in vivo and ex vivo image volumes). In vivoMRI images
are collected in anesthetized mice at a lower resolution, provide
less detail and contrast compared to ex vivo images and are
therefore harder to segment. This type of data is important for
many studies, because image acquisition time is shorter so
longitudinal data collection is possible. We were therefore
motivated to include this type of analysis in our pipeline.
Details of MRI image data are provided below.

2.1.1 In Vivo MRI
Magnetic resonance imaging (MRI) was performed on a
Bruker Clinscan 7T MRI system (Bruker Biospin MRI
GmbH, Ettlingen, Germany). Prior to scanning, mice were
anesthetized in a chamber (3% Isoflurane in oxygen delivered
at 1 L/min) and maintained using nose-cone delivery (1–2%
Isoflurane in oxygen delivered at 1 L/min). Animals were
provided thermal support using a heated bed with warm
water circulation and a physiological monitoring system to
monitor breath rate. MRI was acquired with a 2-channel
mouse brain surface receive coil positioned over the mouse
head and placed inside a 72 mm transmit/receive coil. After the
localizer, a T2-weighted turbo spin echo sequence was
performed in the coronal (TR/TE = 2,500/42 ms, matrix size
= 320 × 320, field of view = 25 mm × 25 mm, slice thickness =
0.5 mm, number of slices = 14), sagittal (TR/TE = 2,550/39 ms,
matrix size = 320 × 320, field of view = 25 mm × 25 mm, slice
thickness = 0.7 mm, number of slices = 16), and axial (TR/TE =
1910/42 ms, matrix size = 320 × 320, field of view = 25 mm ×
25 mm, slice thickness = 0.6 mm, number of slices = 22, total
time = 3 h 4 min coronal scan) orientations.

2.1.2 Ex Vivo MRI
After a minimum of 24 h to fix the tissue, the brain was
transferred to a 15 ml conical centrifuge tube and filled with

Fomblin, a solution that is invisible to proton MRI. The tube is
then placed in the MRI with a 2-channel mouse brain surface
receive coil and a 72 mm volume transmit/receive coil. After the
localizer, a T2-weighted 3D turbo spin echo sequence was
performed in the coronal orientation (TR/TE = 1800/70 ms,
matrix size = 252 × 384 × 176, echo train length = 9, averages
= 6, total time = 16 h 7 min) with an isotropic resolution of 60 μm.

A total of 172 image volumes were collected and annotated
by experts (in vivo: 147, ex vivo: 25). The quality of annotation
was monitored by a separate group of experts not involved in
the annotation procedure. Due to the small annotated sample
size, we applied data augmentation techniques to train
machine learning models that are robust against realistic
changes in geometric and photometric properties (see
section “Data augmentation”).

2.2 Summary of the DeepBrainIPPWorkflow
The full workflow for segmenting brain structures is shown in
Figure 1. First, we perform skull stripping for the whole brain
using a 3D U-Net based model (see Model Development and
Figure 1 steps 1–2). We then register the resulting segmented
brain to an atlas or template (see Image Registration, and Figure 1
steps 3–6), and extract large brain structures by applying an
inverse transformation to the atlas or template mask. A sample
brain volume and segmented large brain structures are shown in
Figure 2 (Optional) As a final step, the user can apply an
additional registration-based segmentation to a detailed mask
of a large brain region to further segment large-to-medium sized
regions. As an example we show an application to the segmented
cerebellum, which we register to an in-house generated template
to further characterize its subregions (Figure 1 steps 6–8).

However, in cases where structures are small, or boundaries
are weak or unclear (see Image Registration), the atlas-based
registration does not perform well. Therefore, we developed a
deep learning-based model that performs a direct segmentation
for small regions such as the outer paraflocculus, a small lobule of
the cerebellum, with the full raw data as its input (Figure 1
Branch II). In the case of such small regions, generation of ground
truth data is significantly less laborious compared to large-region
annotation.

A note on large vs. small region segmentation strategy:
Manual annotation of MRI volumes for large regions at high
precision and full resolution is not practical. This is the main
motivation to use a skull-stripping/atlas-registration paradigm
for large regions. In that paradigm, manual annotation of only
one large region (which is the brain proper) one time per brain
is needed. On the other hand, preparing training samples for
small regions is significantly less laborious. For example, it
takes up to 30 h for an expert to annotate the cerebellum from
an ex vivoMRI image (an example for a large region). Whereas
the same annotator can annotate the paraflocculus (a small
region) within 20 min.

Finally, we perform morphological analysis on the extracted
regions and generate summary reports for assessments. The
measured volumes of extracted brain structures are used for
phenotype detection. The complete workflow is available in
the form of a web application with an accessible user interface
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that is intuitive to users without computational expertise (see
Software).

2.3 Data Augmentation
Data augmentation is a strategy that artificially increases the size
(and diversity of) a training dataset by applying realistic
transformations. This strategy addresses two issues: 1) Model
robustness: Automated brain image segmentation via deep
learning requires large numbers of training samples with
representative variability to perform robustly against changes
in tissue geometry, contrast, tissue density, field of view, sample
orientation, and imaging conditions (Halevy et al., 2009; Sun
et al., 2017). It is not practically possible to acquire images
covering all variability, or to annotate a sufficient number of
such images. 2) Data augmentation significantly reduces
overfitting of trained models (Shorten and Khoshgoftaar, 2019).

Data augmentation requires careful selection of spatial
transformations, intensity filters and associated parameters.
We selected a set of transformation methods and parameters
after extensive testing (see Table 1), and applied them to all
images without combining transformations. A sample outcome
of data augmentation with elastic transformation is shown in
Figure 3.

2.4 Deep Learning Models
2.4.1 Network Architecture
For skull-stripping and small brain region segmentation (applied
to the paraflocculus), we used a deep learning network
architecture derived from the work of Isensee et al. (2017).
Details of the network architecture are provided in Figure 4.
Isensee et al. (2017) based their architecture on the U-net
(Ronneberger et al., 2015) and variants proposed by Kayalibay
et al. (2017), and applied it to brain tumor segmentation and
radiomics survival prediction. In summary: the network’s context

aggregation pathway extracts low-level features from input 3D
images, encoding them into high-level abstractions. The
network’s localization pathway then recombines higher level
abstractions and lower level features for precise localization of
the region of interest. Computation of activation maps in the
context module is performed by a residual unit (He et al., 2016),
which counteracts vanishing gradients and allows training of very
deep networks. At each level (first half of the “U”) spatial
resolution is reduced and the number of filters is increased. In
the localization pathway, feature dimension is reduced and high
level representations are up-scaled gradually to produce an
output that has the same dimensions as the input. Isensee
et al. (2017) used 16 filters in the base layer and five total
levels. In our implementation, we treated the U-net depth and
number of filters in the base layer as part of a set of
hyperparameters, together with learning rate and dropout rate.
To search for optimal hyperparameter values, we used a rough
grid search followed by Bayesian optimization (Snoek et al.,
2012), as implemented in the Keras Tuner (O’Malley et al.,
2019) library. Moreover, we used instance normalization
(Ulyanov et al., 2016) to prevent potential internal co-variance
shift, in order to reduce training time. In addition, we addressed
potential class imbalance issues (typically arising from an
imbalanced number of background-voxels in MRI images
relative to ROI voxels), by using a class-weighted Dice loss
function.

2.4.2 Data Processing
We processed MRI imagery obtained for two protocols; in
vivo and ex vivo imaging. Although same modality, data was
obtained from two separate instruments resulting in
differences in resolution, overall image spatial dimensions
and contrast (see Figure 5). We developed separate deep
learning models for each case, and datasets were resampled to

FIGURE 1 | DeepBrainIPP workflow (Steps 1–5) skull stripping followed by registration of the segmented brain to an atlas (Step 6) Large brain structures are
segmented (Steps 7–8) To segment sub-cerebellar regions (colors in Step 8), DeepBrainIPP registers the cerebellum to an in-house generated template. Step B1
following Branch II shows direct segmentation of the outer paraflocculus mask (red color) overlayed with the raw image. This direct segmentation outperformed the
template registration approach in the case of small regions.
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0.06 mm × 0.06 mm × 0.48 mm and 0.06 mm × 0.06 mm ×
0.06 mm for training in vivo and ex vivo models respectively.
We applied data augmentation as stated above to generate
4,040 training samples (from originally 172 image volumes)

for skull stripping models and 1,500 samples (from originally
60 recorded image volumes) for the paraflocculus direct
segmentation models. All training samples were cropped
automatically based on the image center of mass and
padded with zeros to obtain uniform spatial dimensions.
Resampled dimensions of in vivo and ex-vio MRI images
were 448 × 448 × 48 voxel3 and 256 × 224 × 288voxel3

respectively. We performed Z-score normalization on the
training samples to increase model robustness against
changes in intensity. Network models were trained with
the whole image (rather than patches) to reduce training
time and avoid tiling artifacts. This is one of the reasons why
training DeepBrainIPP required large GPU memory (see
“MODEL PARAMETERS AND MEMORY
REQUIREMENTS” in Supplementary Material).
Moreover, evaluating our model on an independent
dataset, scores were calculated from the whole image.

2.4.3 Skull Stripping Model Training
In vivo and ex vivo skull-stripping models were trained on 4,040
samples of dimension 448 × 448 × 48 and 256 × 224 × 288
respectively for 500 epochs (with an early stopping if
validation loss does not improve) using the Adam
optimizer (Kingma and Ba, 2014). We used a batch size of
1, limited by available GPU memory (See“Model Parameters
and Memory Requirements” in Supplementary Material).
80% of the dataset was used for training and 20% for
validation. Optimal hyperparameters (depth of network,
initial learning rate, dropout rate and number of filters in
the base level) of in vivo and ex vivo models were 5, 5e-5, 0.1,
16 and 5, 5e-5, 0.2, 16 respectively. The learning rate was
gradually reduced by a factor of 0.7 with a patience of 15
epochs if validation loss showed no improvement. The
gradual reduction of learning rate reduces the step size as
the global optimum is approached. This helps the
network learn nuance from the data and potentially
reduces the risk of overshooting beyond the global
optimum. Calculations were performed on a compute node
with four NVIDIA DGX A100 GPUs with 40 GB memory per
GPU, over a period of 4 days to reach completion. Figure 6
shows the resulting loss curve in case of a skull stripping

FIGURE 2 | Segmentation outcomes: Top row: Segmented brain
surface. Bottom row: Segmented large brain regions (blue color: cerebellum,
Green color: fore brain, violet color: olfactory bulb, orchid color: brain stem).

TABLE 1 | Data augmentation methods and parameters. Parameter values are chosen randomly from the sample space (square brackets).

Method’s name Parameter value/Ranges Augmentation nature

Horizontal Flip Generates horizontally flipped images
Vertical Flip Generates vertically flipped images
Dropout (0.01, 0.05) Generate images by dropping 1–5% voxels
Piecewise Affine Scale (0.01, 0.07) Generates images applying an affine transformation to a local grid
Elastic Transformation alpha (2.5, 50), sigma (1,11) Generates images by moving voxels locally
Additive Gaussian Noise scale (0.0, 12.75) Generates images by adding noise sampled from gaussian

distributions
GaussianBlur sigma (0.8, 1.5) Generates smoothed images
Affine Transformation rotation along Z axis(−20°,20°) scale (0.8,1.3) isotropic Translation

(−0.05%, 0.05%)
Generates images by applying an affine transformation

Rotation along Y axis [-20°,20°] Generates images by rotating around the Y axis
CLAHE Zuiderveld,
(1994)

Apply: yes/no Generates contrast enhanced images
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model. Results from this step are suitable for subsequent
registration to an atlas for segmentation of large brain areas
(see “Image Registration”).

2.4.4 Small Region (Paraflocculus) Segmentation
Model Training
Segmentation of small brain regions is more challenging and cannot
always be addressed with the skull-stripping/atlas-registration
paradigm. One example of such a region is the paraflocculus (see
Figure 1 panel B1). The paraflocculus registers poorly to atlases with
the global skull-stripping/atlas registration approach. Similar to our
approach with skull-stripping, we built separate models for in vivo

and ex vivo data, and models were trained on 1,500 samples of
dimension 448 × 448 × 48 and 256 × 224 × 288 respectively with
a batch size of one using the Adam optimizer for 500 epochs.
Optimal hyperparameters for network depth, initial learning
rate, dropout rate and number of base-level filter were obtained
from a grid search followed by Bayesian optimization. The final
set used for the ex vivo model: network depth 4, initial learning
rate 5e-5, dropout rate 0.08 and number of base filters 16. The in
vivo model was trained with the same parameters except with a
dropout rate of 0.2 and number of base filters of 24. Model
training required 2.5 days using four NVIDIA DGX A100 GPUs
with 40 GB memory each.

FIGURE 3 | Sample data augmentation: Left column: Input image (top) and skull-stripped brain mask (bottom). Right column: Augmented transformed image and
mask. Elastic deformation is shown. It provides model robustness against changes in tissue geometry.

FIGURE 4 | Network Architecture: We derived our network architecture from the work proposed by Isensee et al. (2017), in which 16 base layer filters and a depth
of 5 were used. We treated both network depth and number of filters in the base layer as hyperparameters, which were determined by a Bayesian optimization and grid
search.
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2.5 Data Staging and Post-processing
Data staging consists of organizing, resampling, resizing, cropping
and reformating MRI image volumes to be ready as input for data
augmentation and network training, or for network inference. The
software we developed, DeepBrainIPP, starts with a data staging step
that significantly automates this process. Once the software is set up,
users need only specify the location of an MRI dataset, and desired
model type via the DeepBrainIPP interface (see Supplementary
Figure S1 in Supplementary Material).

In addition, DeepBrainIPP performs post-segmentation
processing to remove small fragments. They are detected and
discarded by connected component analysis (Samet and
Tamminen, 1988) and thresholding. Optionally holes in the
output mask are filled. Total volumes of segmented brain and
small regions are calculated for phenotyping.

2.6 Image Registration
2.6.1 Atlas Selection and Brain Image Registration
Image registration is the process of aligning an image (the moving
image) to a reference image (the fixed image) via a transformation

model. If the reference image provides an associated set of labels
to define substructures, then it is called an atlas. Atlas registration
is therefore equivalent to image segmentation. One of the key
factors that affect the quality of registration is the difference in
modalities between the atlas and the moving image. We tested
two widely used atlases in the literature (see Results) and decided
to use a template from NeAt (Ma et al., 2005, 2008) for large area
segmentation of ex vivo data (see rationale below). For in vivo
images, wemanually generated an in-house template based on the
native modality of our data. NeAt’s template was downloaded
from “https://github.com/dancebean/mouse-brain-atlas/tree/
master/NeAt/ex_vivo/template” and selected by an expert.
DeepBrainIPP, additionally, allows users to use their own
templates if desired.

Our rationale for using the NeAt template, as opposed to the
more widely used and more comprehensive Allen atlas: We
compared registration quality by registering our skull-stripped
brain volumes with NeAt (Ma et al., 2005, 2008), the Allen mouse
brain atlas CCF-v3 (Wang et al., 2020) and an in-house developed
template (see Figure 7). The Allen atlas contains hundreds of

FIGURE 5 | In vivo and ex vivoMRI images: Sample in vivo (A) and ex vivo (B)MRI images. Ex vivo recordings show significantly improved resolution and contrast,
and are therefore easier to segment. For example: Branches (arbors vitae) are clearly visible in ex vivo compared to in vivo. See boxes.

FIGURE 6 | Skull Stripping Model-Loss curve. The smooth decay of validation loss for both in vivo (A) and ex vivo (B) demonstrate convergence of the learning
process and a good fit for the resulting model.
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labeled structures and is widely used by researchers. However,
NeAt contains a more detailed brain stem area, which is relevant
to the biological studies that motivated this work and registers
better to our data. We downsampled both the Allen atlas and

NeAt templates to a resolution that closely matches our in vivo
and ex vivo data to optimize registration time and accuracy. The
Allen atlas was downsampled to 0.05 mm × 0.05 mm × 0.314 and
0.05 mm × 0.05 mm × 0.05 mm for in vivo and ex vivo

FIGURE 7 | Atlas/templates: Top row shows atlas/templates and bottom row shows their mask. The whole brain internal template (top-left) and NeAt template
(second from top-left) were used to register in vivo and ex vivo images respectively. The cerebellum internal template was developed to segment sub-cerebellar regions of
ex vivo images. Brain structures are delineated with separate color in the mask.

FIGURE 8 | Atlas/template selection: Left panel: Registration scores of brain image with the NeAt templates and the Allen atlas. The overall registration score with
NeAt template is better. Right panel: Similarity scores calculated from randomly selected local patches of a registered image with both reference images. Cropped
patches are overlayed with corresponding atlas used for registration.

Frontiers in Bioinformatics | www.frontiersin.org June 2022 | Volume 2 | Article 8654438

Alam et al. Mouse Brain MRI Image Segmentation

https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


respectively. The NeAt template was downsampled to 0.047 mm
× 0.047 mm × 0.377 mm and 0.047 mm × 0.047 mm × 0.047 mm.
We registered 14 ex vivo brain volumes with NeAt and the Allen
atlas. In Figure 8 (left panel), we show registration scores for ex
vivo data registered to the NeAt template and the Allen Atlas. The
right panel of Figure 8 depicts the registration quality on local
patches to examine how well internal structures align. Patches
were randomly cropped from a registered volume and

corresponding atlas, and then overlayed. Various similarity
measures such as Normalized Cross-correlation (NCC),
Mutual Information (MI), Structure Similarity Index (SSI)
were calculated from local patches, and are shown in
Figure 8. Volumes aligned better with the NeAt atlas
compared to the Allen atlas both locally and globally. NeAt
template’s better performance is likely due to the similarity in
modality to our acquisitions (Brain MRI atlas of the wild-type

FIGURE 9 | In vivo whole-brain registration: (A): Registration scores of 18 image volumes with our internal template, NeAt template/Atlas and Allen atlas. (B):
Sample volume using the skull-stripping/registration paradigmwith the internal (in-house) generated template and segmented brain structures. Each region is delineated
with separate color; cerebellum (yellow), paraflocculus/flocculus (blue), ventricle (magenta), and brain stem (turquoise).

FIGURE 10 | (A): Ex vivo cerebellum registration: Registration scores for 14 cerebellum image volumes. (B): A sample volume and segmented subcerebellar region
surfaces. Each region is delineated with separate color; Vermis IV/V (cyan), Vermis VI (pink), Vermis VII (wheat), Vermis VIII (blue), Vermis IX (golden), Simple lobe (green
and white), Crus I (navy, orchid), Crus II (salmon, maroon), Paraflocculus (purple, dark purple).
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C57BL/6J mouse strain). Based on these results, we selected the
NeAt template as a reference image for ex vivo image registration.
We found, however, that the registration quality for in vivo
images was poor with both NeAt and the Allen atlas (see a
comparion in Figure 9). Therefore, we developed an in-house
template based on images native to our acquisition instruments.
Once we concluded that our internal template works best, we
registered (200+) in vivo images with it. The average registration
score obtained from all MRI images is 0.93.

2.6.2 Cerebellum Subregion Segmentation for ex Vivo
Data
The cerebellum, obtained via skull-stripping followed by
registration to the NeAT template, is registered to a manually
generated in-house template that details subcerebellar regions.
After registration, we apply inverse transformation to the
template mask to extract the labeled subcerebellar regions in
the original coordinate system of the input image. In Figure 10,
we show registration scores and segmented subcerebellar regions
for a sample volume. When subregions are very small and
boundaries are not clear, segmentation accuracy is poor. For
example, the average error in the measured volume of “Crus II”
and “Paraflocculus” subregions are 20 and 9% respectively, well
above the acceptable range of 6% (estimated human segmentation
error bounds). To address this limitation, we segment smaller
regions directly via deep learning.

2.6.3 Registration Models and Parameter Selection
We use the state-of-the-art registration framework, ANTs (Avants
et al., 2009) to register images. Registration was performed
successively using a rigid transform, followed by affine and finally

by a deformable model (Symmetric Normalization (Syn)) (Avants
et al., 2008). Parameterization of the ANTs optimization process was
based on a grid search considering image-contrast, volume, and
image resolution. First, we find optimal parameters for a volume
then use them to register entire batch (photometric properties and
imaging condition remains same for a batch). Key parameters are
summarized in Table 2. The entire set of ANTs parameters is
exposed to the users viaDeepBrainIPP’s interface (see “Interface for
Image registration” in Supplementary Figure S1 in Supplementary
Material).

2.7 Software
DeepBrainIPP is easily accessible viaWeb-browsers with a secure
login. In order to use DeepBrainIPP, users do not need to install
any packages and do not need to know the underlying algorithmic
details for skull stripping, brain structure segmentation or
morphology analysis.

DeepBrainIPP has one dependency; the image processing
pipeline (IPP) which is available publicly (Janelia Research
Campus, 2021), and must be set up once as a standing service
by a systems administrator. The Image Processing Pipeline (IPP)
is a service that allows users to run state-of-the-art image
processing workflows on compute clusters via a web-based
portal and convenient user interface. Different data processing
steps—stored in a central code repository—can be strung together
to create workflows of arbitrary complexity, with
parameterization exposed to the user. Once a user has
parameterized a workflow, they can submit it to run on a
compute cluster (no scripting or coding skills needed). A
dedicated database stores information about all compute jobs,
including all user-set parameters and status. Past “runs” can be

TABLE 2 | ANTs (Avants et al., 2009) transformation models and parameters used.

Transformation models Parameter name Parameter value/Range

Rigid Gradient step size 0.1
Number of Bins (32,64,128)
Metric Mutual Information (MI)
Shrink factor (8,4,2,1)
Smoothing Sigma (8,6,4,1)
Sampling Strategy Regular
Number of Levels (1,2 4)

Affine Gradient step size 0.1
Number of Bins (32,64,128)
Metric [Mutual Information (MI), Mattes]
Shrink factor (8,4,2,1)
Smoothing Sigma (8,6,4,1)
Sampling Strategy Regular
Number of Levels (1,2,4)

Syn (Symmetric Normalization) gradient step size 0.1
UpdateFieldVarianceInVoxelSpace (3,7)
TotalFieldVarianceInVoxelSpace 0
Radius (32,64,128)
Metric Cross Correlation (CC)
Shrink factor (8,4,2,1)
Smoothing Sigma (8,6,4,1)
Sampling Strategy Regular
Number of Levels (1,2,4)

Interpolation BSpline (3), Linear
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accessed via the front-end for easy reuse and monitoring
facilitating data processing reproducibility.

DeepBrainIPP relies on the IPP to manage workflows and
pipelines. We adapted and customized the (more general) IPP to
build the final interface for DeepBrainIPP, and included
neurobiologists and MRI specialists in the application
development life cycle to understand issues related to usability
and accessibility for this group. Moreover, we applied Design
Thinking and System Thinking concepts to simplify the user-
interface and to properly integrate components of DeepBrainIPP.
The architecture of DeepBrainIPP is shown in Figure 11. The full
application consists of four modules: 1. Web Application, 2.
Singularity Repository 3. Job Manager, 4. High performance
Compute (HPC) Unit. The web application handles user
interaction via a web interface, which has two sections: “Admin”
where administrators can create, configure and design workflows,
and “User” for users to enter parameters and submit jobs. The user
interface shows job status
(“Created”,“Running”,“Successful”,“Error”) and information is
updated in real-time. The user interface for skull stripping and
image registration is shown in Supplementary Figure S1 (see
Supplementary Material). In addition, the singularity repository
associated with DeepBrainIPP contains all singularity-containers
(each is a portable, reproducible and autonomous unit) and is
accessible from HPC. We created a singularity-container for
DeepBrainIPP by packaging all models, code, required libraries
and dependencies into a single executable unit. The Job Manager
receives job information, executes on HPC, monitors execution and
updates the user. It also records parameters associated with each job
in persistent storage (MongoDB) so that the full job can be
reproduced in the future. The database has three replicated
instances for disaster recovery and for sustained service availability.

3 RESULTS AND DISCUSSION

3.1 Objective Evaluation
The quantitative evaluation of our deep neural network models
was performed on independent test MRI images acquired with
standard T2-weighted scans with two different coils (2-channel
phased-array surface coil, 23 mm mouse head volume coil). The
test set included image volumes of both mutant and wild-type
mice, thereby spanning the relevant morphogenetic space for the
studies that motivated this work. Below we describe our objective
performance evaluation.

Segmentation outcomes were quantified using Dice score,
Jaccard similarity, rate of true positive in prediction (PPV),
sensitivity, and Hausdorff surface distance using Eqs 1–5
respectively. G and P represent voxels in ground truth and
predicted mask, d (g, p) is the Euclidean distance between g
and p. A volumetric similarity measure such as the Dice score is
not sensitive to differences in edges or surface areas. Hence, we
additionally use a Hausdorff surface distance metric to quantify
the maximum contour distance between ground truth and the
predicted masks. A low Hausdorff distance indicates edges or
surface are well aligned. In Supplementary Table S2 (see
Supplementary Material), we presented skull-stripping scores
of our model along with two recently developed methods (Hsu
et al., 2020; De Feo et al., 2021) as well as several state-of-the-art
works. Hsu et al. (2020) applied several skull stripping methods
such as U-Net (Hsu et al., 2020) et al., RATS (Oguz et al., 2014),
PCNN (Chou et al., 2011), SHERM (Liu et al., 2020) on T2*w
RARE images and summarized their segmentation performance
(see Supplementary Table S2 in Supplementary Material). Our
imaging was T2-weighted TSE with higher in-plane resolution
but 0.5 mm thickness on a 7T MRI instrument which produces

FIGURE 11 | Architecture of DeepBrainIPP: DeepBrainIPP consists of four modules [web Application, job manager, singularity repository and High Performance
Computing Cluster (HPC)].
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images similar to T2*w RARE images. Sample outcomes of skull
stripping for both in vivo and ex vivo data using our models are
shown in Figure 12.

Dice � 2 |G ∩ P|( )/ |G| + |P|( ) (1)
Jaccard � |G ∩ P|( )/ |G ∪ P|( ) (2)

PPV � |G ∩ P|( )/P (3)
Sensitivity � |G ∩ P|( )/G (4)

Hausdorff � max h G, P( ), h P, G( )( )
h G, P( ) � max min d g, p( )( )( )

(5)

Skull-stripped brains were registered with templates with an
average cross-correlation of 0.98 and 0.89 for in vivo and ex vivo
images respectively. From ex vivo and in vivo data, we segmented
20 and 11 large structures/regions of interest (see Supplementary
Table S1 in Supplementary Material) by applying an inverse
transformation to the template’s mask. The cerebellum, an
example of a large structure, was segmented with an average
volume residual of 4.1%. Segmented cerebellum images were
registered with the internal template with an average cross-
correlation 0.9942. We list 23 sub-cerebellar regions (see
Supplementary Table S1 in Supplementary Material). This

approach was successful for ex vivo data. Due to poor
resolution and limited contrast, however, we do not segment
sub-cerebellar regions of in vivo data via this template registration
(It remains an option for users of DeepBrainIPP to proceed in this
fashion). The paraflocculus was segmented directly yielding an
average Dice score of 0.89, Jaccard similarity of 0.80, PPV of 0.89,
sensitivity of 0.89, Hausdorff distance of 0.29 mm and volume
residual of 5.32%.

We were inspired by MU-Net’s skull stripping performance
reported and applied it to our dataset. However, MU-Net, with
the original weights provided via the authors’ github repository at
the time of this study, produced poor skull-stripping outcomes on
the T2w TSEMRI images used in our study. We observed that the
auxiliary bounding box detection network performs poorly on
our data. Therefore, we manually cropped image volumes with a
tight bounding box and used these images as input to MU-Net.
The average Dice score obtained is 0.577, which does not meet
our acceptance criteria and is significantly below the reported
MU-Net (De Feo et al., 2021) performance. We investigated MU-
Net’s generalizability, since the MRI training data used in the
original MU-Net study were acquired with imaging parameters
different than ours; significantly changing resolution and contrast
when comparing the two datasets. MU-Net MRI image volumes

FIGURE 12 | Skull-stripping: First column: Brain (grey) with skull (red). Second column: Segmented brain using DeepBrainIPP.
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were acquired using a TurboRARE sequence with effective TR/TE
= 2,500/36 ms, matrix size 256 × 256, field of view 20.0 mm × 20.0
mm, 31 0.6 mm thick coronal slices, and a 0.15 mm inter-slice
gap. Our training and TEST data (that most closely match the
MU-Net training dataset) were captured using TR/TE = 2,500/
42 ms, matrix size = 320 × 320, field of view = 25 mm × 25 mm,
and a slice thickness of 0.5 mm. We therefore trained MU-Net
network (SKULLNET: https://github.com/Hierakonpolis/MU-
Net-R/blob/main/network.py) on our dataset, and it produced
a segmentation score close to the one reported in the original
MU-Net publication. Table 3 shows a comparison of skull
stripping outcomes of DeepBrainIPP versus MU-Net on our
dataset. Supplementary Figure S2 (see Supplementary
Material) shows skull-stripping outcomes (predicted masks are
shown in cyan color and overlaid with original volumes) on a
sample volume produced by DeepBrainIPP and MU-Net (with
and without retraining on our dataset). We note that MU-Net
underestimates the boundary of the paraflocculus even after re-
training on our dataset (see red box in Supplementary Figure
S2C in Supplementary Material).

We also investigated the power of our trainedmodel to generalize
to the externally published NeAt dataset (MRI images differ in
resolution and contrast with our training samples). Without fine-
tuning, our model was able to skull strip NeAt data with an average
Dice score of 0.92 for 6/10 volumes. For the remaining four volumes,
which are more extreme scans, the Dice score was unacceptable at
0.80, likely requiring fine tuning (see sample skull stripping
outcomes of DeepBrainIPP on NeAt data in Supplementary
Figure S3 in Supplementary Material).

We therefore conclude that the skull stripping model developed
in this work performed better than (or comparable to) state-of-the-
art models on T2w TSE mouse MRI data. The key reasons are: 1)
Our model was trained with an extensive augmentation scheme,
possibly with samples that represent more comprehensively
potential input data. Our data augmentation scheme increased
the segmentation score (dice) of DeepBrainIPP by 7.4% on the
NeAt dataset. It also increased the skull stripping outcome and
reduced error in measured volume when used to train MU-Net [see
Table 3) 2] We performed an extensive hyperparameter
optimization to choose the best performing network architecture.
3) The network architecture contains residual units (He et al., 2016)
that enable training very deep networks without suffering from

vanishing gradients and provide the potential to learn complex data
relationships (Kayalibay et al., 2017).

3.2 Limitations
The performance of our skull-stripping procedure degraded
noticeably in cases of severe hydrocephalus in the brain. The
excess fluid present in the cavity (hydrocephalus) decreases
contrast of boundaries rendering the segmentation task more
challenging. Our approach to segment small brain regions
directly, requires an extra step of training the model each time
when a new region is added to the list. The reason is when a new
region is added the training dataset changes, which triggers a need
to re-estimate optimal hyperparameter values.

3.3 Subjective Evaluation
We conducted a brief study for the subjective evaluation of
DeepBrainIPP by its intended users. The key purpose of
subjective evaluation of an application is to gather user
experience (Hassenzahl and Tractinsky, 2006) which requires a
carefully crafted questionnaire. Koumpouros and others
(Koumpouros, 2016) recommended two scales, QUEST 2.0
and PYTHEIA for the subjective evaluation of a system from
a comprehensive study. QUEST is very generic and was not used
widely. PYTHEIA scale is used to measure reliability and validity
of assistive services (Anam et al., 2014; Alam et al., 2016; Ahmed
et al., 2018; Alam et al., 2020; Alam, 2021). However, it can be
customized to evaluate other applications as well. We prepared a
questionnaire consisting of 17 statements/questions following
PYTHEIA specifications (see Supplementary Figures S4, S5
in Supplementary Material) and invited nine users (3 image
analysts, one cell and molecular biologist, one preclinical imaging
analyst, two neurobiologists, two computational engineers) to
participate in a user study. Participants rated their satisfaction
with DeepBrainIPP in a 6-point Likert-scale. A subset of
participants have been using DeepBrainIPP since August 2021.
To ensure the reliability of the Likert-scale survey, PYTHEIA
measures: 1) internal consistency-evaluates how well different
questions (items) that test the latent structure of the system give
consistent results; 2) test-retest reliability-evaluates the degree to
which participants maintain their opinion in repeated
experiments 3) repeatability-measures consistency of a
system’s outcome whenever it is used and the stability of a

TABLE 3 | Performance of skull stripping: DeepBrainIPP versus MU-Net.

Network* Data
augmentation

scheme

Inference
dataset

Dice Jaccard PPV Sensitivity Hausdorff Residual
volume
(%)

DeepBrainIPP No augmentation in-house 0.94 0.90 0.96 0.92 0.78 4.3
DeepBrainIPP With our augmentation in-house 0.96 0.92 0.96 0.95 0.77 2.18
MU-Net
(SKULLNET)

MU-Net’s
augmentation

in-house 0.95 0.91 0.96 0.93 0.73 2.9

MU-Net
(SKULLNET)

With our augmentation in-house 0.95 0.91 0.96 0.94 0.79 1.55

DeepBrainIPP No augmentation NeAt 0.81 0.69 0.85 0.77 5.19 9.74
DeepBrainIPP With our augmentation NeAt 0.87 0.77 0.86 0.88 5.19 8.05

Network*:All these networks were trained on our in-house dataset.
In-house**:T2*W TSE, with higher in-plane resolution.
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user’s opinion. Internal consistency, test-retest reliability, and
repeatability were measured with Cronbach’s alpha, intra-class
correlation coefficient (ICC), and Pearson’s product-moment
correlation coefficient respectively. The measured Cronbach’s
alpha is 0.930 (see detail in Supplementary Table S3 in
Supplementary Material), shows sufficient consistency among
the statements (α, 0.0 = “no consistency”, 1.0 = “perfect
consistency”, greater than 0.7 = “sufficient consistency”) which
indicates various features of DeepBrainIPP received consistence
score from the participants. The test-retest reliability is 0.816,
indicating stability of the system’s performance whenever it was
used. The Pearson coefficient is 0.7, showing that participants
maintained moderate consistency in their opinion. The
questions/items received an average score of 5.3 (see details
score in Supplementary Table S4 in Supplementary
Material) and participants provided an average score of 5.3
(see details score in Supplementary Table S5 in
Supplementary Material) to a question, which indicates users
were satisfied with DeepBrainIPP. The measured Customer
Satisfaction Score (CSAT) is 89%. CSAT score was calculated
from the ratio of the total number of customers who rated four or
above and the total number of participants.

Although, participants were satisfied with DeepBrainIPP they
made some feature requests. For example, one of the participants
asked to include a light 3D visualization tool inDeepBrainIPP so that
they can explore segmentation outcomes via a Web interface.
Another participant asked to make the analysis pipeline accessible
to external users. For external users, we have made the code-base,
models and other components available in https://github.com/
stjude/DeepBrainIPP with detailed instructions on how to set it
up and use it. In addition, we have a future plan to deploy
DeepBrainIPP on Amazon AWS so that it becomes even more
accessible. Another participant asked to read the metadata such as
voxel spacing from MRI headers during automatic file organization
to save entering metadata in the web-form (see “Interface for Skull
Stripping” in Supplementary Figure S1 in the Supplementary
Material). We have found several cases where imaging
instruments did not export metadata properly. Hence, we
encourage users to supply that information during job
submission. We plan for DeepBrainIPP to automatically check
any metadata inconsistency (between user-entered inputs and file
headers) and report discrepancies to the user before job submission.

4 CONCLUSION

In this paper, we presented DeepBrainIPP, an integrated end-to-end
solution for automated brain structure segmentation. Our approach
addresses several research and technological challenges in the
context of MRI mouse brain image analysis; development of a
robust fully automated model for skull stripping and
segmentation of mouse brain structures, development of data
augmentation strategies that counter the small annotated dataset
size, and development of a scalable pipeline that is accessible to non-
computational research staff. The software is modular and therefore
allows additional brain regions to be integrated into the existing

workflow. DeepBrainIPP produced segmentation outcomes at a
performance level of the human annotator. However, we have
not tested how well our models generalize in context of similar
data acquired by different instruments or for non-brain recordings.
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